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The intricacies of life rely on the orchestrated expression of a wide variety of genes, a 

fundamental process for maintaining normal cellular function and the development of our body. 

At the center of this mechanism lies mRNA transcription, which involves transcribing genetic 

information encoded in DNA into mRNA molecules by RNA polymerase II (RNAPII). 

However, this process is frequently fraught with challenges, especially when DNA damage arise 

and the lesions remain unrepaired [1-3]. Both external and internal factors, such as 

environmental toxins and metabolic byproducts, constantly assault the integrity of DNA. When 

DNA damage occurs on the template strand of actively transcribed genes, it poses a significant 

obstacle to RNAPII progression. These transcriptional roadblocks, ranging from base adducts to 

crosslinks and strand breaks, can impede the movement of RNAPII along the DNA template, 

resulting in the loss of precise transcriptional profiles. These profiles are essential for the timely 

and accurate expression of gene sets required for proper cellular functions. Consequently, 

aberrant gene expression may lead to cellular malfunctions and global abnormalities within the 

organism. To overcome transcriptional stresses, stalled RNAPII complexes activate cellular 

signal responses, leading to either temporary shutdown of transcription or apoptosis. Therefore, 

cells employ a specialised mechanism called transcription-coupled repair (TCR) to resolve 

cytotoxic transcription-blocking lesions and resume transcription, thereby maintaining cellular 

viability [4].

The TCR pathway operates in concert with the transcription machinery to detect and remove 

DNA lesions specifically from the transcribed DNA strand [5]. Major issues arise when the 

lesions are compact in size, and the strand with DNA damage encounters RNAPII, causing it to 

stall and impede forward translocation [6]. Cockayne syndrome (CS) is a rare hereditary 

progeria that is compromised in handling such situations, caused by mutations in either the 

ERCC6/CSB gene or the ERCC8/CSA gene [7, 8]. When RNAPII stalls, the CSB protein – an 

ATP-dependent chromatin-remodeling factor – plays a crucial role in recruiting the Cullin 

RING E3 ubiquitin ligase complex 4 (CRL4) along with the RNAPII-specific adaptor protein 

CSA [9]. The CSB/CSA-CRL4 complex facilitates a single DNA damage-induced 

ubiquitination of the largest subunit of RNAPII at the RPB1-Lys1268 residue [10], supported by 

the interaction between CSA and ELOF1 [11]. It has been demonstrated that compromising the 

RPB1-K1268 ubiquitination by introducing a lysine-to-arginine single amino acid substitution 
K1268Rin mice (Polr2a ), combined with a damage-overloading genetic background, recapitulates 

major CS phenotypes [10]. This suggests that the RNAPII ubiquitination is a crucial signaling 

mechanism for preventing CS manifestations caused by persistent RNAPII stalling at DNA 

lesions and interruptions in transcription [10, 12]. Recent studies report that much bulkier DNA 

lesions, such as DNA-protein crosslinks (DPCs), where RNAPII cannot access the damaged 

site, can also be handled by CSB [13-15]. Such DPCs, especially histone-DPCs, are 

preprocessed by VCP/p97 and the proteasome, degrading them to remnant peptides before they 

can be removed by the TCR pathway [13]. The lack of CSA or CSB protein functions in CS 

patients causes severe neurological phenotypes. However, the specific endogenous DNA 

damage that induces transcription roadblocks and leads to CS has not been identified. DPCs are a 

likely candidate and are known to be induced by endogenous aldehydes, such as formaldehyde 

generated from one-carbon metabolites like those produced during histone demethylation and 

one-carbon metabolism [16]. This is supported by observations in a very rare genetic disorder 

known as AMeDS (aplastic anemia, mental retardation, and dwarfism syndrome), where due to 

the absence of enzymes for clearing endogenous aldehydes (encoded by ADH5 and ALDH2) 

[13, 17, 18], patients exhibit CS-like clinical features along with haematological abnormalities 

resembling those observed in Fanconi anemia (FA), a bone marrow failure syndrome [19]. TFIIS 

supports the RNAPII-dependent cleavage of pre-mRNA transcripts at cyclobutane pyrimidine 

dimer (CPD) lesions in vitro, thereby promoting resumption of RNA synthesis with the aid of 

CSB [20, 21]. However, in human cells, TFIIS-mediated cleavage of RNA transcripts is 

indispensable only for the transcription restart of RNAPII from formaldehyde-derived DPC 

lesions but not UV-induced CPDs [13].

After the recognition and ubiquitination of stalled RNAPII by CSB/CSA, the ubiquitinated 

RPB1 recruits TFIIH, the DNA repair and transcription factor [22], with the help of UV-

stimulated scaffold protein A (UVSSA) [10]. UVSSA mutations have been identified in patients 
Swith UV-sensitive syndrome (UV S) [23, 24], who display acute sun sensitivity without any CS-

like devastating phenotypes [25], although cells derived from these patients show a complete 
Sabsence of cellular TCR activity. The mild clinical features of UV S may result from the prompt 

degradation of stalled RNAPII, preventing prolonged arrest at DNA lesions and ultimately 

signaling for apoptosis [24]. In the process of TFIIH recruitment, UVSSA interacts with the 

ubiquitin chain on RNAPII and the p62 subunit of TFIIH via the PH-domain of p62 and the PH-

binding domain of UVSSA [10, 24, 26]. It also interacts with CSA and ELOF1, to support the 

complex formation [11]. USP7, which binds to UVSSA, inhibits the degradation of CSB and 

RNAPII by deubiquitinating excess ubiquitin chains [23, 27]. Afterward, UVSSA is 

ubiquitinated at the Lys414 residue, facilitating the transfer of TFIIH to RNAPII [10].

Subsequently, the helicases XPB and XPD in the TFIIH core complex unwind the DNA around 

the lesion, with support from XPA and XPG. Loss of these XP proteins causes xeroderma 

pigmentosum (XP), a genodermatosis that predisposes individuals to skin cancer [28, 29]. 

Except for XP-A (XPA-defective), most XP patients do not exhibit a neurodegenerative 

phenotype; however, several cases with distinct mutations in ERCC3/XPB [30], ERCC2/XPD 

[31], or ERCC5/XPG [32] display the combined features of XP and CS (XPCS). In addition to 

these XPCS mutations, specific pathogenic variants in XPB, XPD, and the p8 subunit of TFIIH 

(TTDA, encoded by GTF2H5) can cause trichothiodystrophy (TTD) [33], which has similarities 

with CS but also includes sulphur-deficient brittle hair [34]. XPCS and TTD are typically caused 

by TFIIH deficiency and may be distinct from CS-A and CS-B. During the loading of the 

nucleotide excision repair (NER) complex, stalled RNAPII is either backtracked or degraded, 

depending on the nature of DNA lesions, allowing for the recruitment of the NER incision 

endonucleases, ERCC1-XPF (encoded by ERCC4) and XPG [35], to excise the DNA lesion. In 

exceptional cases, mutations in the ERCC1-XPF endonuclease lead to the combined phenotypes 

of XP, CS, and FA (XPCSFA), because of the shared 5' damage incision machinery between 

NER and the inter-strand crosslink (ICL) repair pathway, which is defective in FA [36]. After the 

removal of nucleotides containing damage, DNA polymerases and ligases eventually fill and 

seal the gap to complete the repair process [37, 38].

Final remarks

Taken together, TCR provides dual protection by activating DNA repair and processing DNA 

damage-stalled RNAPII. This process triggers the assembly of the damage incision complex and 

facilitates the degradation of RNAPII, preventing prolonged stalling of transcription. 

Consequently, the fate of stalled RNAPII and maintaining precise transcription profiles are now 

recognised as crucial links between TCR and related human disorders, preventing transcription 

arrest and protecting against neurodegeneration.
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