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Abstract
Main conclusion A gene within a single subclade of NCED genes is triggered in response to both, short- and long-term 
dehydration treatments, in three model dicot species.

Abstract During dehydration, some plants can rapidly synthesise the stress hormone abscisic acid (ABA) in leaves within 
20 min, triggering the closure of stomata and limiting further water loss. This response is associated with significant tran-
scriptional upregulation of Nine-cis-Epoxycarotenoid Dioxygenase (NCED) genes, which encode the enzyme considered 
to be rate-limiting in ABA biosynthesis. However, most embryophyte species possess multiple NCED genes, and it is not 
currently known whether there is any phylogenetic pattern to which NCED genes are involved in this response. We tested 
transcriptional responses to dehydration for all NCED genes present in three diverse eudicot species—Arabidopsis thaliana 
(Arabidopsis), pea and tomato—over both the timeframe of stomatal responses (< 20 min) and in response to sustained dehy-
dration (hours). We found that there is a single NCED gene per species, AtNCED3, PsNCED2, and SlNCED1, respectively, 
that is rapidly upregulated by dehydration. Using a null mutant, we confirmed that the rapidly responsive gene identified 
in Arabidopsis is important for physiological responses to a sudden drop in humidity. Analysis of the relationships and the 
evolutionary history of NCED genes using available sequence data from diverse land plant species revealed that the identified 
genes in each species all belong to the same subclade within the gene family, suggesting a conserved role for this subclade 
in rapid dehydration responses in eudicots. These findings enable future phylogenetically-informed prediction of genes of 
interest for rapid dehydration responses within this important multigene family in eudicot species.
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Abbreviation
NCED  Nine-cis-Epoxycarotenoid Dioxygenase

Introduction

The evolution of adjustable stomatal pores, capable of clos-
ing to prevent excessive water loss, and reopening to allow 
carbon dioxide  (CO2) acquisition in tissues protected by a 
waxy cuticle, was a major step in land plant evolution. In 
terrestrial environments, conditions including atmospheric 

humidity can change suddenly during the day. Low atmos-
pheric humidity drives increased transpiration and plant 
water loss through stomata. Dehydration stress affects plant 
cell turgor and/or cell wall rigidity, which triggers abscisic 
acid (ABA) biosynthesis in angiosperm species (Pierce and 
Raschke 1980, 1981; McAdam and Brodribb 2016; Sack 
et al. 2018; Bacete et al. 2022). ABA activates stomatal clo-
sure, limiting further water loss within timeframes as short 
as 20 min (Mittelheuser and Van Steveninck 1969; Kriede-
mann et al. 1972; McAdam et al. 2016). This response is 
associated with rapid transcriptional upregulation of Nine-
cis-Epoxycarotenoid Dioxygenase (NCED) genes (McAdam 
et al. 2016), which encode the enzyme considered to be 
rate-limiting in ABA biosynthesis, catalysing the cleavage 
of 9-cis-violaxanthin/9-cis-neoxanthin to produce xanthoxin 
(Tan et al. 1997; Qin and Zeevaart 1999). Other mechanisms 
for increasing ABA levels, including ABA release from 
ABA-glucosyl ester (ABA-GE) storage (Dietz et al. 2000; 
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Lee et al. 2006; Xu et al. 2012; Georgopoulou and Milbor-
row 2012; Mercado-Reyes et al. 2024) or decreased ABA 
catabolism (Kushiro et al. 2004; Saito et al. 2004; Umezawa 
et al. 2006; Ren et al. 2007), may regulate ABA levels in 
other circumstances. However, these mechanisms do not 
appear to play an important role in increasing ABA levels 
during rapid dehydration responses, as ABA-GE levels have 
been found to remain similar or increase, while transcrip-
tion of ABA catabolism genes is upregulated in response to 
low humidity or altered leaf turgor pressure over these time 
frames (McAdam et al. 2016; Sussmilch et al. 2017). The 
importance of de novo ABA biosynthesis in rapid dehydra-
tion responses is supported by studies showing that ABA 
biosynthesis mutants do not show the same rapid increases 
in ABA levels as wild-type plants, leading to a characteristic 
‘wilty’ phenotype in response to low humidity (McAdam 
et al. 2015, 2016).

Most embryophyte species possess multiple NCED genes, 
which form a land plant-specific clade within the wider 
carotenoid cleavage dioxygenase (CCD) family (Sussmilch 
and McAdam 2017; Jiao et al. 2020). There is evidence of 
some diversification among angiosperm NCED genes in 
terms of expression patterns, tissue-specificity and transcrip-
tional responses, with specific roles including short- and/or 
long-term dehydration responses, and seed dormancy (Tan 
et al. 2003; Lefebvre et al. 2006; Frey et al. 2012; Zdunek-
Zastocka and Sobczak 2013; Ji et al. 2014; McAdam et al. 
2016). However, systematic testing of rapid transcriptional 
responses to dehydration for all NCED genes in a species, 
over both the timeframe of stomatal responses (< 20 min) 
and in response to sustained dehydration (hours), is cur-
rently lacking.

To test if there is a phylogenetic pattern between NCED 
genes that are rapidly induced by dehydration in eudicots, we 
examined the change in expression levels after two different 
dehydration treatments for all NCED genes present in three 
diverse eudicot species: Arabidopsis thaliana (Arabidopsis, 
eurosid—malvid); Pisum sativum (pea, eurosid—fabid); 
Solanum lycopersicum (tomato, asterid). We found that there 
is one NCED gene per species that is rapidly upregulated 
by dehydration within short (minutes) and longer (hours) 
timeframes. We confirmed the importance for rapid response 
at a physiological level with mutant analysis. We analysed 
the relationships and evolutionary history of NCED genes 
more widely in diverse land plants using available sequence 
data. We found that each rapidly responsive NCED gene 
identified belongs to the same subclade within the gene fam-
ily, suggesting a conserved role for this subclade in rapid 
dehydration responses in eudicots.

Materials and methods

Plant material and dehydration treatment

Arabidopsis thaliana Col-0, Pisum sativum cultivar (cv.) 
Torsdag, and Solanum lycopersicum cv. Rheinlands 
Ruhm plants were grown under short-day condition (8 h 
light/16 h dark) at 25 °C day/20 °C night and watered daily. 
For pressurisation experiments, all plants were covered 
overnight using a plastic bag to ensure full plant turgor at 
the beginning of the experiment. Leaves were dehydrated 
in a Scholander pressure chamber (Tyree and Hammel 
1972; McAdam and Brodribb 2016) to control decreases 
in leaf water potential using specific pressure magnitude 
from mild (0.2 MPa) to severe (1.0 MPa) for 20 min then 
depressurised slowly and equilibrated for 20 min in a 
sealed bag at 100% humidity. Samples were collected for 
quantification of leaf water potential using the pressure 
chamber and gene expression for all NCED genes in the 
three species using qRT-PCR. To test responses to severe 
long-term dehydration, plant roots were cut off with the 
remaining stem and leaves enclosed in bags which were 
periodically removed to control drying. Water potential 
and NCED gene expression were quantified at key time 
points.

Mutant selection and humidity treatment

Col-0 wild-type plants were grown on 0.5 × Murashige and 
Skoog Basal Salt mixture (MS) agar without any selec-
tion media. Seeds for the nced3-2 mutant were obtained 
from the Arabidopsis Biological Resource Centre (ABRC; 
Ohio State University, Ohio, USA; accession number 
CS412308) and grown on 0.5 × MS agar with sulfadiazine 
(7.5 mg/L) for mutant screening. Both genotypes were 
transferred to soil at 10 days old and grown under the 
conditions specified above. For low humidity treatment, 
six-week-old plants were covered overnight using a trans-
parent plastic bag, and exposed to a change of humidity 
from 92.17% ± 0.42% to 35.07% ± 6.01% relative humidity 
at 22.46 ± 0.66 °C. All experiments were conducted at the 
same time of day. Leaf water potential was measured using 
a Scholander pressure chamber (Tyree and Hammel 1972).

RNA RT‑qPCR quantification and statistical analysis

RNA was extracted with the Isolate II RNA Plant Kit 
(Meridian Bioscience, Cincinatti, Ohio, USA) using the 
manufacture’s protocol, except for the following modifica-
tions: all centrifuge steps were performed at 4 °C, and the 
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kit’s on-membrane DNAse digestion was replaced with 
off-membrane digestion with RNAse-free DNase I, and 
precipitation with sodium acetate (pH 8) and ethanol and 
resuspension in RNAse-free water.

RNA quantification, reverse transcription, and quantita-
tive reverse transcription PCR (qRT-PCR) were conducted 
as previously described (McAdam et al. 2016; Sussmilch 
et al. 2017). Transcript levels for each gene of interest were 
evaluated for three replicates per species/timepoint against 
housekeeping genes PsHel, AtMON1 and SlTIP41 for pea, 
Arabidopsis, and tomato, respectively. Primer details are 
available in Table S1. Dunnett posthoc analysis (Dunnett 
1955, 1964) was carried out in R v.4.2.3 and RStudio (RStu-
dio Team 2018; R Core Team 2021) using the tidyverse 
package (Wickham et al. 2019) and results are available in 
Tables S2 and S3.

Results and discussion

A single NCED gene in each dicot species is rapidly 
upregulated by dehydration

We first tested the rapid transcriptional response of NCED 
genes to controlled decreases in leaf water potential using 
different pressure magnitude from mild (0.2 MPa) to severe 
(1.0 MPa) for Arabidopsis, pea, and tomato. Samples were 
collected for (i) quantification of leaf water potential using 
the pressure chamber (Fig. S1) and (ii) gene expression 
for all NCED genes in the three species (Fig. 1a; Fig. S2; 
Table S2). We found that only one NCED gene per species 
was induced within this timeframe (AtNCED3, PsNCED2, 
SlNCED1; Fig. 1a; Fig. S2).

To test responses to severe long-term dehydration, plant 
roots were cut off with the remaining stem and leaves 
enclosed in bags, which were periodically removed to con-
trol drying. Water potential and NCED gene expression were 
quantified at key time points (Fig. 1b; Figs. S1b and S3). 
The same NCED genes were found to have an increase in 
response to this dehydration stress over 13 h (AtNCED3, 
PsNCED2, SlNCED1; Fig. 1b; Fig. S3). We confirmed the 
importance of AtNCED3 in stabilising water potential rap-
idly in response to dehydration by exposing the Arabidopsis 
nced3-2 mutant (Urano et al. 2009) and wild-type plants 
to low humidity. We found that mutant plants have signifi-
cantly lower water potential than wild type within 20 min of 
low humidity treatment, confirming a physiological role for 
AtNCED3 in rapid dehydration response (Fig. S4). These 
results are further supported by previous studies that show 
mutants of AtNCED3 and SlNCED1 in Arabidopsis and 
tomato, respectively, maintain low ABA levels, and show 
higher transpiration rates and higher stomatal conductance 
compared to wild-type plants during dehydration treatments 

(Burbidge et al. 1999; Iuchi et al. 2001; Frey et al. 2012; 
McAdam et al. 2016). All three of the genes—AtNCED3, 
SlNCED1 and PsNCED2—have previously been shown 
to have a close temporal relationship between transcrip-
tional upregulation and increased ABA levels (Zdunek-
Zastocka and Sobczak 2013; McAdam et al. 2016). A role 
for AtNCED5 in sustained dehydration responses has been 
identified in a previous study, with the nced3 nced5 dou-
ble mutant found to show a more severe wilting phenotype 
than the nced3 single mutant in response to drought treat-
ment (Frey et al. 2012). However, the nced5 single mutant 
shows comparable dehydration responses to wild type (Frey 
et al. 2012), suggesting that while there may be some redun-
dancy between NCED5 and NCED3 during longer dehy-
dration stress, NCED5 does not play a critical role in rapid 
dehydration.

NCED genes that respond rapidly to dehydration 
belong to the same subclade

We investigated the phylogenetic relationship of NCED 
genes in major land plant lineages, using available sequence 
data for 67 diverse land plant species (Fig. 2; Table S4; 
Fig. S5). The resulting phylogeny reveals separate expan-
sion of the NCED gene family in all major land plant lin-
eages except lycophytes; currently, lycophyte genome and 
transcriptome sequences show a single NCED copy per spe-
cies (Fig. S5). We found two main angiosperm subclades 
(NCEDI and NCEDII) to be present in diverse species 
including the “basal” angiosperm Amborella trichopoda, 
which is sister to all other angiosperms (Fig. 2), suggest-
ing that these clades arose from a gene duplication event in 
shared common ancestor, consistent with the findings of pre-
vious analyses using fewer species (Sussmilch and McAdam 
2017; Wang et al. 2017). Our analyses further indicate that 
after the divergence from a common ancestor with Aquilegia 
coerulea, core eudicots underwent another gene duplication 
in the NCEDII subclade, giving rise to two subclades that we 
named Core Eudicot NCEDIIA and NCEDIIB. Interestingly, 
AtNCED3, PsNCED2 and SlNCED1 all belong to the Core 
Eudicot NCEDIIB subclade, suggesting genes in this clade 
may have a conserved role in dehydration responses, and 
indicating this as the best subclade to search for candidates 
for these responses in other eudicot species.

Accordingly, the Core Eudicot NCEDIIB subclade also 
includes the common bean gene PvNCED1 (Fig. S5), which 
has previously been found to show rapid increases in tran-
script and protein levels, closely correlated with increases 
in ABA levels, in response to dehydration (Qin and Zeevaart 
1999). Arabidopsis has a second gene in the Core Eudicot 
NCEDIIB subclade, AtNCED9, which did not show rapid 
transcriptional induction in leaves in response to dehydration 
in our study (Figs. S2 and S3), suggesting some potential 
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loss of this functionality within the clade. Nevertheless, we 
observed slightly higher expression of AtNCED9 past the 
turgor loss point (Figs. S1, S2, and S3), consistent with other 
studies showing weak induction of this gene during sus-
tained dehydration (Iuchi et al. 2001; Tan et al. 2003), and 
suggesting some potential redundancy. AtNCED9 has instead 
been shown to have an important role in ABA biosynthe-
sis during seed development for induction of dormancy, in 
accordance with its predominant expression in the embryo 
and endosperm (Lefebvre et al. 2006).

So far, rapid increases in ABA levels in response to low 
humidity is a characteristic that has only been observed in 
angiosperm species. In gymnosperms, although stomata 
show a strong closure response to ABA, similar to angio-
sperms (Jackson et al. 1995; Zuccarini et al. 2011; Brodribb 
and McAdam 2011), increases in ABA levels appear slower, 
occurring after several hours (McAdam and Brodribb 2014) 
instead of minutes. Responses of lycophytes, ferns, and 
gymnosperms to short-term low humidity treatment instead 
appear to be passively driven by leaf water content, rather 

Fig. 1  Expression of the NCED genes rapidly induced in response to 
decreased water potential from a pressurisation treatment and b con-
trolled drying in Arabidopsis thaliana (At), Pisum sativum (pea; Ps), 
and Solanum lycopersicum (tomato; Sl). Other NCED genes showed 
no rapid increase in expression when exposed to each dehydration 

stress (Figs. S2 and S3). Mean expression (purple line) and individual 
biological replicates (n = 3, coloured points) relative to control values 
are displayed, with results of one-way ANOVA with Dunnett’s mul-
tiple comparison test indicated (* P < 0.05. Full details in Tables S2 
and S3)
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than ABA (McAdam and Brodribb 2015). This suggests that 
mechanisms for rapid ABA-mediated stomatal responses to 
low humidity may have evolved after angiosperms diverged 
from gymnosperms, at least 195 million years ago (Morris 
et al. 2018).

In conclusion, we identified one key NCED gene in each 
eudicot species that is rapidly induced in response to dehy-
dration: AtNCED3, PsNCED2 and SlNCED1, and confirmed 
the importance of AtNCED3 in stabilising plant water poten-
tial. We found that they all belong to the same major sub-
clade – Core Eudicot NCEDIIB. These results suggest that 
genes in this subclade share an evolutionarily conserved role 
in rapid responses to dehydration stress in eudicots. These 
findings enable future phylogenetically-informed prediction 
of genes of interest for rapid dehydration responses within 
this important multigene family in eudicot species.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00425- 025- 04626-z.
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Scale bar represents number of 
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