
RESEARCH
Predicting Protein Pathways Associated to Tumor
Heterogeneity by Correlating Spatial Lipidomics and
Proteomics: The Dry Proteomic Concept
Authors
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In Brief
This study introduces a robust
"dry proteomics" workflow
based on lipid MALDI MSI,
validated on rat brain tissues and
applied to human glioblastoma.
The innovative multi-omics MSI
data analysis addresses a crucial
gap in spatial data processing by
integrating tissue heterogeneity
assessment. Notably, SVD data
compression, k-means++
segmentation, and silhouette
criterion yielded optimal results.
This workflow offers novel
insights into glioblastoma
biology and patient survival,
presenting promising tool for
clinical studies and patient
theragnostic management,
marking a significant
advancement in cancer research.
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• Tissue heterogeneity assessment pipeline was developed based on lipid MALDI MSI.• AI models predicts lipid clusters with associted proteomes and biological pathways.• Developed strategy applied to glioblastoma deciphered heterogeneity for prognosis.• Dry proteomics: rapid, robust cancer tissues analysis for theragnostic management.
891
y Elsevier Inc on behalf of American Society for Biochemistry and
ccess article under the CC BY-NC-ND license (http://
-nd/4.0/).
.100891

mailto:isabelle.fournier@univ-lille.fr
mailto:michel.salzet@univ-lille.fr
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.mcpro.2024.100891
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mcpro.2024.100891&domain=pdf


RESEARCH
Predicting Protein Pathways Associated to
Tumor Heterogeneity by Correlating Spatial
Lipidomics and Proteomics: The Dry Proteomic
Concept
Laurine Lagache1,‡ , Yanis Zirem1,‡, Émilie Le Rhun1,2, Isabelle Fournier1,3,*,‡ , and
Michel Salzet1,3,*,‡
Prediction of proteins and associated biological pathways
from lipid analyses via matrix-assisted laser desorption/
ionization (MALDI) MSI is a pressing challenge. We intro-
duced "dry proteomics," using MALDI MSI to validate
spatial localization of identified optimal clusters in lipid
imaging. Consistent cluster appearance across omics
images suggests association with specific lipid and pro-
tein in distinct biological pathways, forming the basis of
dry proteomics. The methodology was refined using rat
brain tissue as a model, then applied to human glioblas-
toma, a highly heterogeneous cancer. Sequential tissue
sections underwent omics MALDI MSI and unsupervised
clustering. Spatial omics analysis facilitated lipid and
protein characterization, leading to a predictive model
identifying clusters in any tissue based on unique lipid
signatures and predicting associated protein pathways.
Application to rat brain slices revealed diverse tissue
subpopulations, including successfully predicted cere-
bellum areas. Similarly, the methodology was applied to a
dataset from a cohort of 50 glioblastoma patients, reused
from a previous study. However, among the 50 patients,
only 13 lipid signatures from MALDI MSI data were avail-
able, allowing for the identification of lipid-protein asso-
ciations that correlated with patient prognosis. For cases
lacking lipid imaging data, a classification model based on
protein data was developed from dry proteomic results to
effectively categorize the remaining cohort.

Since the gap between mass spectrometry imaging (MSI)
and proteomics has been bridged by the development of
spatially resolved proteomics guided by matrix-assisted laser
desorption/ionization (MALDI) MSI (1–5), the next challenge
was to perform multi-omics analyses at the spatial level (6–11).
Nevertheless, there are still developments to be performed to
correlate from lipid MSI data, proteins and lipid networks to
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retrieved functions. Multi-omics MSI is particularly valuable for
the analysis of heterogeneous biological samples, such as
brain or tumours, which consist of different cell types and
regions with distinct molecular composition and function (3).
Indeed, tumour heterogeneity is a significant and growing area
in cancer research. An overview on tumoral heterogeneous
proteome is subsequently linked to therapeutic, allowing drug
resistance analysis and optimized treatment guideline pro-
posal, tending to personalize medicine strategy. However, the
complex nature of protein annotation and the lack of stan-
dardized methodologies pose challenges to the effectiveness
of MALDI-MSI data analysis, especially in multi-omics clinical
research. The interpretation and integration of the vast amount
of data generated by these technologies remains a significant
limitation (12). Extracting meaningful insights from complex
datasets therefore requires sophisticated computational ap-
proaches and bioinformatic analysis (13). MALDI MSI data
analysis involves pre-processing and processing stages,
preparing them for subsequent statistical analysis. Reduction
techniques, like PCA (Principal Component Analysis) (14, 15),
t-SNE (t-distributed Stochastic Neighbour Embedding) (16,
17), or NNMF (Non-negative matrix factorisation) (18, 19), are
particularly useful for exploring the spatial distribution of mo-
lecular features in MALDI MSI data (20, 21). In addition, the
combination of MSI and machine learning methods is widely
used in the processing step to effectively extract the essential
information contained in complex MSI data. The emergence of
segmentation methods, such as bisecting k-means, hierar-
chical clustering and k-means clustering (22, 23), provides
valuable insights from complex data like meaningful regions
corresponding to biological features in heterogeneous sam-
ple. However, choosing the right number of k-clusters is not
straightforward, limiting biological conclusions (22, 23). The
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RESEARCH
common method involves performing k-means clustering for
different k values (2<k<kmax) and calculate the distances be-
tween clusters. The aim is to find the optimal k that minimizes
intra-class distances while maximizing inter-class distances.
Several statistical indices, called criterions, have been devel-
oped for this purpose (24, 25).
Here, we introduce the concept of dry proteomics, an

automated procedure capable of identifying heterogeneous
clusters of biological samples according to their lipid signa-
ture, thought lipid MALDI MSI, and automatically providing
their associated protein data without any proteomic experi-
ments. The development of this machine learning method
required overcoming several challenges (see, Graphical
Abstract).The central hypothesis was that if a cluster appeared
identical in both lipid and protein images, it should possess
lipids and paired proteins related to a specific biological
pathway, like a unique barcode that allows one cluster to be
distinguished from others. Thus, the correlation between lipids
and proteins in a biological network, within different clusters,
forms the basis of dry proteomics. The data processing
workflow was first developed on lipid, protein, and peptide
MSI datasets performed on rat brain (RB) tissue. We suc-
ceeded in building a segmentation pipeline, consisting of
Singular Value Decomposition (SVD) data compression pre-
processing and k-means++ segmentation processing steps.
The integration of the silhouette criterion allowed to optimize
and automate the optimal number of clusters finding for MSI
analysis, corresponding to the sample heterogeneity. The next
step was to develop a prediction model that could blindly
identify the different RB clusters from a lipid MS image ac-
cording to their spectral fingerprint. The prediction model was
complemented by discriminative lipid and protein identifica-
tions for each cluster, forming a dry proteomic reference
dataset for RB tissue section.
Finally, the dry proteomics concept is a simple and rapid

procedure, as the user only needs to perform lipid MALDI MSI
to automatically identify the heterogeneous clusters present in
a sample and obtain their specific proteome. The development
of this tool is aimed at clinical application for patient thera-
peutic guidance. Indeed, the protein information provided by
the dry proteomics process can be related to drug resistance,
potential therapeutic target or patient survival, which could
help the oncologist to propose a therapeutic guideline
adapted to the patient's tumour. In this way, the ultimate
phase of presented research involved the application of this
innovative concept to intricate and heterogeneous pathology
samples, particularly human Glioblastoma (26–28). In addition,
by applying the dry proteomics workflow, correlation between
predicted protein and patient survival outcome information
allowed to establish a robust model for glioblastoma patient
survival prediction. This crucial validation step not only en-
hances confidence in the reliability of this approach but also
holds significant promise for advancing personalized medicine
strategies in the management of this challenging disease.
© 2024 THE AUTHORS. Published by Elsevier Inc on behalf of American Society for Bio
This is an open access article under the CC BY-NC-ND license (http://creativecommons
Indeed, the assessment of heterogeneity, whether intra or
interpatient, is pivotal in personalized medicine, as it allows for
the identification of unique molecular profiles that can inform
tailored treatment strategies for individual patients.
EXPERIMENTAL PROCEDURES

Experimental Design and Statistical Rationale

For MALDI imaging and spatial omics development studies n = 3
male Wistar rats were sacrificed. All the experiments were performed
in biological triplicate to ensure data reproducibility. For the proteomic
statistical analysis of conditioned media, as a criterion of significance,
we applied an ANOVA significance threshold of p-value ≤0.01, and
heat maps were generated. Normalization was achieved using a Z-
score with matrix access by rows. To assess the statistical signifi-
cance of biomarkers for lipids MSI biomarkers, a non-parametric
Kruskal-Wallis test was employed. Bonferroni corrections were
applied to adjust p-values for multiple comparisons. Values are pre-
sented as medians and visualized through scatter boxplots.

A retrospective cohort of 50 fresh frozen (FF) glioblastoma tissues
was obtained from the Pathology department of Lille Hospital,
France. A prospective cohort of 50 FF glioblastoma tissues were also
included in this study. 50 patients with newly diagnosed glioblas-
toma were prospectively enrolled between September 2014 and
November 2018 at Lille University Hospital, France (NCT02473484).
This research complies with all relevant ethical regulations. Approval
of the study protocol was obtained from the Lille Hospital research
ethics committee (ID-RCB 2014-A00185-42) before the initiation of
the study. The study adhered to the principles of the Declaration of
Helsinki and the Guidelines for Good Clinical Practice and is regis-
tered at NCT02473484. Informed consent was obtained from pa-
tients. Participants did not receive any compensation. According to
the French Public Health Code and in application of the General Data
Protection Regulations, all patients had been informed at the time of
care that their standard clinical and biological data could be used for
research purposes regarding the retrospective analysis of FF sam-
ples, and none had expressed his opposition. Regarding the pro-
spective collection of samples, each patient's informed consent for
the collection and publication of clinical and biological data was
obtained at the time of hospitalization prior to surgical intervention
(27, 28). Tissue sections were subject to H&E coloration for histo-
pathological analysis. The regions annotations were made by an
anatomopathologist.

Chemical Products and Material

Water (H2O), ethanol (EtOH), acetic acid, acetonitrile (ACN) and
methanol (MeOH) were obtained from Thermo Fisher Scientific
(Courtaboeuf, France). 99% pure trifluoroacetic acid (TFA), α-cyano-4-
hydroxycinnamic acid (HCCA), sinapinic acid (SA), 2,5-
dihydroxybenzoic acid (2,5-DHB), aniline, formic acid (FA) and
ammonium bicarbonate (NH4HCO3) were purchased from Sigma-
Aldrich (Saint-Quentin Fallavier). The chloroform (CHCl3) was ob-
tained from Carlo Erba Reagents (Val-de-Reuil). Porcine Trypsin
Sequencing Grade was from Promega (Charbonnières).

Tissues were cut on a cryostat (Leica Microsystems, Nanterre).
Indium Tin Oxide slides were purchased from LaserBio Labs (Val-
bonne), whereas the poly-lysine coated slides were from Epredia
(Braunschweig). The MALDI matrices and the trypsin were deposited
on the tissue sections using the HTX M5-Sprayer (HTX Technologies).
Mass spectrometry imaging analyses were performed using the
MALDI-TOF Rapiflex Tissuetyper (Bruker Daltonics, Bremen, Ger-
many) equipped with the Smart Beam 3D laser. Spatial proteomic
Mol Cell Proteomics (2025) 24(1) 100891 1
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Dry Proteomic Concept: Bridging Spatial Lipidomics and Proteomics
analysis were carried out through the utilization of chemical printer
(CHIP-1000, Shimadzu) and the TriVersa Nanomate device (Advion
Biosciences Inc). Samples were dried in a SpeedVac (SPD13DPA,
Thermo Fisher Scientific). nLC-MS/MS analysis were performed with
TimsTOF Flex (Bruker) coupled to an EVOSEP One (EVOSEP).

Sample Preparation

Rat brains were obtained from our collaborator Dr Dasa Cizkova
(Institute of Neuroimmunology, Slovak Academy of Science, Bra-
tislava). Male Wistar rats of adult age were sacrificed by CO2

asphyxiation and dissected. Brain tissues were frozen in isopentane
at −50 ◦C and stored at −80 ◦C until use. Experiments on animals
were carried out according to institutional animal care guidelines
conforming to international standards and were approved by the
State Veterinary and Food Committee of Slovak Republic (Ro-4081/
17-221), and by the Ethics Committee of the Institute of Neuro-
immunology, Slovak Academy of Science, Bratislava. For this study,
FF rat brain tissues were cut using a cryostat at −20 ◦C. All sections
were obtained at the same time and stored at −80 ◦C until their use.
Rat brain sagittal 12 μm sections were prepared, to finally reach 22
batch of four consecutive sections. Tissues were fixed on ITO slides
and respectively intended to: back-up, lipid in negative and positive
mode imaging, protein imaging and peptide imaging in positive
mode (29, 30).

Ten others consecutive rat brain sagittal sections of 12 μm were
mounted on poly-lysine coated slide for lipid analysis carried out by
SpiderMass technology. Three consecutive another 20 μm sections
were fixed on poly-lysine coated slide for spatial proteomic analysis.

Finally, three different rat brain sagittal 12 μm section were fixed
onto ITO coated slide as a validation cohort for the lipid predictive
model.

For the analysis of horizontal rat brain tissues, four consecutives
sections were prepared for multi-omics MSI analysis as describe
bellow, followed by another consecutive sections for spatial proteomic
analysis. This schema was repeated on four different rat brains.

Lipid MALDI MS Imaging

Tissues were dried in a desiccator before a matrix deposition.
Norharman was used as MALDI matrix for positive and negative lipid
imaging. The matrix was deposited at 7 mg/ml in CHCl3: MeOH (2:1, v/
v). The HTX parameters for norharman spray were: spray at 30 ◦C with
10 psi pressure, a pattern CC, a flow rate of 0.1 ml/min, a velocity of
1200 mm/min, for 12 passages with 2 mm track spacing. Lipid images
were performed on the MALDI-TOF Rapiflex Tissuetyper mass spec-
trometer. The spectra were acquired within the m/z 200 to 1200 range
in positive ion mode and the m/z 400 to 1500 range in negative ion
mode. All data were performed in the delayed extraction reflectron
mode with an average of 300 laser shots per pixel for a spatial reso-
lution of 50 μm. The laser energy was set around 60% and the volt-
ages of the ion source were 20 kV and 11 kV for the lens. Same
protocol was applied for 10 μm lipid imaging.

Other images were performed with DHB matrix in positive ion
mode. The matrix was deposited at 10 mg/ml in MeOH: TFA 0.1%
(7:3, v/v). The HTX parameters for DHB spray were: spray at 75 ◦C,
tray at 55 ◦C, with 10 psi pressure, a pattern CC, a flow rate of 0.1 ml/
min, a velocity of 1200 mm/min, for eight passages with 2 mm track
spacing. Lipid images were performed on the MALDI-TOF Rapiflex
Tissuetyper mass spectrometer. The spectra were acquired within the
m/z 200 to 1200 range in positive ion mode. All data were performed in
the delayed extraction reflectron mode with an average of 300 laser
shots per pixel for a spatial resolution of 50 μm. The laser energy was
set around 85% and the voltages of the ion source were 20 kV and
11 kV for the lens.
Protein MALDI MS Imaging

Tissues were vacuum dried before being subjected to delipidation
using sequential baths of EtOH: H2O (70:30, v/v) for 30 s, EtOH 100%
for 30 s, Carnoy solution (EtOH/Chloroform/Acetic acid, 3:6:1, v/v/v)
for 2 min, EtOH 100% for 30 s, TFA 0.1%/H2O for 30 s and EtOH
100% for 30 s. After drying the sections, SA-Aniline (SA-ANI) MALDI
matrix was deposited on tissue. SA-Aniline was prepared by dis-
solving sinapinic acid matrix at 10 mg/ml in ACN/TFA 0.1% (50:50, v/v)
and adding 24.3 μl of aniline. The HTX parameters included a tem-
perature of spray at 75 ◦C with 10 psi pressure, a pattern CC, a flow
rate of 0.1 ml/min, a velocity of 1100 mm/min, a temperature of tray at
55 ◦C, for eight passages with 2 mm track spacing. The slides were
analyzed on the MALDI-TOF Rapiflex Tissuetyper mass spectrometer.
MS spectra were acquired in the positive linear delayed extraction
mode, on the m/z 2400-30,000 range with an average of 700 laser
shots per pixel and at a spatial resolution of 50 μm. The laser energy
was set around 90%. The voltages of the ion source were 20 kV and
9 kV for the lens.

Peptide MALDI MS Imaging

For peptide imaging, the slides were dried and delipidated using a
similar protocol as for protein MS Imaging. The tissue sections were
then submitted to trypsin digestion. The tryptic digestion was per-
formed by applying trypsin (40 μg/ml in NH4HCO3 50 mM). The HTX
parameters included a temperature of spray at 65 ◦C with 10 psi
pressure, a pattern CC, a flow rate of 0.1 ml/min, a velocity of
1100 mm/min, for 12 passages with 2 mm track spacing. Once the
trypsin was deposited the slides were incubated overnight at 56 ◦C in
a humidified box containing MeOH/H2O. The slides were then dried
under vacuum over the next day. An HCCA-aniline matrix was
deposited by the HTX M5-Sprayer. Briefly, 43.2 μl of aniline were
added to 5 ml of a solution of 10 mg/ml HCCA dissolved in ACN/TFA
0.1% (7:3, v/v). Slides were analyzed on a MALDI-TOF Rapiflex.
Spectras were obtained in the positive delayed extraction reflector
mode analysis, with a mass range of 700 to 3200 m/z, and averaged
from 500 laser shots per pixel for a spatial resolution of 50 μm. The
laser energy was set around 40%. The voltages of the ion source were
20 kV and 11 kV for the lens.

Multi-Omics MSI Segmentation

The raw MALDI MSI data for lipids in both ionization modes, peptide
and protein data were initially converted into the imzML format (31)
using SCiLS lab software. Subsequently, the imzML converter, version
1.3.3, was employed to import these datasets into MATLAB R2019a.
It's worth noting that MSI data is characterized by high dimensionality,
often reaching sizes of up to 100 GB per image. This magnitude
makes it infeasible to analyze such data. To address this issue and
prevent data loss using peak list generation, data compression was
implemented as a preprocessing step before segmentation. Several
data reduction (compression) algorithms were explored, including
t-SNE (t-distributed Stochastic Neighbor Embedding), NNMF
(Non-Negative Matrix Factorization) and SVD (Singular Value
Decomposition). For the segmentation process, the k-means++ al-
gorithm was utilized, implemented as the 'k-means' function in the
MATLAB Statistics Toolbox. K-means++ offers an improved initiali-
zation of centroids, enhancing the quality of clustering (23). The cosine
distance metric was employed to calculate the cosine angle between
two spectra for quantifying the similarity. For visualization, each
cluster's pixels are uniformly assigned a specific color, facilitating the
creation of a segmentation map. This map delineates the cluster or
region of interest to which each pixel (spectrum) belongs. To estimate
the right numbers of clusters, the Silhouette criterion was used. After
predefining the number of clusters, the silhouette plot method was
Mol Cell Proteomics (2025) 24(1) 100891 2
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used to assess the stability of the clusters. The silhouette plot displays
a measure of the proximity of each point in a cluster. This measure has
a range (−1, 1). A value close to 1 indicates that the cluster is distant
from neighboring clusters (the spectra are very compact within the
cluster to which it belongs and distant from other clusters). A value of
0 indicates that the sample is very close to the decision boundary
between two neighboring clusters (overlapping clusters). Negative
values indicate that these samples may have been assigned to the
wrong cluster (32). Silhouette plot was calculated using the function
silhouette in Matlab. Subsequently, each centroid within these clusters
is thoughtfully exported in CSV format, ready for further in-depth
analysis and exploration.

Differential Analysis Between Clusters

The centroids generated from the image segmentation were im-
ported into Python using the panda’s library. All centroid data was
structured into a data frame. A custom script was developed to
automate the execution of a statistical test. This script iterates over all
m/z variables, identifying ions that exhibited statistical significance
between the regions of interest (ROIs). To enhance data quality, a
peak picking algorithm was employed. Specifically, the find_-
peaks_cwt function from the Scipy library was utilized to effectively
remove instrument noise. A non-parametric statistical test, the
Kruskal-Wallis test with Bonferroni correction, was conducted. Only
features deemed statistically significant, with a p-value equal to or less
than 0.05, were retained. A manual step is added to isolate and retain
only the mono-isotopic peaks. The seaborn library was utilized to
generate corresponding box plots.

Prediction Model Based on Lipid MALDI Imaging and Associated
Proteins Pathways

The previously developed pipeline (27) served as the foundation for
constructing the optimal model adapted to the dataset based on
highest accuracy and F1-score. These predictive models are designed
to classify new MSI-lipid samples pixel by pixel, or the centroid of
clusters after segmentation. While models cannot directly predict
protein pathways, clusters previously associated with detected pro-
teins using spatially resolved proteomics can indicate these pathways.
Therefore, a logical algorithm was integrated into the prediction pro-
cess. When a model predicts clusters, it also highlights the associated
pathways and the corresponding list of proteins.

The three selected models for both rat brain optimization and
glioblastoma applications were Stochastic Gradient Descent (33),
RidgeClassifier (34) and Light Gradient Boosting Machine (35). The
Table 1 summarize the performance of each model in both rat brain
and glioblastoma analysis. In addition, LIME (Local Interpretable
Model-agnostic Explanations) was used for each model to under-
stand the decision-making process of the models and thus identify
the molecules that contribute most to predicting each cluster. The
highest-contributing molecules are considered potential
biomarkers.
TABLE 1
Model algorithms implication

Model Algorithm F1 score

RB cerebellum clusters lipid (−) SGD 94%
RB cerebellum clusters lipid (+) RidgeClassifier 98%
GBM lipid classification LGBM 97%
GBM protein classification RidgeClassifier 96%

3 Mol Cell Proteomics (2025) 24(1) 100891
Lipid Annotation by SpiderMass Technology

The basic design of the instrument setup has been described in
detail elsewhere (36). In addition, here, the laser system used was
an Opolette 2940 laser (OPOTEK Inc). The infrared laser microprobe
was turned at 2.94 μm to excite the most vibrational band of water
(O-H). The laser beam was injected into a 1 m reinforced jacketed
fiber of 450 μm inner core diameter equipped at its extremity with a
handheld including a focusing lens with 4 cm focal distance to get a
500 μm spot on the tissue. To aspirate and analyze the ablated
material, a TygonⓇ tubing (Akron, OH, USA) is directly connected to
Q-TOF mass spectrometer (Xevo, Waters, UK) through a REIMS
interface. Each rat brain cerebellum clusters, observed by MSI,
were analyzed by SpiderMass with four independent biological
repetitions. Briefly, the laser was directly placed above the region of
interest at the 4 cm focal distance. The laser energy was fixed to
4 mJ/pulse (37). On each spot, three acquisitions of ten repetitive
laser shots (10 Hz) were performed which resulted in three indi-
vidual MS spectra. The data were acquired in both negative and
positive polarities, in the sensitivity mode over a m/z 100 to 2000
range. The previously identified discriminative ions were selected
for MS/MS analysis with 0.1 m/z isolation window. MS/MS was
performed using collision-induced dissociation with argon as colli-
sion gas and a collision energy of 25 eV.

Spatially Resolved Proteomics Extraction

The different clusters identified by the segmentation process
were submitted to spatially resolved proteomics. Each cluster was
analyzed in triplicate from the same tissue section as describe
bellow. A localized digestion was carried out by deposing a trypsin
solution (40 μg/ml in NH4HCO3 50 mM), on a region of 500 μm2 of
tissue (4 × 4 droplets of 200 μm in diameter), using CHIP-1000. The
deposition method comprises approximately 1205 cycles per
digestion spot, i.e., 3 h of deposition, with a drop volume of 150 pL.
Finally, each spot was digested with 0.112 μg of trypsin. Following
the micro-digestion, each spot was extracted by liquid micro-
junction using the TriVersa Nanomate device, with LESA (Liquid
Extraction and Surface Analysis) parameters (1). The tryptic pep-
tides were extracted by performing two consecutive extraction cy-
cles for three different solvents mixtures (TFA 0.1%; ACN/0.1% TFA
(8:2, v/v); and MeOH/0.1% TFA (7:3, v/v)) for a total of six extrac-
tions. For each cycle, 2 μl of solvent was drawn into the tip of the
pipette, of which 0.8 pL was brought into contact with the surface.
15 back and forth movements were performed to extract the pep-
tides before collecting the solution in a recovery tube. All extracts
were pulled in one tube and 50 μl of ACN were finally added before
drying the samples in a SpeedVac. The samples were then stored
at −20 ◦C prior to nLC-MS/MS analysis.

nLC-MS/MS Bottom-up Analysis

All sample analysis was performed on a timsTOF fleX mass spec-
trometer online coupled to an Evosep One nano-flow liquid chroma-
tography system. Peptides were separated using an 8 cm × 150 μm
C18 column with 1.5 μm beads and the 60 samples per day method
from Evosep One. The mobile phases comprised 0.1% FA in water as
solution A and 0.1% FA in ACN as solution B. To perform DIA analysis
in PASEF mode (38), one MS1 scan was followed by 10 dia-PASEF
scans from m/z 100 to 1700. The ion mobility range was set to 1.42
and 0.65 V s/cm-2. The accumulation and ramp times were specified
as 100 ms. As a result, each MS1 scan and each MS2/dia-PASEF
scan last 100 ms plus additional transfer time, and a dia-PASEF
method with 22 dia-PASEF scans has a cycle time of 1.06s. The
mass spectrometer was operated in high sensitivity mode, with a
collision energy ramped linearly as a function of the ion mobility from
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59 eV at 1/K0 = 1.6 Vs.cm-2 to 20 eV at 1/K0 = 0.6 Vs.cm-2. The ion
mobility was calibrated with three Agilent ESI Tuning Mix ions (m/z, 1/
K0: 622.02, 0.98 V cm−2, 922.01, 1.19 V cm−2, 1221.99, and
1.38 V cm−2).

Proteomic Data Analysis

DIA-NN version 1.8.1 was used to search DIA raw files and dia-
PASEF files. A Rattus library was generated with the software pa-
rameters set as following: complete proteome of Rattus norvegicus
from UniProt database (Release January 2024, 92,958 entries),
Trypsin protease with two missed cleavages and a maximum number
of variable modification at 3, methionine oxidation as variable, peptide
length range from 7 to 30, precursor charge range from 1 to 4, pre-
cursor m/z range comprised between 100 and 1700, fragment ion m/z
range between 200 and 1700, 0.1% precursor FDR, protein inference
set on ‘genes’, neural network classifier on single-pass mode, quan-
tification strategy set on robust LC (high accuracy), RT-dependent
cross-run normalization, and library generation fixed on the ‘IDs, RT
& IM profiling’ ruban. Samples were interrogated according the
resulting Rattus library with the same options. Data are available via
ProteomeXchange with identifier PXD054488. Statistical analyses
were carried out using Perseus software v2.0.5.0. ANOVA tests were
performed with p-value ≤0.01 to be statistically significant and
generate heat maps of differentially expresses proteins across sam-
ple. Gene Ontology (GO) analysis were performed using ClueGO (39)
with GO term database, on Cytoscape v3.10.2 (40).
RESULTS

The main goal of this study was to develop a machine
learning pipeline capable of automatically identifying tissue
heterogeneity clusters from lipid MSI data and providing
associated protein networks without requiring additional pro-
tein experiments. To this end, the first challenge was to
demonstrate that identified clusters are specifically spatially
localized by MSI, regardless of whether lipid or protein im-
aging is used. Following this idea, if a cluster is identical on
these omics images, it should possess specific lipid and
protein pathways, tending to the basis of the dry proteomics
concept.

Segmentation Workflow Development on RB Cerebellum
Omics MSI

Clustering Multi-Omics MALDI MSI Workflow Optimization–
The machine learning clustering processing was the first
development to adapt a workflow for multi-omics MALDI MSI.
This step was focused on RB cerebral lump, a model whose
anatomical and molecular characteristics are already well
referenced. For the latter, four main clusters are described
(Fig. 1B): the WM and the GM, composed of the ML, Purkinje
cells, and the GL (Supplemental Fig. S1). The first aim was to
demonstrate that these clusters could be observed with the
same spatial localization in each omics image, using an
adapted segmentation process script.
For that, 22 RB sagittal sections were analyzed for lipid in

negative (−) and positive (+) ion mode, while 12 slides were
analyzed for protein and peptide, focusing on the RB cere-
bellum area. First, the MS spectra revealed different molecular
fingerprints regarding WM, GL, and ML clusters for each
molecular MSI (Supplemental Fig. S2), confirmed for lipid (−)
and protein data by t-SNE revealing clear separations of the
different ROIs. On the contrary, the t-SNE obtained for lipid (+)
and peptides did not show a clear separation of the different
ROIs, which could predict difficulties for data processing of
the latter.
To generate the most relevant segmented images, the im-

age data was first analyzed on SCiLS lab software using root
mean square normalization. The SCiLS software allows to play
with different clustering parameters. Several segmentation
methods were tested, including bisecting k-means, hierarchi-
cal clustering, and k-means segmentation using correlation or
Euclidean distance metrics. As shown in Supplemental
Fig. S3, the use of bisecting k-means and hierarchical clus-
tering were ruled out due to the difficulty of interpreting the
results for several reasons. First, the complexity of manually
determining the desired number of clusters, which can be
difficult in the case of a complex and unknown image. In
addition, the spatial connectivity limitations of bisecting
k-means do not adequately account for the connectivity
between pixels in an image. This oversight can lead to seg-
mentation discontinuities that undermine the overall accuracy
and coherence of the segmentation process. k-means seg-
mentation appeared to be more user-friendly, with multiple
clusters defined subjectively. Unfortunately, it seems that poor
centroid initialization led to insufficient clustering perfor-
mance, rendering the segmentations of lipid, protein, and
peptide images incomparable despite using the same number
of clusters.
To find a more transparent and robust strategy, data from

SCiLS was imported into MATLAB software. To improve the
previous clustering performance, the k-means++ segmenta-
tion algorithm with cosine distance metric was used. This al-
gorithm ensures more intelligent centroid initialization, thereby
improving the overall quality of the clustering. Beyond the
initialization step, the rest of the algorithm remains consistent.
To overcome the high dimensionality MSI data problem and to
avoid data loss due to peak list generation, a preprocessing
step involving data compression was introduced prior to
segmentation.
For this purpose, several data reduction algorithms were

investigated, including t-SNE, NNMF, and SVD. As for PCA, t-
SNE and NNMF are common preprocessing methods used for
MSI data processing, compared to SVD. PCA and SVD are
known to be suitable for linear dimensionality reduction and
preserving global structure, NNMF is useful for non-negative
data and part-based representation, while t-SNE excels in
visualizing high-dimensional data. As shown in Figure 1A, SVD
compression was found to be optimal. Indeed, even if t-SNE
presented good segmentations for lipid (−) and peptide im-
ages, it was difficult to distinguish the GL from the ML and
WM in lipid (+) and protein cases. The results using NNMF and
SVD were correct, observing the three RB areas in each omics
Mol Cell Proteomics (2025) 24(1) 100891 4



FIG. 1. Omics MALDI MSI clustering procedure optimization on rat brain cerebellum. A, comparison of t-SNE, NNMF, and SVD data
compression followed by k-means++ segmentation for 2–5 clusters applied to lipid negative mode, lipid positive mode, protein, and peptide
MSI. B, rat brain sagittal section HPS coloration and cerebellum annotations. C, lipid MALDI MSI in negative and positive mode with 10 μm
spatial resolution with image segmentation composed by five clusters and ion spatial distribution specific to Purkinje cells, ML, GL, and WM. D,
use of Silhouette criterion for the number of cluster estimation and each cluster value determination applied to lipid negative mode, lipid positive
mode, protein, and peptide imaging. E, optimal segmentation workflow developed on MATLAB integrating SVD compression data with ten
principal components, combined with a k-means++ segmentation using a cosine score with a Silhouette criterion
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image (Fig. 1A). It can be added that the images generated by
the latter have a better resolution and are more looking alike.
Therefore, the SVD compression was kept for the future to
obtain the best possible segmentations.
It is noteworthy that within the context of this investigation,

only three out of the four primary cerebellum clusters were
discernible using a 50 μm MSI spatial resolution: the ML, WM,
and GL in conjunction with Purkinje cells. Additionally, lipid
cerebellum images were captured at a finer resolution of
10 μm (Fig. 1C) and subsequently processed, thereby con-
firming the distinct visualization of all four cerebellum clusters.
This underscores the crucial role that spatial resolution plays
5 Mol Cell Proteomics (2025) 24(1) 100891
in the generation and differentiation of clusters, yet the spatial
resolution was fixed at 50 μm since proteins imaging needs a
higher resolution to get enough signals. Despite the potential
for finer resolution to improve cellular component discrimina-
tion within the cerebellum, it was pragmatically determined
that the 50 μm resolution sufficed for the objectives of this
study, given the constraints and goals at hand.
Unsupervised Cluster Number Estimation–We have shown

that the three regions of the cerebellum can be observed in a
similar way on lipid or protein image constructed with five
clusters. However, the choice of the number of clusters was
made in a semi-supervised manner. To automate the process



Dry Proteomic Concept: Bridging Spatial Lipidomics and Proteomics
of lipid-based proteomics, it was necessary to implement a
tool capable of estimating the optimal number of clusters. To
estimate the correct number of clusters in a non-subjective
way, the silhouette criterion was used. The advantage is that
it can be used multiple times, both to find the optimal number
of clusters and to assess their stability and compactness.
As shown in Fig. 1D and Supplemental Fig. S4, Silhouette

estimated the optimal number of clusters at 5 for the lipid
images, which was a coherent result with respect to the pre-
viously selected semi-supervised number. Furthermore, the
fact that the same results were obtained for the lipids in
negative or positive mode was expected due to their identical
nature and metabolism. The 5 estimated clusters included four
corresponding to the ML, GL, WM, and brainstem regions of
the rat brain, while 1 cluster represented a tissue-free area
containing only matrix. These clusters were also observable
for protein and peptide images with five clusters.
When analyzing protein and peptide data, predictions yiel-

ded a slightly higher number of clusters, typically between 9
and 10, reflecting the greater heterogeneity of proteins
compared to lipids. Proteins are made up of a combination of
20 different amino acids, which may explain the presence of
more protein clusters in the depth of the tissue compared to
what is observed by lipid imaging or immunohistochemistry.
Moreover, artefacts in tissue-free regions, likely due to inho-
mogeneous crystallization of the matrix, may have contributed
to this variability. While we expected a single cluster to
represent the matrix, as seen in the lipid data, we instead
observed three distinct clusters, likely due to inhomogeneous
crystallization (due to the nature of the matrix i.e. Norharman
for lipids and HCCA-aniline vs SA-aniline for proteins). HCCA-
aniline and SA-aniline are ionic matrices based on two com-
ponents, which explain the fact that we have three clusters
instead to get only one (corresponding to HCCA, HCCA-
aniline, and aniline clusters or for SA, SA-aniline, and aniline
clusters). Taking account that in proteins and peptides due to
the nature of the ionic matrix giving three additional clusters,
we can remove them and at the end, we only have seven
clusters related to the tissue. Subdivisions were also observed
in two clusters for molecular layer (possibly linked to the
presence of Purkinje cells in some pixels) and brainstem,
which were also found with lipids images with ten clusters.
Thus, in total we have seven clusters for lipids and seven
clusters for peptides and proteins, as it can be seen in the
Figure 1D for the ten clusters images, still suggesting a degree
of concordance between lipid and protein clustering images.
Thus, by considering previous explanations, this observed
consistency reinforces the validity of dry proteomics for im-
aging, regardless of whether five or ten clusters are used.
Finally, dry proteomics was based on lipid images which

does not require additional sample preparation steps, protects
the tissue from artifacts and potential degradation, and is less
time consuming for routine analysis. Consequently, the clus-
ters identified in lipid images are more representative of the
RB cerebellum anatomy. In this study, we adopted the prin-
ciple of dry proteomics through lipid imaging and selected the
5-cluster omics images for further analysis on RB cerebellum,
as this segmentation was determined to be optimal based on
the silhouette criterion for lipid images as explained above.
Finally, the optimal segmentation workflow developed

(Fig. 1E) was a MATLAB script, integrating an SVD compres-
sion of data with ten principal components, combined with a
k-means++ segmentation using a cosine distance with a
silhouette criterion. This approach allowed the visualization of
the three main clusters of the RB cerebellum (ML in blue, GL in
orange, WM in light orange), in an identical and specific spatial
localization, from the 5 cluster images respectively generated
for lipid (−) and (+) MSI with Norharman matrix (Supplemental
Figs. S5 and S6), lipid (+) MSI with DHB matrix (Supplemental
Fig. S7), protein MSI (Supplemental Fig. S8) and peptide MSI
(Supplemental Fig. S9), with semi-supervised observation.

Prediction Model on Lipid MALDI Imaging

To automatically identify each cluster present in a tissue
from a lipid image, a machine learning algorithm was trained
on the 22 positive and negative lipid imaging datasets previ-
ously obtained. The ML, GL, and WM centroids were extrac-
ted from the 5-cluster segmented lipid images and imported
into Python. The datasets were subjected to peak picking and
a nonparametric Kruskal–Wallis test to compare the signifi-
cance of each ion between each ROI. Only features with a p-
value equal to or less than 0.05 were retained as discriminant
ions (Supplemental Figs. S10 and S11). After isotope filtering,
a final list of 36 lipid (−) and 19 lipid (+) discriminant ML, GL,
and WM ions were identified (Fig. 2, A and B). The spatial
distribution of each ion also confirms its specificity to its
assigned cluster (Supplemental Figs. S12 and S13). The
annotation of the discriminant lipid ions was performed by
SpiderMass MS/MS experiments, as its highest lipidomic
similarities with the MALDI (37) (Supplemental Figs. S14 and
S15). All the specific ions of the lipids in a region are listed in
an internal database, which is used to predict regions on
MALDI lipid images. Various prediction models were evalu-
ated, respectively for each lipid mode analysis, taking in ac-
count the discriminant ions previously set out. In case of lipid
(−) datasets, the Stochastic Gradient Descent (41, 42) algo-
rithm was selected as optimal model (Supplemental Fig. S16A)
and was validated using a 5-fold cross-validation (43) with an
accuracy of 94% (Supplemental Fig. S16B). The Ridge clas-
sifier model was the one adapted to the lipid (+) datasets
(Supplemental Fig. S17A), with 98% accuracy after 5-fold
cross-validation (Supplemental Fig. S17B). The robustness
of the developed models were subsequently evaluated by
blind cohort validation, which included three different datasets
of cerebellum RB lipid images for both polarity modes.
Notably, in each instance, the model achieved 100% accuracy
in its classifications (Supplemental Figs. S16C and S17C).
Mol Cell Proteomics (2025) 24(1) 100891 6



FIG. 2. Discriminant lipid and protein ions present in RB cerebellum with BioPAN lipid pathways. Exhaustive list of (A) 36 lipid (−), (B) 19
lipid (+), and (C) protein discriminant ML, GL, and WM cerebellum ions. D, BioPAN biological lipid pathways involved in white matter represented
according to lipid species and lipid classes, with nodes legend.
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The same data processing was performed on the protein
imaging datasets to provide the corresponding discriminant
protein ions for each RB cerebellum clusters (Fig. 2C and
Supplemental Fig. S18). The list of discriminant protein ions
was then added to discriminant lipid ions for each cluster in
order to create discriminant protein and lipid ions dataset
reference for each RB cerebellum area.

Lipids Biological Network Analysis

Based on the compilation of annotated lipids, a greater
number of lipids have been specifically identified in WM
compared to GM. This observation is in line, considering that
the WM is predominantly comprised of myelin, a substance
containing a higher lipid content (78–81%) than both WM
(49–66%) and GM (36–40%) (44). In the same way, myelin is
composed of a high percentage of galactoceroboside and
cholesterol compared to GM, which is why more diglycerides,
triglycerides, and fatty compounds are identified in the latter.
On the other hand, GM presents a higher percentage of
phosphatidylethanolamines (PE) and phosphatidylcholines
(PC), which correlate with presented annotations (44).
To highlight the biological process involved by lipid data, a

comparison between WM and GM discriminant lipid was
performed on BioPAN (45). The results, shown in Fig. 2D and
Supplemental Fig. S19A, revealed PC biosynthesis as the
most active pathway in WM (with the involvement of PEMT
predicted gene), whereas PE biosynthesis was observed as
the most active pathway in GM (with the involvement of
phosphatidylserine decarboxylase proenzyme (PISD) pre-
dicted gene). These results clearly indicate discriminants lipids
involved in specific biological pathways associated to distinct
cerebellum regions.
Biologically, phosphatidylcholine is an essential choline

reservoir for brain function (46). In fact, choline is an important
molecule for neurotransmission in neurons, which may explain
the high activation of PC biosynthesis in WM. PEs’ biological
function is more due to its small chemical structure, which
allows fluidity of the neuronal membrane (47). The hypothesis
is that this facilitates vesicle budding and membrane fusion
(48), a key step in synaptic transmission in GM. Finally, bio-
logical pathway based on lipids analysis showed that PC may
be involved in the neurotransmission process in WM, whereas
PE is more involved in synaptic transmission in GM (49). These
conclusions were further corroborated by Reactome analysis
of the lipid dataset (Supplemental Fig. S19B), which demon-
strated their involvement in the neural system, signal trans-
duction, small molecule transport or metabolism of protein,
and vesicle-mediated transport pathways.

Consolidation Method by Protein Pathway Analysis

As discriminant biological pathways were defined for
different regions of the cerebellum RB based on lipid species,
the proteomes of these regions were analyzed to validate the
hypothesis of a correlation between lipids and proteins within
the same biological network. This analysis aimed to consoli-
date the dry proteomics processes.
The ML, GL, and WM regions observed in the multi-omics

MALDI MSI were therefore subjected to spatial proteomics
using the micro-proteomics workflow on three different RB
sections (50, 51). By regrouping the triplicates for each cluster,
a total of 5270 proteins were identified for WM, 5390 for GL,
and 5354 for ML (Supplemental Spreadsheet S1). This study
confirmed the spatial heterogeneity of proteins previously
observed in imaging. The results showed that discriminant
lipid species for each ROI are consistently linked to specific
proteins in the same ROI, thereby forming region-specific
pathways and functions.
Indeed, the Venn diagram, shown in Figure 3A, considers the

protein diversity between each region by the presence of pro-
teins exclusive to each of them. In total, 85 proteins were
exclusive, of which 7 were specific forWM, 11 for ML, and 67 for
GL (Supplemental Spreadsheet S2). It must be noted it was
found among the 11 specific proteins in ML, two important en-
zymes involved in lipids metabolism, for example, phosphoino-
sitide phospholipase C and inositol monophosphatase 1,
whereas in GL, the Gamma-butyrobetaine dioxygenase know to
catalyze the formation of L-carnitine and the plasmolipin in WM,
a main component of the myelin sheath involved in intracellular
transport, lipid raft formation, andNotch signalingwere identified
(52). The GL contain several neuropeptides or neuropeptide
hormoneactivity such as corticotropin-like intermediary peptide,
somatostatin-14; Pro-thyrotropin-releasing hormone,
cholecystokinin-12; neurokinin-B, cocaine-, and amphetamine-
regulated transcript protein; pituitary adenylate cyclase–
activating polypeptide 27 or Ephexin-1 (53). In ML, among the
identified protein, the lamin B–binding protein (barrier-to-auto-
integration factor) andmyogenin are of particular interest. In fact,
barrier-to-autointegration factor is required during brain devel-
opment as a regulator of nuclear migration during neurogenesis
of the CNS (54). Myogenin is also detected in Allan brain atlas
and is linked to motor neurons (55). Similarly, in WM among the
specific proteins identified, the lymphocyte specific 1 is recently
known to be correlated with tissue-resident memory T cells (55)
and T cell infiltration (56). Interestingly, PISD was also found in
both WM and ML regions and was a predicted gene previously
reported in BioPAN GM lipid pathway (Supplemental Fig. S19).
The presence of PISD protein may explain the amount of PE
identified in the ML region. In this context, PE may contribute to
the integrity and function of neuronal membranes, influence
synaptic transmission, and participate in signaling events. This
again demonstrated the relevance of the different clusters by
MSI, which predicted their own lipid/protein pathway and
therefore biological heterogeneity.
To go further, the common proteins were subjected to an

ANOVA test (p-value <0.01) and showed that 2204 out of 5465
proteins have a significant variability of expression
(Supplemental Spreadsheet S3). According to Allan brain
Atlas, based on transcriptomic analyses, 196 genes are
Mol Cell Proteomics (2025) 24(1) 100891 8



FIG. 3. Rat brain cerebellum regions spatial proteomic analysis. A, Venn diagram of the specific proteins per layer. B, heatmap after
ANOVA (p-value <0.01) analysis demonstrated the presence of different overexpressed proteins. ClueGO biological pathways involving the
significant proteins found in (C) granular layer, (D) white matter, and (E) molecular layer of the cerebellum. F–H, correspond to string proteins
analyses of (F) granular layer, (G) white matter, and (H) molecular layer of the cerebellum.
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cerebellum-enriched gene and 59 out of those genes show
highest expression levels in cerebellum. Ninety percent of their
corresponding proteins have been identified such as CBLN1
9 Mol Cell Proteomics (2025) 24(1) 100891
and CBLN3. Among them, some are known to be specifically
located to the Purkinje layer which was regrouped with the GL
after clustering. We were able to identify specific proteins from
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the Purkinje cells (MYH10, HOMER3, KIT, QKI, MX1, PCP-2,
PP1R17, ARGEF33). For example, QKI protein expressed by
radial astrocytes (Bergmann glia) with processes through the
molecular layer all the way to the pial surface of the cerebellar
cortex has been identified. MX1 is known to be in the dendritic
processes of Purkinje cells. Moreover, other specific proteins
of granular layer, GABRB2, TMEM6, and KCNIP4, markers of
synaptic glomeruli from granular cells, are also detected.
This was reflected by the presence of different clusters of

overexpressed or underexpressed proteins between each RB
cerebellum area (Fig. 3B). The gene lists corresponding to
overexpressed protein clusters were analyzed using ClueGO
software to identify the biological pathways associated with
the significant proteins identified in each distinct cluster. It
turns out that the overexpressed proteins in the WM are
mainly involved in myelination, glucose, and neurofilament
metabolism (Fig. 3C and Supplemental Fig. S20A), which is a
consistent result according to the bibliography (57). In fact,
WM consists of myelinated axons, so it is involved in the
transmission of nerve impulses by axons. The presence of
glucose metabolism is also interesting when correlated with
the galactoceroboside myelin composition previously sug-
gested by lipid WM analysis. Furthermore, iron metabolism is
another important biological process in the white matter, for
example, for myelin formation, redox reactions, or neuronal
development and synaptic plasticity (58–60). This information
can be linked to biological pathways previously found by lipids
analysis, which also highlighted the neurotransmission
pathway in WM. Regarding the GL, the neuropeptide hormone
activity pathway was found to play a role in the processing
and regulation of peptides that influence synaptic trans-
mission, neural signaling, and modulation of neuronal activity
(Fig. 3D and Supplemental Fig. S20B). Purine metabolism also
plays a crucial role thereby influencing various physiological
processes such as neurotransmission, synaptic plasticity, and
energy metabolism. Dysregulation of purine metabolism in the
brain has been implicated in several neurological disorders,
including epilepsy, Parkinson's disease, and neurodegenera-
tive diseases. Similarly, the relevance of synaptic organization
and sodium ion transport pathways involved in the molecular
layer (Fig. 3E and Supplemental Fig. S20C) were expected
results given their role in neurotransmission and synaptic
signaling between these cell types (61). It is interesting to
remember that the biological processes of synaptic trans-
mission, vesicle transport, and signaling were also predomi-
nant pathways in the previous lipid study. Thus, it has been
shown that the ML, WM, and GL have their own specific
proteome that can be correlated with specific lipid associated
to distinct biological pathways (Fig. 3F–H).

Dry Proteomics Based on RB Horizontal Lipid Imaging
Application

Multi-Omics RB Horizontal Sections Generation–To validate
the dry proteomics workflow to more complex tissue, the
analysis was widened to total horizontal RB sections. As previ-
ously, multi-omics MALDI MSI were performed on four different
sets of consecutive horizontal RB sections, and resulting data
were submitted to the imaging data processing workflow,
excluding matrix signal. The Silhouette criterion was around 11
for each lipid replicate, leading tomulti-omics images composed
of 11 clusters (Fig. 4A and Supplemental Fig. S21). A similar
spatial clustering shape was observed for each lipid image,
including the well-known areas of the cerebellum, as well as
other specific areas such as the corpus callosumsubdivided into
clusters white, green, and yellow, the cerebral cortex and thal-
amus in purple, red and pink, and the ventricular system in
brown. These specific regions were also observed on the protein
and peptide images built with 11 clusters, again confirming the
lipid/protein pathway cluster appurtenance.
RB Cerebellum Lipid Classification Model: Prediction on

Horizontal Sections–Four replicate lipid (−) horizontal RB im-
ages were blindly analyzed using the pre-built classification
model trained on 22 RB cerebellum lipid (−) MSI datasets
(Supplemental Fig. S22). Themodel returned a confidence score
for predicting each ROI. Since the model was trained on three
ROIs, the default confidence score to predict an ROI was >33%.
The model successfully predicted the ML area with a mean
confidence score of 100%,WMwith a confidence score of 52%,
andGLwith89% (Fig. 4B). ForWM, although52% issignificantly
higher than 33%, the lower confidence score may be due to the
discrepancy in surface area between the sagittal and horizontal
brain slices of the rats, with the former showing a significantly
greater extent of WM. Other clusters were also analyzed using
the predictive model (Fig. 4B) with interesting results. The light
green and yellow clusters (corpus callosum region) were pre-
dicted as WM with confidence scores of 75% and 61%,
respectively. Similarly, the green cluster (colliculus regions) was
predicted as GL with a confidence score of 71%. A Pearson's
correlation of the discriminant lipid negative ions, shown in
Figure 4C, further validated these predictions. Two main clus-
tering branches were identified: one leading to correlated cluster
1 associated with ML, and another leading to two separate
clusters, correlated cluster 2 associated to GL and correlated
cluster 3 associated to WM. In correlated cluster 1, dark purple
and brown ROIs were grouped with ML, sharing the 774.6 and
790.6 lipid (−) ions (Fig. 4D). In correlated cluster 2, WM was
groupedwith the yellowand light greenROIs, as predictedby the
model, with the main involvement of the 888.7 and 906.7 lipid (−)
ions (Fig. 4D). Biologically, these results were expected. The
corpus callosum (light green and yellow clusters) forms the
largest commissuralWMbundle in the brain, which has a distinct
molecular composition due to its significant size and role,
explaining the observed clustering (62). Similar observations
were valuable for the colliculus (green cluster), which also con-
tains a superficial grey layer (62). This explains the presence of
orange color in both granular layer and colliculus clusters, cor-
responding to GM, and accounts for the 71% confidence score
prediction explaining similarity (63).
Mol Cell Proteomics (2025) 24(1) 100891 10



FIG. 4. Horizontal rat brain section omics MALDI MSI analysis. A, lipid (−), lipid (+), protein, and peptide MSI segmentation images with 11
clusters and Silhouette criterion. B, clusters mean scores prediction based on rat brain cerebellum lipid (−) model. C, clusters Pearson’s cor-
relation. D, prediction lipid (−) model peaks involvement.
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With the aim to justify the images segmentation, discrimi-
nant lipid (−) ions were identified for different cluster observed
on the horizontal RB section lipid (−) image (Supplemental
Fig. S23). Many peaks were spatially distributed regrouping
multiple clusters. For example, common ions were spatially
distributed in ML, cerebral cortex, and hypothalamus regions,
like m/z 790.4, 834.4, and 886.5. The ion m/z 599.4 was
11 Mol Cell Proteomics (2025) 24(1) 100891
collocated in GL and green cluster. Same observations for
both the WM and the corpus collosum, for which ions as m/z
701.6, 889.6, and 904.7, were also spatially present. These
ions could explain the correlation clusters highlighted by the
Pearson’s correlation graph in Figure 4D. However, discrimi-
nant ions were also extracted for specific regions, explaining
their segmentation as single cluster during MSI data
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processing. The ventricular region (brown cluster) possessed
various discriminant ions such as m/z 473.2 and 615.1. Spe-
cific ions were also discriminant for the red cluster, regrouping
cerebral cortex and hypothalamus regions (m/z 746.6, 766.6,
and 834.5), as well as for the corpus callosum like m/z 806.6.
This ions list was added to the prediction model, to refine
predictions.
FIG. 5. Spatial proteomic analysis of rat brain horizontal clusters. A
proteomic extraction points. B, protein Venn diagram. C, heatmap after A
overexpressed proteins.
Proteome Horizontal RB Section Cluster Comparison–To
have a look at the proteome specificity of the RB horizontal
section clusters, spatial proteomic analysis was also per-
formed on the seven clusters observed from the rat brain 11-
cluster segmentation image (excluding the cerebellum cluster,
already analyzed) (Fig. 5A). Proteins from red cluster were
extracted from hypothalamus region, while proteins from
, Ten different clusters identified thanks to lipid (−) lipid MSI and spatial
NOVA (p-value 0.0001) analysis demonstrated the presence of different
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purple and pink clusters were extracted from cerebral cortex.
The green cluster was extracted from colliculus area, brown
cluster from ventricular system, and yellow and light green
clusters from corpus callosum. Experiments were performed
in biological triplicate. Data were processed with ML, WM, and
GL previous data in DIA-NN software for protein identification,
quantification, and correlation. By regrouping the triplicates for
each cluster, more than 17,243 proteins were identified,
among them 5498 were proteotypics (Fig. 5B) (Supplemental
Spreadsheet S4). Common proteins were subjected to an
ANOVA test (p-value <0.0001) and showed that 4481 out of
7223 proteins had a significant variability in expression. This
was represented by the presence of different clusters of
overexpressed or underexpressed proteins between each
extracted region (Fig. 5C). The resulting heatmap highlighted
different clusters of overexpressed proteins (Supplemental
Spreadsheet S5). First, cluster i consisted of proteins over-
expressed in the cerebellum regions (ML, GL, and WM), while
cluster v consisted of proteins overexpressed in the other
regions. Specific overexpressed protein clusters were also
highlighted for the ventricular system in cluster ii and for the
corpus callosum in cluster iii. It was also observed that cluster
iii was involved in WM, confirming their correlation in the
previous lipid Pearson's analysis (Fig. 4C). The overexpressed
protein cluster iv was involved in the cerebral cortex and hy-
pothalamus brain regions, explaining their similar image seg-
mentation in the red cluster (Fig. 5A), Pearson's correlation
and prediction model using lipid (−) data (Fig. 4C).
Biological pathway analysis of these later overexpressed

protein clusters also confirms this observation (Supplemental
Fig. S24). Indeed, biological pathways involved in cerebellum
(cluster i) were mainly concentered around synapse meta-
bolism, with myelination, paranodal metabolism, neurofila-
ment assembly, and calcium/sodium transport (Supplemental
Fig. S24A). We could notice that this biological process also
resumed the one’s independently found for ML, GL, and WM
(Fig. 3). At the opposite, biological process involved in the
cerebral cortex (cluster v) contributed to at least NMDA-
selective glutamate receptor signaling, regulation of neuro-
transmitter receptor transport (endosome to postsynaptic
membrane) (Supplemental Fig. S24B). This distinction of bio-
logical process well defined and distinguished the cerebellum
and cerebral cortex regions of the brain. Indeed, the cere-
bellum is primarily involved in coordinating motor movements,
maintaining posture and balance, and motor learning (64),
whereas the cerebral cortex is responsible for higher cognitive
functions including perception, memory, attention, language,
and consciousness (63).
Same conclusions were observable analyzing biological

pathways specifically involved in cerebral cortex and hypo-
thalamus, in cluster iv, where mains pathways regrouped
vocal and auditory learning, memory, and feeling process with
serotonin metabolism (Supplemental Fig. S24D). Likewise,
myelination and neurofilament pathways were involved in
13 Mol Cell Proteomics (2025) 24(1) 100891
cluster iii, for corpus callosum RB area (Supplemental
Fig. S24E), which was linked to WM biological pathways.
The biological pathways for cluster ii, specific of ventricular
system RB region, were also analyzed. It turned out that
cholesterol, triglyceride, and blood coagulation regulation
were the most relevant pathways (Supplemental Fig. S24C).
These results fit with the neuroanatomy of ventricular system,
where cerebrospinal fluid flows in the regions thanks to blood
pulsations in surrounding blood vessels (65). Furthermore,
triglycerides cross the blood-brain barrier and are found in
cerebrospinal fluid helping in satiety and cognition mecha-
nisms (66).
In this way, we were able to show from a protein pathway

point of view that cerebellum regions are distinct from the
cerebral cortex regions, which itself consists of several spe-
cific areas. Their proteomes were also integrated into the
model with their paired lipid clusters. In addition, proteomic
data of this study were in line with previous analysis already
performed on RB regions from published studies. This allowed
to add more information to the RB dry proteomics model.
First, we compared proteins identified here in bottom-up, with
proteins identified by top-down in the hippocampus and
corpus callosum RB areas, presented in a previous study (3).
According to Delcourt, V. et al., 2018 (3), 16 over 22 proteins
identified in top-down for the corpus callosum were also
identified and overexpressed in this area according to pre-
sented protein dataset. Same observations for 15 proteins
over the 20 identified in top-down for the hippocampus
(Supplemental Spreadsheet S6).
Workflow Robustness–The robustness of the dry prote-

omics workflow was thoroughly assessed by examining the
redundancy of spectral lipidome and proteome identifications
within each cluster across independent triplicates. To ascer-
tain clustering repeatability, the spectral lipid (−) dataset from
each cluster was compared among triplicates, as illustrated in
Supplemental Fig. S25A. Impressively, an average of 99% of
common lipid (−) ions was consistently identified across rep-
licates within clusters (refer to Supplemental Fig. S25C).
Similarly, an in-depth analysis of the spatial proteomic data-
set, with a specific focus on distinct clusters, revealed a
remarkable consistency, with 93% of the proteins consistently
identified across each replicate extraction point within a
cluster. This robustness is highlighted in Supplemental
Fig. S25C, which succinctly summarizes the percentage of
common protein identifications in replicates for each cluster
(Supplemental Fig. S25B). Notably, it is worth mentioning that
proteins involved in cluster-specific pathways, as previously
depicted in Figure 4A were fully recovered at a 100% rate in
subsequent analyses. This underscores the reliability and
reproducibility of the methodology employed in capturing
proteomic signatures associated with distinct cellular clusters.
This reproducibility is the essence of dry proteomics. For
future analyses, there's no need to redo spatially resolved
proteomics. Simply start with a lipid image and query the dry
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proteomics model to reliably determine the cluster type,
associated proteins, and relevant biological pathways.

Glioblastoma Tumoral Heterogeneity Analysis

Lipid and Peptide MSI Segmentation Correlation–Finally,
we performed the dry proteomics workflow on a prospective
and retrospective cohort of glioblastoma (GBM), re-using
collected data from Duhamel, M. et al., 2022 study (27, 28).
The previous study performed patient’s stratification based on
spatial proteomic and spatial lipidomic guided by MALDI MSI
associated to patient survival (27, 28). The cohort consisted of
50 GBM patient tissues, referenced to P1 to P53
(Supplemental Figs. S26 and S27). Peptide MALDI MSI was
performed for all samples, and lipid MSI was conducted for 13
of these tissues. Thus, peptide and paired lipid images were
collected for these 13 patients and were processed through
developed data imaging workflow. Initially, each tissue was
analyzed individually to assess its heterogeneity using
Silhouette criterion and generate segmented images. Subse-
quently, peptide and lipid images were created with 8 to 13
clusters each. The findings of this study revealed an intriguing
correlation between lipid and peptide distributions in samples
labeled P1 to P14, as evidenced by the generation of highly
similar numbers of clusters in both types of images. This
correlation underscores the inherent link between the spatial
heterogeneity of peptides and lipids within the tissue micro-
environment (refer to Fig. 6A and Supplemental Fig. S26).
Furthermore, segmentation analysis effectively mirrored his-
tological annotations, enabling the delineation of distinct re-
gions of tumoral proliferation from necrotic or inflammatory
areas (as depicted in Fig. 6A), as it was also evocated by
Duhamel, M. et al., 2022 in previous studies (27, 28). Prior
investigations have primarily relied on lipid and protein to
differentiate between these three main tissue types based on
specific molecular signatures. In contrast, dry proteomics
segmentation workflow offers a more detailed representation
of the intricate composition of biological tissues. This
enhanced segmentation, not only facilitates the precise
identification of pathological features but also reveals previ-
ously undetected levels of heterogeneity within tumor,
necrotic, and inflammatory regions. This not only achieved
improved delineation between annotated areas but also un-
veiled a greater-than-expected level of heterogeneity within
these regions. This heightened resolution enhances under-
standing of tissue composition and offers valuable insights
into the underlying biological processes driving tumor pro-
gression and response to treatment (Fig. 6A). For instance, in
the case of P12, a nuanced examination of the proteomic
extraction points unveiled intriguing insights. Points 12.1,
12.3, and 12.4, which were annotated as tumoral in the his-
topathological scan, exhibited a complex molecular land-
scape. Notably, point 12.2 was identified as bearing both
tumor and inflammation characteristics. However, upon closer
inspection using lipid and peptide MSI, it became evident that
point 12.4 shared similar molecular profiles with point 12.2, in
stark contrast to points 12.1 and 12.3. This striking observa-
tion was further corroborated by protein extraction analysis,
which revealed distinct correlations among the points. Spe-
cifically, points 12.1 and 12.3 exhibited a notable correlation,
indicating shared molecular features, while points 12.2 and
12.4 formed a separate correlated cluster (Fig. 6D). This
delineation underscored the intricate heterogeneity within the
tumor microenvironment, where discrete molecular signatures
delineated different regions, potentially indicative of diverse
biological processes or cellular compositions.
Lipid-MSI Clusters Classification and Proteomic Correla-

tion–To have a large view on the general heterogeneity on the
whole cohort, a co-segmentation was performed on 9 lipid
images dataset. It turned out that 13 different clusters were
shared between these 9 patients’ tissues (Fig. 6B). Some
clusters were correlated to biological specific tissues regions
according to histopathological annotations. In this way, clus-
ters 4 (light pink) and 9 (dark purple) were identified as ne-
crosis tissues, clusters 1 (blue), 2 (light green) and 7 (orange)
seemed to be specific tumors, whereas clusters 3 (green) and
5 (red) were tumoral areas near to inflammation and clusters 6
(light orange), 8 (light purple), 10 (yellow), 12 (light blue), and 13
(pink) were tumoral areas with necrosis. Clusters were pre-
dominantly identified within specific tissues, such as cluster 9
primarily present in P9, or shared across multiple tissues, as
observed with cluster 3 in P1, P2, and P13. Once more, the
segmentation underscored the molecular diversity within
necrotic and tumoral regions, revealing a mosaic of numerous
clusters.
A t-SNE representation of tissue lipid imaging clusters

allowed to distinguish two mains groups of clusters based on
lipid MSI (Fig. 6C): group A was regrouping clusters 6, 8, 9, 10,
12 and 13, while group B regrouped clusters 1, 2, 3, 4, 5, and
7. Cluster 11 was shared between the two groups. A corre-
lation heatmap, presented in Figure 6D, also highlighted the
correlation between lipid clusters regrouped in group A and B.
The proteomic data obtained from nine distinct tissue

samples were leveraged to conduct a comparative analysis of
the various clusters identified through lipid imaging segmen-
tation. Notably, specific extraction points analyzed in this
study correlated with clusters identified in lipid imaging
(Fig. 6B). Through statistical analysis, employing an ANOVA
test with a significance threshold set at p < 0.01, we identified
373 out of 3616 proteins exhibiting significant variability in
expression levels (Supplemental Spreadsheet S7). First, bio-
logical pathways were identified for each cluster through
ClueGo analysis (Supplemental Fig. S28), based on the
overexpressed proteins present in each. Interestingly, some
pathways were specific to particular lipid clusters. For
example, the RAC3 GTPase cycle pathway was unique to
cluster 7 (Supplemental Fig. S28F), playing an important role
in neuronal development and tumor progression (67). L1CAM
expression was particularly found in cluster 1 (Supplemental
Mol Cell Proteomics (2025) 24(1) 100891 14



FIG. 6. Glioblastoma patient lipid and protein heterogeneity analysis. A, P9 and P12 lipid and peptide MSI with histopathological an-
notations. B, cosegmentation of nine tissues previously analyzed by lipid MALDI MSI. C, t-SNE representation of each cluster identified through
lipid cosegmentation. D, protein heat map after ANOVA (p-value 0.01) analysis demonstrating the presence of different over-expressed proteins
according to lipid clusters. E, patient classification group A and B prediction according to lipid and protein model. F, lipid cluster and associated
protein blind prediction on patient P3, P5, P6, and P11.
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Fig. S28A), underscoring the tumor aggressiveness of this
cluster. This pathway is a focal point of active investigation in
GBM due to its profound implications for tumor aggressive-
ness, invasion, therapeutic resistance, and poor prognosis.
Similarly, overexpressed proteins in cluster 5 were specifically
involved in the axon guidance pathway (68), which is currently
a therapeutic area of research for the treatment of malignancy.
On the other hand, some biological pathways were common
across multiple clusters. Notably, the interleukin-12 family
signaling pathway (69), a current therapeutic target in cancer
immunotherapy, was identified in clusters 6, 9, 10, and 13
(Supplemental Fig. S28, E, H and J). Similarly, the ECM pro-
teoglycans pathway (70) associated with tumor development
in GBM was found in clusters 4 and 9 (Supplemental Fig. S28,
C and H). Finally, the biological pathway analysis of each
cluster revealed distinct characteristics: some clusters
exhibited a more aggressive GBM pattern, whereas others
showed a less aggressive pattern and identified potential
therapeutic targets.
Further investigation on protein data allowed to compare

the proteome of each cluster and identify correlations be-
tween them. It revealed the presence of two distinct clusters
of over-expressed proteins, namely protein cluster A and B
(Fig. 6D). Of particular interest, protein cluster A was found to
correspond to regions of necrotic tissue, encompassing the
imaging clusters 9 and 4 previously described. To gain deeper
insights into the biological processes associated with these
necrotic regions, we performed ClueGO analysis on protein
cluster A, utilizing GOterms and Reactome databases
(Supplemental Fig. S29A). This analysis unveiled a multitude
of signaling pathways implicated in necrosis processes.
Notably, pathways such as platelet degranulation, blood
coagulation, MyD88 deficiency, and IRE1 chaperone activa-
tion emerged as significant contributors in modulating cell
death processes, including necrosis and can influence tissue
damage and disease progression in various pathological
conditions such as GBM. In the same way, an intriguing cor-
relation in protein cluster A was observed among protein
extracted from lipid imaging clusters 6, 8, 10, 12, and 13, as
depicted in Figure 6D. The later result confirmed the lipid
image cluster classification in group A, proposed previously
according lipid MSI co-segmentation analysis (Fig. 6C). This
cluster notably encompassed tumoral clones characterized by
the presence of necrotic regions. Through ClueGO analysis,
the significant implication of selenoamino acid metabolism
within this cluster was unveiled, shedding light on its pivotal
role in the pathogenesis of glioblastoma. This pathway was
also individually identified previously in Supplemental
Fig. S28, E and J in lipid cluster 6, 10 and 13. Selenoamino
acids, such as selenocysteine and selenomethionine, are
fundamental constituents of selenoproteins, where selenium,
an essential trace element, is incorporated. These seleno-
proteins orchestrate a myriad of cellular processes, including
antioxidant defense, redox regulation, and DNA synthesis and
repair. The dysregulation of selenoamino acid metabolism has
been implicated in the intricate progression of GBM through
various mechanisms, contributing to disease aggressiveness
and resistance to therapy. Similarly, the over-expressed pro-
teins identified within protein cluster B, primarily comprising
lipid imaging clusters 3, 4, 5, and 7, yielded significant in-
sights, particularly regarding the involvement of L1CAM in-
teractions (Supplemental Fig. S29B) from cluster 1
(Supplemental Fig. S28A). Protein cluster B suggested a more
aggressive tumor phenotype compared to those within protein
cluster a, with implications for poor prognosis or short survival
prediction. The intricate interplay between selenoamino acid
metabolism and L1CAM interactions underscored the multi-
faceted nature of GBM pathogenesis, highlighting potential
avenues for targeted therapeutic interventions and personal-
ized treatment strategies aimed at mitigating tumor progres-
sion and improving patient outcomes.
Finally, two distinct classification groups, labeled group A

and group B, were highlighted and cross-validated between
lipid MSI and proteomic analysis. Proteins from the overex-
pressed protein cluster A were associated to lipid cluster A,
resulting in group A. Thus, group A was associated to the lipid
clusters 6, 8, 9, 10, 12, 13, and protein, involving specific
protein pathways with a pivotal role in GBM, such as sele-
noamino acid metabolism. In another hand, group B regrou-
ped lipid clusters 1, 2, 3, 4, 5, 7, and the over-expressed
protein cluster B, which possessed more aggressive protein
pathways with the implication L1CAM interactions.
Patient Proteome Blind Prediction Based on Lipid Cluster

Classification–To predict patient proteome through group A
and B, two distinct classifications models were developed.
Firstly, a model was trained on the lipid-MSI data from the 13
clusters comprising groups A and B. The aim of this classifi-
cation model was to classify patient tissue according to lipid
images, and associate their paired protein pathway. The
resulting model was built with Light Gradient Boosting Ma-
chine algorithm with an accuracy of 97% after 5-fold cross
validation with an individual accuracy up to 95% for each
cluster (Table 1 and Supplemental Fig. S30, B and C). Specific
lipid ions involved in the model were extracted and identified
in specifics clusters using LIME algorithm. The top lipid bio-
markers implicated to classify each cluster with 82.3% of
contribution were summarized in Supplemental Figs. S30E
and S31. For example, lipid with m/z 770.35 was specific to
group A, with a significative presence in lipid cluster 8 with
highest contribution weight at 70% (Supplemental Fig. S30C).
Likewise, the m/z 798.64 was specially distributed in lipid MSI
cluster 5 (Supplemental Fig. S32) with a contribution weight at
61% (Supplemental Fig. S30C), associating it with group B
specific marker.
Thus, the classification of all 9 patients was carefully

reviewed according to the patient group A or B classification
model, based on the presence of specific lipid clusters in tu-
moral tissue. In scenarios where tissue samples exhibited
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clusters overlapping both group A and B, they were un-
equivocally classified into group B, prioritizing the presence of
markers indicative of unfavorable outcomes. This approach
ensured a rigorous and systematic evaluation, wherein each
case was subjected to thorough examination, with particular
emphasis placed on identifying and prioritizing markers
associated with poorer prognostic indicators. By adhering to
the following patient classification method, the prognostic
assessment process maintained an exemplary level of
precision and consistency, empowering clinicians to render
well-informed decisions regarding patient management and
treatment strategies. As depicted in Figure 6E, four patients
were classified in group B and five patients in group A. It's
noteworthy that previous investigations have emphasized the
importance of assessing patient classification based on the
expression levels of key proteins (28). In nine patient’s cohort
(outlined in Fig. 6E), prior studies classified two patients in
group B and seven patients in group A using this protein panel
(28). However, resulting analysis unveiled a nuanced disparity
in group classification for patients P10 and P12. This
discrepancy can be attributed to the incorporation of molec-
ular heterogeneity into analysis, offering additional insights
into survival prediction. Furthermore, upon scrutinizing the co-
segmentation analysis illustrated in Figure 6B, it became
evident that P12 and P1 shared significant cluster composi-
tion. Given P1's association with group B, it was reasonable to
surmise that P12, sharing similar cluster characteristics, would
also be classified within group B. This observation un-
derscores the importance of integrating molecular heteroge-
neity and comprehensive data analysis techniques to refine
classification assessments and enhance clinical decision-
making processes.
The four last patient tissues, for which lipid-MSI and protein

data were available (P3, P5, P6 and P11), were blindly inter-
rogated in classification model based on lipid-MSI clusters. P3
and P11 presented the IDH1 mutation and were not consid-
ered in the studies of (27, 28). Upon blind interrogation of the
lipid cluster images, patients 3 and 6 harbored a non-
negligible percentage of lipid clusters 4 and 2, leading to the
prediction to proteins associated to wound healing, or ECM
proteoglycans biological pathways for example (Fig. 6F). The
presence of the latter lipid cluster and biological pathways in
patient 3 and 6 were thus indicative of the group B classifi-
cation. Conversely, patients 5 and 11 mainly predicted with
high percentage of lipid cluster 6 and 8, allowed the prediction
of proteins associated to biological pathways such as
Interleukin-12 family signaling, peptide chain elongation or
RHO GTPase active ROCKS (Fig. 6F). In this way, patient 5
and 11 were classified in group A. This result also correlated
with a lipid MSI co-segmentation performed on the 13 tissues
(Supplemental Fig. S33). The resulting image was composed
of 14 clusters according Silhouette criterion. Interestingly, P6
and P3 were segmented apart of the rest of the cohort, sug-
gesting a possible new lipid class. P5 and P11 tissue
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associated to group A were sharing specific clusters with P8
and P14, already previously classified in group A.
Complementary, a second classification model was con-

structed using RidgeClassifier with group A and B protein data
(Supplemental Fig. S34). The objective was first to intricately
cross-validate the lipid MSI-based classification model. The
resulting model had an accuracy of 96%, with a 5-fold cross
validation (Table 1 and Supplemental Fig. S34F). Specific
proteins involved in the model decision-making were identified
in specifics clusters (Supplemental Fig. S35). Among them,
group A and group B biomarkers were distinct, referring to
selenoamino acid metabolism or L1CAM interaction pathway
for instance. This sophisticated approach underscored the
synergy between lipidomic and proteomic analyses in refining
group A and B classification for glioblastoma patients, thus
paving the way for personalized therapeutic interventions
tailored to individual risk profiles.
Thus, previous finding was further reinforced by the protein

classification model, which concurred in its classification
assessment, designating patients P3 and P6 to group B,
whereas P11 and P5 were classified to group A. Hence, both
the lipid-MSI clusters and protein models converged in clas-
sifying these patients within group A, or B. This alignment
serves to authenticate the reliability and validity of the clas-
sification model, as well as enhancing the dry proteomics
concept on clinical study as GBM (28)
Groups Classification and Patient Outcome Correlation–

The dry proteomics developed pipeline, in both using lipid-
MSI data and proteins classification models, led to the
discernment of two distinct classes in GBM study, labeled as
classification group A and B, illustrated in Figure 6D.
Leveraging patient survival data, prognostic outcomes were
correlated with specific lipid-MSI clusters. The clinical char-
acteristics of the patient, evocated in studies (27, 28), revealed
that patients involved in group A, through lipid-MSI clusters 6,
8, 9, 10, 12, and 13 implication, were upper the survival
interquartile range with a survival outcome surpassing
32 months. In the same logic, patients associated to group B,
with the presence of lipid clusters 1, 2, 3, 4, 5, and 7, had a
poorer survival prognosis of less than 30 months.
Indeed, some of lipid biomarkers involved in lipid-MSI

classification model were already recognized as prognostic
markers in previous research (27). For instance, lipid ions with
m/z of 864.7, 866.7, and 881.7 were identified in both studies
as markers for survival outcomes exceeding 36 months, pri-
marily present in clusters 8 and 9 from group A. Conversely,
lipid ions such asm/z 760.6, 788.6, and 810.6 were associated
with shorter survival durations, less than 30 months, and were
distinctly present in clusters 2 and 5 from group B. Moreover,
these significant findings were consistent with prior in-
vestigations, reinforcing the notion that protein group B typi-
cally correlates with a poorer prognosis compared to group A.
Particularly notable was the identification of over-expressed
proteins ANXA6 and GPHN within group B, both previously
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implicated as unfavorable prognostic indicators (28).
Conversely, group A exhibited elevated expressions of pro-
teins RPS14 and MTDH, associated with more favorable
prognostic outcomes (28). Thus, the identification of group A
and B lipid features by MALDI MSI, would automatically pro-
vide the paired protein pathways (Supplemental Spreadsheet
S8), associated to short or long survival patient outcome.
As the left 37 patients were only analyzed through peptide

MALDI MSI and spatial proteomics due to the data reuse, the
later were interrogated through classification model with
proteomics data, to predict their appurtenance to group A and
group B, and thus their protein networks and prognosis
(Supplemental Fig. S36). Finally, among the cohort of 50 pa-
tients, 11 patients were classified in group A with a prognosis
survival outcome >32 months, whereas 39 patients were
classified in group B with a survival outcome <30 months. The
latter results correlated with the clinical characteristics of the
patient evocated in study (28). Indeed, four patients with IDH
mutation were excluded, 12 patients were upper the survival
interquartile range (IQR) set at 13.5 and 32 months, 23 patients
were intermediate IQR, and 11 patients were lower IQR.

Dry Proteomics Limitations

Although the dry proteomics model is robust, fast, and
simplifies the analysis of complex heterogeneous tissues, it
has some experimental and predictive limitations.
Technically, it is impossible to obtain identical consecutive

tissue sections due to the z-dimensional factor related to tis-
sue depth during cryostat sectioning. For example, we
observed less structural changes between consecutive sec-
tions of the cerebellum. However, in horizontal sections,
where the anatomy is more complex and variable, differences
between consecutive sections are noticeable. These differ-
ences affect the imaging of lipids, proteins and peptides due
to anatomical changes with depth. To address this issue, we
performed spatially resolved proteomics on the same section
used for lipid imaging. Once the model is trained, dry prote-
omics becomes a useful tool because only one lipid image is
needed to assess the heterogeneity, identify the clusters, and
associate the proteome, avoiding issues related to anatomical
changes in consecutive sections. The second limitation con-
cerns the predictive ability of the model, which is based on
experimental data of clusters obtained by segmentation of
lipid images. A reliable and accurate model requires a large
cohort with representative replicates of the studied popula-
tion. Building a generalizable model is challenging because
some tissue-specific clusters may not be represented in our
analyses. When the model encounters an unknown cluster
that it has not been trained on, it will likely misclassify it by
approximating a known cluster. There are two ways to
address this problem. First, by checking the approximation of
an unknown cluster by the unsupervised k-means++ and t-
SNE models. This involves plotting the matrix of this cluster on
the k-means++ and t-SNE axes to see which known cluster it
is close to, thereby confirming or disproving the model's
predicted approximation. Second, consider the use of self-
training algorithms in the future (71). This involves retraining
our model with known labeled clusters and new unknown and
unlabeled clusters to improve and update the model specif-
ically for clinical routine use. In this case, it will also be
necessary to update the proteomic data for the new unknown
clusters.
To extrapolate the strategy of dry proteomic to other tissue

types or diseases, different learning model approaches are
possible. The first one consists in a specific model for a
specific tissue type or disease. In this case, the model would
be trained on clusters specific to a particular tissue type or
disease. While this approach is limited to the heterogeneity of
that single tissue or disease, it offers greater accuracy by
focusing on fewer clusters, which reduces the risk of false
positive predictions (fewer classes in a multi-class classifica-
tion task). This results in a more targeted and precise model.
The second possibility is to improve the model in an agnostic
model. This is a global model designed to work across mul-
tiple tissue types or diseases. To improve its performance, the
model would need to be trained on clusters from various
diseases and tissue types. Such a model would be capable of
predicting and identifying clusters specific to particular tissues
or diseases, while also recognizing common clusters across
different tissue types. This approach could be especially
useful for large-scale studies, such as PAN-cancer research.
However, agnostic models are typically less accurate and
require sophisticated feature engineering to enhance their
performance. Another strategy to improve agnostic models is
to use a transfer learning approach, where specific models are
trained on individual diseases and then adapted for broader
applications. Once refined, this type of agnostic model could
also be applied to study metastasis and help trace the origin of
cancers.
DISCUSSION

We presented an automated dry proteomics approach
based on lipid MALDI-MSI, addressing several challenges to
establish cluster-specific lipid and protein correlations in
terms of imaging and pathways. Optimizations in the seg-
mentation pipeline using SVD data compression, k-means++
segmentation and the Silhouette criterion enabled the corre-
lation of multi-omics MALDI-MSI data. The integration of the
Silhouette criterion proved useful for determining tissue het-
erogeneity, identifying the most optimized number of clusters
in a fully automated and unsupervised manner.
Using the RB cerebellum tissue model, we demonstrated

the workflow's suitability for lipid, protein, and peptide imag-
ing, outperforming other segmentation algorithms. The
robustness of our MS image processing model was confirmed
through numerous experimental replicates. Multi-omics
segmented images revealed the presence of RB cerebellum
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clusters ML, GL, and WM, each with specific spatial locali-
zations, distinct lipid and protein compositions, and associ-
ated biological pathways. A predictive model was developed
based on these specific lipid fingerprints, complemented by
the unique protein compositions and paired biological path-
ways of each cluster. Pathway analysis validated the dry
proteomics approach for GL, ML, and WM.
To extend the prediction model beyond cerebellum regions

to more complex tissues, RB horizontal slices were analyzed
using multi-omics MALDI MSI. This analysis successfully
identified several clusters with unique spatial localizations,
including cerebellum clusters. The model, trained with cere-
bellum lipid datasets, effectively annotated these areas and
provided insights into their specific lipids, proteins, and
associated biological pathways. Further analysis refined the
model for more accurate predictions, improving our under-
standing of complex tissue composition and highlighting the
potential of dry proteomics to elucidate intricate biological
processes.
Applying the dry proteomics workflow to glioblastoma pa-

tient cohorts provided profound insights into the spatial het-
erogeneity of peptides and lipids within the tumor
microenvironment. By combining previous research data with
cutting-edge imaging techniques, we uncovered previously
unexplored complexity within GBM tissues. The segmentation
process accurately delineated pathological features and
revealed nuanced variations within tumor, necrotic, and in-
flammatory regions, providing a detailed representation of
tissue composition.
The observed correlation between lipid and peptide distri-

butions underscores their potential as robust bi-omarkers for
tumor characterization. Our analysis revealed distinct molec-
ular signatures within different tumor regions, indicating
distinct biological processes and cellular compositions. Co-
segmentation identified 13 discrete clusters among patients
that corresponded to specific biological tissue regions. Pro-
teomic data integration enriched our understanding of the
molecular landscape within these clusters. Statistical analyses
revealed significant protein expression variability across
clusters, identifying distinct biological pathways. Indeed, the
ClueGO analysis highlighted the involvement of different
pathways, such as selenoamino acid metabolism or L1CAM
interactions, which have a remarkable impact on GBM
pathogenesis.
By integrating dry proteomics with prognosis, this study

culminated in the development of a sophisticated classifica-
tion model for GBM patients to identify the type of clusters
and corresponding proteomic data with region-specific path-
ways and functions to stratify different prognostic categories.
Two resulting GBM patient groups, A and B, were predicted
using a model based on GBM lipid MSI that incorporated
molecular heterogeneity within tumor tissues. The model was
also translated into a proteomic model capable of dis-
tinguishing groups A and B based on protein data. It validated
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the model based on lipid MSI data and classified patients
using only proteomic data. The protein networks of group A
correlated with survival of more than 32 months, while those of
group B correlated with survival of less than 30 months. By
classifying patients' tumors into groups A or B, we were able
to predict tumor protein networks that correlated with classi-
fication group membership and survival prognosis.
In essence, this project highlights the importance of inte-

grating multi-omics approaches for comprehensive prog-
nostic assessment in GBM. By unraveling the interplay
between molecular features and clinical outcomes, the
developed model provides invaluable insights to inform
personalized treatment strategies and improve patient man-
agement in the complex GBM landscape.
Finally, the concept of dry proteomics, which first identifies

tissue heterogeneity and distinct clusters by lipid imaging and
then automatically associates specific proteins and biological
pathways involved in each cluster, has proven essential for
clinical applications. These insights facilitate the identification
of potential therapeutic targets or prognostic markers, as
demonstrated in the glioblastoma study, paving the way for
improved patient outcomes and personalized treatment
strategies.
DATA AVAILABILITY

The data from this study, including MS DIA raw files, DIA-
NN files, and annotated MS/MS datasets, have been depos-
ited to the ProteomeXchange Consortium via the PRIDE
partner repository with the dataset identifier PXD054488
(Username: reviewer_pxd054488@ebi.ac.uk - Password:
vg74fZoVimg3)
Lipid MS/MS spectra are available at: https://doi.org/10.791

0/DVN/MFKI8I
Code developed can be retrieved at: https://github.com/

yanisZirem/Spatial_multi-omics_guided_by_SVD_kmeans_cl
ustering_and_statistical_estimation_of_heterogeneity.git
The data from Duhamel, M, & al,. for glioblastoma study,

including MS raw files, MaxQuant files, and annotated MS/MS
datasets, have been deposited to the ProteomeXchange
Consortium Via PRIDE partner repository with the accession
code PXD016165.

Supplemental Data—Supplementary information’s repre-
sents the 36 supplementary figures. This article contains
supplemental data.

Acknowledgments—We thank the OrganOmics IBiSA Core
Facility and its staff for the proteomic data acquisition.

Funding and additional information—This research was
supported by grants from Ministère de l’Enseignement
Supérieur et de la Recherche (MESR), Inserm specific funding
for SpiderMass project (I. F.), Regional Council Hauts de

mailto:reviewer_pxd054488@ebi.ac.uk
https://doi.org/10.7910/DVN/MFKI8I
https://doi.org/10.7910/DVN/MFKI8I
https://github.com/yanisZirem/Spatial_multi-omics_guided_by_SVD_kmeans_clustering_and_statistical_estimation_of_heterogeneity.git
https://github.com/yanisZirem/Spatial_multi-omics_guided_by_SVD_kmeans_clustering_and_statistical_estimation_of_heterogeneity.git
https://github.com/yanisZirem/Spatial_multi-omics_guided_by_SVD_kmeans_clustering_and_statistical_estimation_of_heterogeneity.git


Dry Proteomic Concept: Bridging Spatial Lipidomics and Proteomics
France, The Metropole Europeenne de Lille (MEL) and I-site
ULNE (grant MutiOmics), Inserm and Institut Universitaire de
France (I. F. and M. S.). L. R. PhD was funded by University of
Lille. Y. Z. is supported by ANR Click-Detect AAP CE29
(designed and built the machine learning workflow). This work
was supported by grant from the French National Research
Agency: ProFI project ANR-24-INBS-0015. This project was
supported by the Contrat de Plan Etat-Région 2021-2027 of
the Hauts-de-France region.

Author contributions—L. L., Y. Z., E. L. R., I. F., and M. S.
writing–review and editing; L. L., Y. Z., E. L. R., I. F., and M. S.
writing–original draft; L. L., Y. Z., and M. S. validation; L. L. and
Y. Z. methodology; L. L., Y. Z., I. F., and M. S. investigation;
L. L., Y. Z., and M. S. formal analysis; L. L. and Y. Z. data
curation; L. L., Y. Z., I. F., and M. S. conceptualization; Y. Z.
and M. S. visualization; Y. Z. software; E. L. resources; I. F.
and M. S. supervision; I. F. and M. S. project administration;
I. F. and M. S. funding acquisition.

Conflicts of interest—The authors declare no competing
interests.

Abbreviations—The abbreviations used are: ACN, acetoni-
trile; DHB, 2,5-dihydroxybenzoic acid; FA, formic acid; FF,
fresh frozen; GBM, glioblastoma; GL, granular layer; GM,
gray matter; GO, gene ontology; HCCA, α-cyano-4-
hydroxycinnamic acid; MALDI, matrix-assisted laser desorp-
tion/ionization; ML, molecular layer; MSI, mass spectrometry
imaging; NNMF, non-negative matrix factorisation; PC,
phosphatidylcholine; PCA, principal component analysis; PE,
phosphatidylethanolamine; RB, rat brain; ROI, region of in-
terest; SA, sinapinic acid; SVD, singular value decomposition;
TFA, trifluoroacetic acid; t-SNE, t-distributed stochastic
neighbour embedding; WM, white matter.

Received May 9, 2024, and in revised form, November 20, 2024
Published, MCPRO Papers in Press, December 5, 2024, https://
doi.org/10.1016/j.mcpro.2024.100891

REFERENCES

1. Quanico, J., Franck, J., Dauly, C., Strupat, K., Dupuy, J., Day, R., et al.
(2013) Development of liquid microjunction extraction strategy for
improving protein identification from tissue sections. J. Proteomics 79,
200–218

2. Wisztorski, M., Fatou, B., Franck, J., Desmons, A., Farré, I., Leblanc, E.,
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