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Recent studies reveal that the core sequences of many proteins
were nearly optimized for stability by natural evolution. Surface
residues, by contrast, are not so optimized, presumably because
protein function is mediated through surface interactions with
other molecules. Here, we sought to determine the extent to which
the sequences of protein ligand-binding and enzyme active sites
could be predicted by optimization of scoring functions based on
protein ligand-binding affinity rather than structural stability.
Optimization of binding affinity under constraints on the folding
free energy correctly predicted 83% of amino acid residues (94%
similar) in the binding sites of two model receptor–ligand com-
plexes, streptavidin–biotin and glucose-binding protein. To ex-
plore the applicability of this methodology to enzymes, we applied
an identical algorithm to the active sites of diverse enzymes from
the peptidase, �-gal, and nucleotide synthase families. Although
simple optimization of binding affinity reproduced the sequences
of some enzyme active sites with high precision, imposition of
additional, geometric constraints on side-chain conformations
based on the catalytic mechanism was required in other cases. With
these modifications, our sequence optimization algorithm cor-
rectly predicted 78% of residues from all of the enzymes, with 83%
similar to native (90% correct, with 95% similar, excluding residues
with high variability in multiple sequence alignments). Further-
more, the conformations of the selected side chains were often
correctly predicted within crystallographic error. These findings
suggest that simple selection pressures may have played a pre-
dominant role in determining the sequences of ligand-binding and
active sites in proteins.

computational protein design � enzyme design � protein evolution

A central goal of theoretical protein design is to understand the
properties that define the space of amino acid sequences

compatible with a given protein structure (1). Substantial progress
has stemmed from the hypothesis that protein stability plays a major
role in shaping these properties (2–4). Recent work has focused on
the question of whether natural protein sequences have reached
equilibrium within sequence space. Remarkably, this question has
been answered largely in the affirmative for protein core sequences.
Kuhlman and Baker (3) demonstrated, by using an extensive test set
of protein backbones drawn from seven fold families, that more
than half of core residues were predicted correctly simply by
minimizing a folding free energy function in sequence space;
moreover, the resulting sequence distributions closely reproduced
those observed naturally. However, protein surface residues were
not predicted correctly using this approach: �15% of all predicted
surface residues matched the native residues. Jaramillo et al. (4)
subsequently carried out a more extensive analysis of the degree of
core vs. surface sequence optimization to examine whether the
observed discrepancy might be caused by inadequacies in the
potential function, rendering the methodology incapable of han-
dling the balance between electrostatics and solvent interactions in
surface regions. They concluded, after testing various solvation
models, that (i) the magnitude of the discrepancy was large enough
to be real, not an artifact of the accuracy of the potentials used, and
(ii) natural sequences at surface positions might have been selected,

at least in part, for mediating intermolecular interactions, probably
at the expense of protein stability.

In the present work, we explore the concept of equilibrium in
sequence space for the pivotal functional surface residues of
proteins, namely ligand-binding and enzyme active sites. The im-
mediate question that arises is: What is the appropriate function
that takes the place of the folding free energy minimized in protein
core design? As a step toward answering this question, we have
carried out sequence optimization by using a scoring function based
on ligand-binding affinity. Enzyme active sites, however, would
appear to be subject to more complex evolutionary selective
pressures to be capable of not just reactant binding but also catalytic
turnover. Therefore, we have incorporated these effects into our
algorithm through geometric constraints on catalytic residues.

We test the adequacy of this simple approach to binding-site
sequence optimization by using a set of model receptor–ligand and
enzyme–substrate complexes drawn from diverse functional fami-
lies. In these calculations, the ligand is held fixed in its native
conformation, in a manner analogous to the fixed backbone as-
sumption in protein core engineering tasks (1). Because binding
and active sites are solvated and�or contain many polar and charged
residues that form directed contacts to their ligands, energy func-
tions, solvation models, and sampling algorithms capable of high-
resolution structure prediction are used to appropriately address
this problem.

Methods
In the case of each protein–ligand complex, a set of some 10 amino
acid residues that form essential contacts to the ligand were chosen
for sequence optimization. Essential contacts were determined by
identifying residues involved in H-bonds, salt bridges, van der Waals
or hydrophobic contacts, by examination of mutagenesis data, and
by multiple sequence alignments (MSAs). Selected positions where
the amino acid variability was high in MSAs were omitted from
optimization. See below for details; see also Supporting Text and
Figs. 6–12, which are published as supporting information on the
PNAS web site.

Various optimization algorithms (including Monte Carlo, genetic
algorithms, and simulated annealing) have been used for the
prediction of multiple side-chain conformations in the context of
core sequence selection (5). The binding-site sequence optimiza-
tion considered here is a constrained optimization problem wherein
the binding affinity scoring function is optimized under the restric-
tion that the total protein energy is a minimum for any given
sequence, in addition to any catalytic constraints. The approach we
adopted to this problem consisted of the following three steps: (i)
side chain conformational optimization, (ii) calculation of substrate
binding affinity, and (iii) selection of the residue type�conformation
with the highest binding affinity that satisfied the auxiliary con-
straints. These steps were iterated until convergence in the ligand
binding affinity was achieved. The side-chain optimization was

Abbreviations: MSA, multiple sequence alignment; rmsd, rms deviation.
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based on a self-consistent approach where each residue was opti-
mized (in both conformation and identity) in turn, whereas the
identities of all others were held fixed. The first step involved
determining the lowest-energy protein structure for each residue
type at a given sequence position (in the presence of the ligand),
with the exception of Cys and Pro (omitted because they are not

generally involved in molecular recognition). The all-atom OPLS
force field was used to describe protein energetics (6), and the
solvation free energy was estimated by using an implicit solvent
model consisting of the surface-generalized Born model of polar
solvation (7) and Levy’s nonpolar estimator (8). The sampling of
single side-chain conformations was accomplished by using a highly
detailed (10° resolution) rotamer library (9). Because conforma-
tional states of most side chains were coupled to residues not subject
to mutation, the conformations of all side chains within 5 Å of the
mutated side chain were optimized at each step as well. For
combinatorial optimization, all side chains were initially built onto
the fixed backbone in a random rotamer state, and then each was
optimized in turn, holding the others fixed. The procedure was
iterated to convergence, followed by complete energy minimization
(10) to remove any clashes.

Calculation of the ligand-binding affinity for each such mutant
structure was accomplished by using the Glidescore semiempirical
scoring function (11), which consists of (i) a lipophilic–lipophilic
contact term, (ii) a H-bonding term separated into weighted
components based on donor and acceptor charge, (iii) contributions
from Coulomb and van der Waals interaction energies between the
ligand and the receptor, and (iv) a solvation model based on the
computational introduction of explicit waters plus the employment
of empirical scoring terms measuring the exposure of various
groups to the explicit waters. The shape and properties of the
receptor were represented on an OPLS-AA vdW and electrostatic
grid.

The sequence and structure that displayed the highest binding
affinity, while satisfying an additional constraint that the total
protein energy was no more than 15% higher than that of the native,
was retained, and the next residue was chosen randomly from the
remaining list. (The cutoff of 15%, generous enough to avoid undue
bias toward the native sequence, was chosen such that the energy
of the initial all-Ala active site sequence fell within the acceptable
interval for each protein studied.) These three steps were repeated
at each residue position until the binding affinity changed by �0.1
kcal�mol per cycle. Five to 10 iterations (�5 cycles per iteration) of
this algorithm were carried out for each enzyme to ensure adequate
sampling. The starting point for these iterations was either an
all-Ala active site or a random sequence seed satisfying the dual
requirements of a stable protein and a finite affinity. To generate
random seeds, starting from the native sequence, the affinities
resulting from the replacement of a given amino acid with the
remaining 17 while holding the others fixed were tabulated, and the
amino acid was replaced by another chosen randomly from the top
5. This procedure was repeated in turn for all mutated residues.

In selected cases, we assessed the effect of small perturbations in
the ligand pose geometry on predicted sequences, by redocking the
ligand using the Glide docking algorithm. This algorithm approx-
imates a complete systematic search of the conformational, orien-
tational, and positional space of the docked ligand (12) through an
initial rough positioning and scoring phase followed by torsionally
flexible energy optimization on an OPLS-AA nonbonded potential
grid and Monte Carlo sampling. Details of the energy functions
and sampling methods used are provided in Supporting Text.

Results and Discussion
Representative Protein–Ligand Complexes Subjected to Sequence
Optimization. Unlike work on core design, where test proteins are
generally grouped according to protein fold (3, 4), our protein–
ligand complexes were chosen based on the chemical structure of
the ligand, and enzymes were selected based on the mode of
catalysis, because similar ligands�substrates are often recognized by
proteins of different folds. For each test complex, the amino acid
residues subjected to sequence optimization, along with the contact
modes of the ligand–side-chain interactions, are listed in Figs. 1 and
7. Schematic diagrams of the binding�active sites of these proteins
can be found in Fig. 6.

Fig. 1. Comparison of native and computationally optimized active-site
sequences. For each receptor–ligand or enzyme–substrate complex, residues
forming essential contacts with the ligand�substrate or in the catalytic mech-
anism are listed (bold denotes computationally repredicted; italic denotes
catalytic, conformationally optimized under constraints with fixed identity;
purple denotes functionally promiscuous or displaying high variability in
MSAs). Complementary moieties on substrates are listed above the native
residues. Computationally predicted active site sequences are listed in the gray
bars. The first sequence is that displaying the highest binding affinity while
satisfying all geometric constraints. The second sequence is that displaying
highest sequence identity to the native active site within the top 0.6 kcal�mol
of ranked sequences. Designed number corresponds to rank in calculated
sequence list. Blue amino acids, identical to native; red, isosteric to the native
and engages in same mode of interaction with substrate (e.g., Tyr vs. Phe, Gln
vs. Glu); green amino acids, same type as native and engaging in same mode
of interaction (e.g., Asp vs. Glu, Lys vs. Arg); black, none of the above. Native
energy corresponds to binding affinity of native sequence�structure after
side-chain conformational optimization. Catalytic constraints: �-gal, residue
200 capable of acid�base catalysis and within 3.0 Å of C1-OH, Glu-299 within
3.5 Å of scissile C; R61 DD-peptidase, Lys-65 �-N within 3.0 Å of Tyr-159’s O,
Tyr-159’s O within 3.0 Å of Ser-62’s O. Des, designed; Cat, catalytic; nucl,
nucleophile; pim, pimelyl; ter, terminus. Results for thymidylate synthase are
in Fig. 7. Ligands�substrates are listed in Table 1.
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The receptor protein streptavidin binds biotin with an affinity
among the highest known for natural protein–ligand interactions
(Kd � 10�15 M) (13). The most important interactions contributing
to this high affinity are three H-bonds between the ligand’s ureido
carbonyl group and the side chains of Asn-23, Ser-27, and Tyr-43;
in addition, two ureido NH groups are H-bonded to Ser-45 and
Glu-128. Also, the Ser-88 hydroxyl forms a H-bond with biotin’s
valeryl carboxylate, although this interaction is not as critical
because the carboxylate is the primary covalent attachment site for
biotin. We subjected 10 residues in streptavidin’s binding site, all
those established by mutagenesis data to be essential for binding as
well as Ser-88, to computational sequence optimization.

The lower-affinity complex of periplasmic glucose-binding pro-
tein and glucose also was examined to assess the effect of binding
affinity on sequence optimization. Active site residues in this
complex are particularly challenging to predict because 8 of 10 are
polar and engaged in H-bonds with the ligand. Moreover, the polar
side chains are positioned optimally for H-bonding to glucose
through networks of H-bonds with side chains outside the contact
shell of the ligand (14); the conformations of these latter side chains
also must be predicted correctly to reproduce the native sequence.
Eight residues in the glucose contact shell were sequence-
optimized. His-152 was excluded because of the high amino acid
degeneracy at this position found in position-specific profiles cal-
culated from MSAs (see Supporting Text).

Enzymes catalyzing the transformations of three primary types of
biological substrates, peptides (R61 DD-peptidase), sugars (�-gal),
and nucleotides (thymidylate synthase), were chosen as initial
models for active site sequence optimization. The efficiency of
peptide hydrolysis by Ser protease enzymes like the R61 DD-
peptidase is sensitive to the relative geometric orientation of
conserved catalytic triad residues; thus, constraints on these resi-
dues were imposed. The mechanism of �-gals is similar to that of
proteases in that it involves an addition–elimination and general
acid�base processes, but reactivity is not highly sensitive to other
proximal residues (15).

Bacterial DD-peptidases, the target enzymes of �-lactam anti-
biotics, catalyze the peptidoglycan cross-linking step of bacterial
cell-wall biosynthesis. For our calculations, we used the most
specific substrate known for any DD-peptidase, glycyl-L-�-amino-
�-pimelyl-D-Ala-D-Ala, complexed to the enzyme from Streptomy-
ces R61 (16). There are seven noncatalytic amino acid residues in
the contact shell of the R61 peptide substrate involved in critical

contacts to the latter through their side chains; all seven were
subjected to sequence optimization, with geometric constraints
imposed on the catalytic triad. Tyr-159 is believed to function as the
general base for proton abstraction from the Ser-62’s hydroxyl
group, with Lys-67 conferring electrostatic stabilization of the
phenolate; therefore, the Lys-65 �-N was constrained within H-
bonding distance of Tyr-159’s O, and that atom, in turn, was
constrained to within 3.0 Å of the Ser O.

In �-gals, which catalyze the scission of �(1–3) and �(1–4)
galactosyl bonds in oligosaccharides, hydrolysis takes place through
general acid catalysis wherein Glu-200 is the proton donor and
Glu-299 the nucleophile (15). All of the amino acid residues that
form contacts to the galactose ligand, with the exception of Glu-299,
were subjected to optimization, with position 200 limited to residues
capable of acid–base catalysis and the distance of Glu-299’s O� to
the scissile carbon constrained to 3.5 Å. A tighter geometric
constraint was imposed on the distance between Glu-200’s O� and
the galactose C1-OH (3.0 Å) to account for proton abstraction.

Thymidylate synthase (Fig. 7), which transforms dUMP into
dTMP, is one of the most phylogenetically conserved enzymes in
nature (17). Selected noncatalytic residues from its active site were
sequence-optimized along with residue 177, which plays an auxil-
iary role in methyl transfer by stabilizing an incipient negative
charge that develops on the dUMP CAO in the transition state. A
H-bond donor constraint was placed on this residue.

Computationally Optimized Binding�Active Site Sequences. Statistics
of the success of the sequence optimization protocol in repredicting
native active site sequences are summarized in Table 1. The data
pertain to the predicted active site sequences within the top 0.6
kcal�mol of the rank-ordered sequence lists (filtered for geometric
constraints on catalysis) that are most similar to the native se-
quences. Generally, a sequence with at least 60% sequence identity
to the native active site is found within the top 0.6 kcal�mol (and
usually within the top 10–15 sequences). Fig. 1 displays the top-
ranked sequences, as well as those most similar to the native, for
selected proteins. Importantly, for every position in every complex
studied, the native amino acid is one of the three most frequently
found in the optimized sequence distributions (Figs. 2 and 8).

The accuracy of computational sequence prediction was partic-
ularly high for the streptavidin–biotin complex, where 9 of the 10
residues subject to optimization were predicted correctly. The only
error occurred at residue 88, where the native Ser was replaced by

Table 1. Active-site sequence design results for receptor-ligand and enzyme-substrate complexes

Protein�enzyme Ligand�substrate

Number of residues

rmsd
correct,§ ÅPredicted*

Correct�
similar†

Mean
correct‡

Streptavidin Biotin 10 (9) 9�9 7.89 0.18
Glucose-binding protein �-Glucose 8 (7) 6�8 3.70 0.51
Streptomyces R61

DD-peptidase
Glycyl-L-�-amino-�-pimelyl-D-Ala-D-Ala 7 (6) 6�6 3.96 0.55

Penicillium �-gal �-Galactose 10 (8) 6�7 5.73 0.62
E. coli thymidylate

synthase
dUMP 6 6�6 3.81 1.02¶

Total 41 33 [80%]�
36 [88%]

*Number excluding residues with auxiliary functions or showing high variability in MSAs is listed in parentheses. With this correction,
92% of residue predictions are correct (97% similar).

†‘‘Correct’’ refers to number of residues predicted correctly in the sequence from the top 0.6 kcal�mol of ranked sequences (binding
affinity plus constraints) that displays highest sequence identity to native. ‘‘Similar’’ includes residues isosteric or functionally identical
to native amino acid.

‡‘‘Mean correct’’ refers to the average number of residues within the top 1 kcal�mol of ranked sequences that match the native sequence.
§‘‘rmsd correct’’ compares the conformations of the correctly predicted residues in the sequence from the ‘‘Correct�similar’’ column to
their crystallographic conformations.

¶Excluding Arg-21, which was predicted correctly despite omission of nearby crystallographic water.
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Arg. As noted, however, this residue position is most likely not
optimized for biotin binding, because it is in contact with the
carboxyl group that is used for linking the ligand to biopolymers
(13). Therefore, sequence optimization for maximal binding affinity
correctly predicts the identities of all amino acid residues essential
for the high affinity of streptavidin for biotin.

Of the eight amino acid residues in glucose-binding protein
involved in direct contacts to glucose that were subjected to
selection, six are predicted correctly in a top-ranked sequence, with
native-like amino acids predicted at the remaining two (236 and
256). The prediction that Asn confers higher binding affinity than
Asp at positions 14 and 154 (in the top-ranked sequence) is
consistent with the epimeric promiscuity of the glucose-binding
pocket (14). Different Asp oxygens at this position are used by the
protein to recognize glucose vs. galactose (see Fig. 6 for schemat-
ics). Asp O�1 at position 14 forms H-bonds to the equatorial
C4-OH of glucose; the predicted Asn-14 O� is located at roughly
the same coordinates as the crystallographic O�1. However, Asp
O�2 is needed to H-bond to the axial C4-OH of galactose. Thus,
evolution apparently chose a more versatile and less discriminate
residue (Asp) at position 14 instead of the tighter binding one (Asn).
An Asp rather than Asn residue at position 154 also is used to bind
both anomeric hydroxyls of glucose and galactose (residue selection
was carried out here for the �-anomer). For the �-gal enzyme,
discussed further below, the application of catalytic constraints
results in a similarly high level of sequence identity to native, with
discrepancies occurring primarily at positions engaging in promis-
cuous hydrophobic rather than directed contacts (residues 261, 265,
and 303). A bulky and inflexible Trp residue, which confers high
binding affinity but may be incompatible with alternate substrates
(or substrate motion during catalysis), is selected at two of three of
these positions.

In the R61 DD-peptidase active site, six of the seven residues
involved in ligand contacts, Phe-120, Asn-161, Trp-233, Arg-285,
Thr-299, and Ser-326, are predicted correctly by the sequence
optimization algorithm. At residue 123, the native Thr ranks second
after Asn in terms of amino acid frequency in the computed
sequence distributions (see Fig. 7). In general, the most frequently
occurring amino acid types are primary candidates for refinement
in an extended conformational sampling algorithm incorporating
ligand docking (simple ligand redocking did not substantially alter
binding affinity for any of the complexes studied). As an example,
we carried out such refinement for position 123 in R61 DD-
peptidase. To determine whether the error at position 123 could be
attributed to the use of the native ligand pose, which might be
unphysical for nonnative residues, ligand redocking and side-chain
conformation prediction were iterated for the Asn-123 mutant and
the converged binding affinity compared with that of native com-
plex refined according to the same protocol. Indeed, the affinity of
the Asn-123 mutant fell to �9.23 kcal�mol, less stable than the
native complex by �1 kcal�mol. Thus, remarkably, all polar and
nonpolar residue contacts to the peptide substrate were predicted
correctly.

The impeccable sequence prediction of the thymidylate synthase
active site (six of six residues selected correctly, Fig. 7), consistent
with its phylogenetic conservation, was accomplished without the
inclusion of active site waters present in the crystal structure. The
ability to reproduce the effects of crystal waters through the use of
theoretical solvation models is essential in the computational design
of solvent-exposed active sites.

Examination of position-specific residue frequencies calculated
from MSAs in many cases resolves discrepancies between native
and predicted amino acids. For example, residue 256 in glucose-
binding protein is predicted as Gln, which is the most frequently
occurring amino acid at this position in the MSA profile (Fig. 2).
Residue 123 in R61 DD-peptidase is highly degenerate in sequence
alignments, with Gln (homologous to the originally predicted Asn)
occurring most frequently (see Fig. 11). The hydrophobic residues

Fig. 3. Similarity of predicted sequence distributions to native (A and B),
sequence (site) entropies for predicted and MSA residue distributions (C and
D), and the effect of catalytic constraints. Purple traces correspond to se-
quence distributions drawn from binding affinity windows of �2 kcal�mol
(relative to the highest affinity predicted sequence), blue traces to �1 kcal�
mol, and red traces to �1 kcal�mol with catalytic constraints. Constrained
residues are depicted as heavy dots. (A) R61 DD-peptidase. (B and C) Calculated
sequence distribution and site entropies for Penicillium sp. �-gal. (D) Site
entropies of �-gal residues derived from MSA using an E-value cutoff of 10.

Fig. 2. Computed (A) and MSA (B) amino acid frequencies for residue 256 of glucose-binding protein, representative of positions where the highest-affinity
predicted sequence did not match the native active site sequence. Dark blue bars designate the native amino acid at that residue position. Computed frequencies
are derived from the sequences displaying binding affinities within 2 kcal�mol of the tightest binding sequence (subject to catalytic constraints).
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261 and 265 in �-gal are among the most variable in the active site
MSA (see below). Ignoring discrepancies that are correlated with
MSA variability or that can be attributed to independent functional
pressures (e.g., Ser-88 in streptavidin), 92% of binding site residues
are predicted correctly in a sequence within the top 0.6 kcal�mol,
with 97% similar to native.

Effects of Geometric and Protein Stability Constraints on Predicted
Sequence Distributions. As noted above, sequence optimization in
enzyme active sites is more complicated than that in ligand-binding
sites, because of the dual requirements for both binding and
catalysis. In principle, this optimization could be carried out either
by designing a new scoring function or by imposing additional
constraints on the binding-affinity scoring function. Because our
goal in this initial study of active-site sequence optimization was to
identify the simplest natural algorithms that might have produced
native active-site sequences, we implemented the latter strategy.
The highest-affinity sequence was retained at each step of the
self-consistent algorithm, irrespective of whether it satisfied the
geometric constraints; the final rank-ordered sequence list was later
filtered for those sequences that satisfied the constraints (unlike the
constraint on total protein energy, which had to be enforced after
each step of self-consistent optimization to produce native-like
active-site sequences).

What are the comparative roles played by ligand-binding affinity
and geometric constraints in determining enzymes’ natural active-
site sequences? To shed light on this issue, we examined the number
of amino acids predicted correctly within sequence distributions
comprised of (i) the sequences with substrate-binding affinities
within 1 and 2 kcal�mol, respectively, of the highest-affinity pre-
dicted sequence, and (ii) sequences within these windows both with

and without catalytic constraints (Fig. 3). We found that catalytic
constraints had an effect on sequence similarity that often varied
widely, even within a single enzyme family, in a way that could not
be easily predicted on the basis of simple structural inspection. For
example, the requirement that residue 200 in �-gal adopt a catalytic
identity (Glu or Asp) and remain within 3.0 Å of the galactose O1
had a dramatic impact on the number of amino acids predicted
correctly, shifting the mean of the distribution from approximately
three to approximately six residues correct. For the R61 DD-
peptidase, narrowing the window of binding affinities for accept-
able sequences had a greater effect than catalytic constraints; the
catalytic residues in the most tightly binding sequences generally
adopted suitable geometries spontaneously, without as much of a
need for additional filters. Nonetheless, the predicted sequence
distributions for this protein demonstrate a measurable sensitivity
to catalytic filters, particularly to the distance between the general
base Tyr-159 and the nucleophile Ser-62; restricting this distance
�3.0 Å, which promotes proton abstraction, increases the fraction
of native-like sequences.

The Shannon entropy at a residue position i (subsequently
referred to as the site entropy), defined as Si � ��a� 1 . . . 20[f(ia)
ln f(ia)], where the sum is over all amino acid types and f(ia) is the
frequency of amino acid a, is a standard measure of the variability
of the amino acid identity at that site (3). Unlike sequence similarity
distributions, site entropies represent a quantitative measure, in an
information-theoretic sense, of the effects of catalytic constraints
on the number of amino acid identities consistent within a given
window of binding energies. Fig. 3 depicts representative data on
site entropies as functions of both binding energy and catalytic
constraints. Although geometric constraints on catalytic residues
can increase the site entropies of certain residues, the general trend
is to decrease entropies. Clearly, the effects are not localized to only
geometrically constrained residues, as is particularly apparent in the
case of �-gal. Remarkably, calculated site entropies for active-site
residues of this enzyme closely mirror those derived from MSA
amino acid frequencies, not only for hydrophobic residues 261 and
265 (where high MSA entropies correlate with discrepancies be-
tween native and predicted sequences) but also for the remainder
of the active site (Fig. 3). A similar correspondence between
predicted and natural sequence entropies was reported for core
residues (2), albeit without the added complexities of ligand con-
formational freedom, catalytic constraints, and hydration.

The finding that the imposition of simple fixed constraints (rather
than optimization of a more complex scoring function incorporat-
ing, e.g., contributions from both binding affinity and protein
stability) can reproduce natural ligand-binding site sequences is

Fig. 4. Structural accuracy of side-chain conformation prediction for cor-
rectly selected active site residues in Streptomyces R61 DD-peptidase. The
rmsds were calculated over all side-chain heavy atoms. Purple bars denote
conformationally optimized (but not sequence-optimized) catalytic residues.

Fig. 5. Comparison of crystallographic and predicted
active-site side-chain identities�geometries for R61
DD-peptidase (DD-peptidase) bound to the D-Ala-D-
Ala peptide substrate. Crystallographic conformations
of side chains directly involved in binding the ligand
are shown in orange; predicted side chain conforma-
tions at these positions from the most similar high-
affinity optimized sequence (Fig. 1) are shown in blue
where residue identities match the native sequence
and in purple where they do not. Side chains involved
in catalysis but not directly in binding (and subjected
to the geometric constraints listed in Fig. 1) are shown
in red (crystallographic conformation) or white (pre-
dicted conformation). The substrate was fixed in its
crystallographic conformation for this calculation. The
prediction of Asn-123 in place of Thr-123 was cor-
rected upon iteratively redocking the substrate to the
active site and repredicting the conformations of the
respective side chains.
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important because it reveals features of the binding site fitness
landscape that may have simplified the natural evolutionary search
for optimal sequences. With respect to the restriction on folding
free energy, the simplest explanation for the success of this con-
straint is that the total system energy and ligand-binding affinity are
correlated, in the sense that steric clashes in the binding site
rendering the protein unstable are also prone to compromise the
ligand-binding affinity. This conjecture is supported by our obser-
vation that sequence seeds generated by ‘‘excitations’’ from an
all-Ala active site (self-consistently, as described in Methods) gen-
erally demonstrated better convergence to the native sequence than
did the completely random seeds used in core design studies.
Completely random seeds, even those satisfying the dual constraints
on total protein energy and binding affinity, are more likely to be
trapped in local extrema in the rugged constrained affinity land-
scape than are seeds generated iteratively with each move from the
untrapped all-Ala starting sequence generated in adherence to
these constraints.

Structural Accuracy of Designed Binding�Active Sites. Unlike some
prior studies that have addressed the convergence of protein
core sequence evolution, which used large databases of proteins
but neither examined the sources of discrepancy between pre-
dicted and native sequences nor assessed the structural accuracy
of correct sequences (3, 4), theoretical analysis of the design of
ligand-binding and active sites requires high-resolution predic-
tions. The demands placed on the accuracy of the potential
energy function used in design are considerably greater for
surface than for core residues (18). Importantly, most ap-
proaches to sequence optimization have used so-called dead-end
elimination algorithms, incapable of sampling energy functions
incorporating accurate models of solvation, for side-chain con-
formation prediction (19–21). By contrast, our algorithm is
capable of sampling a potential incorporating a realistic treat-
ment of solvation effects (the surface-generalized Born contin-
uum model), which is critical for accurate predictions of the
side-chain conformations of charged and polar residues in highly
solvated binding sites. Although scoring of affinity in our
algorithm uses a semiempirical potential without continuum
solvation (incorporating explicit waters instead), generation of
mutant protein structures before scoring is carried out in con-
tinuum solvent. This feature appears to be essential to the
accurate reprediction of native active-site sequences, in contrast
to generating relatively high-affinity sequences (22), of which
there are undoubtedly many. In particular, the subtle effects of
catalytic constraints in enzymes are especially sensitive to sub-
angstrom shifts in side-chain conformations.

Representative data regarding the geometric accuracy of se-

quences�structures produced by our algorithm are presented in Fig.
4. The rms deviations (rmsds) of side chains whose identities
matched those of the native residues, as well as selected catalytic
side chains that were not subject to sequence selection, are dis-
played. With few exceptions, the rmsds are �1 Å, even when the
identities of some of the neighboring side chains are selected
incorrectly. Given the resolution of the crystal structures used
(typically �2.5 Å; see details in Supporting Text), the majority of
rmsds are approaching the limits of crystallographic accuracy. In
Fig. 5, the structure of the computationally optimized active site of
the R61 DD-peptidase is neatly superimposed on that of the native
active site, illustrating the accuracy of simultaneous sequence and
structure prediction.

Conclusions
We have found that most binding-site amino acid residues of
receptor proteins and enzymes from several diverse families are
optimized or nearly optimized for simple scoring functions based on
ligand-binding affinity, under the constraint that residues involved
in catalysis are restricted to catalytically favorable conformations.
In the case of enzyme active sites, correct sequences are sometimes
predicted on the basis of binding affinity alone, but geometric
constraints are often essential. Given the scope of possible scoring
functions that could in principle be relevant for active-site optimi-
zation, it is striking that nature has apparently used a simple scoring
function for the selection of many residues. Moreover, this finding
suggests that efficient enzymes can be computationally designed in
a similar fashion. From an evolutionary standpoint, there are far
more active-site backbone structures in the natural protein universe
than there are protein folds; hence, any given backbone structure
may have been less extensively sampled. In light of this fact, it is
remarkable that the active sites examined here display a level of
correlation between predicted and natural sequences at least com-
parable with that found in protein cores. Although we have not
rigorously assessed the extent of sequence equilibrium, close cor-
relation in the positions of variability between predicted and natural
sequence distributions, as assessed by site entropies, has been
observed. Future work should examine the generality of these
observations for additional enzymes and determine whether the
residues at which discrepancies occur can be correctly predicted
using more sophisticated scoring functions or whether these posi-
tions have been incompletely optimized for catalysis by natural
evolution.
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