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� values are experimental measures of how the kinetics of protein
folding is changed by single-site mutations. � values measure
energetic quantities, but they are often interpreted in terms of the
structures of the transition-state ensemble. Here, we describe a
simple analytical model of the folding kinetics in terms of the
formation of protein substructures. The model shows that � values
have both structural and energetic components. It also provides a
natural and general interpretation of ‘‘nonclassical’’ � values (i.e.,
<0 or >1). The model reproduces the � values for 20 single-residue
mutations in the �-helix of the protein CI2, including several
nonclassical � values, in good agreement with experiments.

transition-state ensemble � mutational analysis � statistical mechanics

The folding kinetics of small single-domain proteins has been
widely studied by single-site mutagenesis (1–16). The central

quantity in these studies, the � value, is defined as (17, 18)

� �
RT ln�kwt�kmut�

�GN
. [1]

Here, kwt and kmut are the folding rates of the wild type and
mutant protein, and �GN is the change of the protein stability
upon mutation. The stability GN of a protein is the free-energy
difference between the native (N) and the denatured (D) state.

There are several theoretical studies of � values and transition
states. The thermal unfolding kinetics of CI2 has been exten-
sively studied in molecular dynamics simulations (19–24). Here,
the transition state is defined as a ‘‘small ensemble of structures
populated immediately prior to the onset of a large structural
change’’ (20) in the unfolding trajectories. Other groups have
considered statistical mechanical or Go-type models (25–36). In
some of these models, transition states are identified as free-
energy maxima along a folding reaction coordinate or as free-
energy saddle points if two or more degrees of freedom are used
for the reaction coordinate. More recent approaches define the
transition state ensemble (TSE) from experimental � values by
using these � values as restraints in simulations (37–39). Each of
these definitions of transition state, although plausible, is nev-
ertheless based on one or more ad hoc premises.

In classical transition-state theory, the folding rate is proportional
to exp[�GT�RT], where GT � Gtransition state � Gdenatured state is the
free-energy difference between the TSE and the denatured state.
Possible changes in the prefactor of this proportionality relation
upon mutation are usually neglected. Thus, � � �GT��GN. In this
way, � values measure the energetic consequences of mutations on
the TSE relative to the native state.

A central question is whether � values also give structural
information about the TSE (18, 40, 41). In the traditional
interpretation, � � 1 is taken to indicate that the mutated
residue has native-like structure in its TSE, whereas � � 0 is
taken to indicate that the mutated residue is not structured in the
TSE. Typically, experiments give � values that are fractional,
with values between 0 and 1, apparently indicating partial
native-like structural character of the residue in the TSE.

However, there are three problems with this traditional struc-
tural interpretation. First, � values are sometimes ‘‘nonclassi-
cal’’; they can be �0 or �1. In the traditional view, such values
are impossible, implying a transition state that is more denatured
than D or more native than N; hence, there is some controversy
about how such � values should be interpreted. Second, a given
sequence position can have very different � values, depending
on which amino acid is substituted there, leading to the question
of whether such energetic changes always have a simple struc-
tural interpretation.

Third, there is a problem of continuity: two residues that are
neighbors in the chain are sometimes observed to have very
different � values. A structural interpretation of this observation
would be that there can be sharp boundaries between native-like
and non-native-like structure in the TSE, which seems implau-
sible. For example, the protein CI2 consists of an �-helix packed
against a four-stranded �-sheet (see Fig. 1). In the �-helix of CI2,
20 single residue mutations have been studied, giving � values
ranging over the full spectrum from �0.35 to 1.25. Although
helix formation is usually regarded as fast and cooperative, these
results would seem to imply that this helix does not form as a
single cooperative unit: parts are folded, and parts are not in the
TSE. It is not clear whether these are problems of experimental
errors or problems in the traditional model that is used to
interpret � values.

Is there a more physical way to interpret the formation of
protein substructures that comprise the TSE of protein folding?
Here, we develop a model. First, we consider the simplest
subdivision of the protein: into one �-helical substructure and
one �-sheet substructure. Because of its simplicity, the model
can be solved analytically and exactly. Then, we generalize this
model to apply to CI2. Despite its simplicity, this model repro-
duces the experimental � values in the �-helix of CI2 with a
correlation coefficient of 0.85, including some of the nonclassical
� values. A key conclusion is that it is not sufficient to interpret
� values solely in terms of structures. However, a � value can
be decomposed into structural and energetic components.

Model and Methods
The Dynamics. Our approach has the following two aspects, (i) the
model, which expresses the relative free energies of the various
substructures of the protein as it folds, and (ii) the dynamics of
the model. We first describe our treatment of the dynamics. To
simplify the notation, we define here the free-energy Gn of each
partially folded state n � 1, 2, 3, . . . , and the dimensionless
free-energy gn ' Gn�RT, with respect to the fully denatured
state in which none of the substructures is formed. Thus, the
denatured state is the reference, defined as having zero free
energy. The transition rate from any state m to state n is given
by the following expression:

Abbreviation: TSE, transition-state ensemble.
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wnm �
1
to

�1 � egn�gm��1, [2]

provided the states n and m are connected by a single step in
which only one substructure folds or unfolds (36). For other
transitions, the transition rates are zero. Here, to is a reference
time scale.§

The folding kinetics is described by the following master
equation:

dP� t�
dt

� � WP� t� . [3]

The elements of the vector P(t) are the probabilities Pn(t) that the
protein is in state n at time t, and the matrix elements of W are
given by Wnm � �wnm for n 	 m and Wnn � 
m	nwmn. The
general solution of the master equation has the form

P�t� � �
�

c�Y�exp��� t� . [4]

Here, � are the eigenvalues and Y� are the eigenvectors of the
matrix W. The prefactors c� depend on the initial conditions at
time t � 0. The eigenvalues represent relaxation rates. It can be
shown that one eigenvalue is zero, corresponding to the equi-
librium distribution, whereas all other eigenvalues are positive
(42). For t3 , the probability vector P(t) tends to coYo, where
Yo is the eigenvector with eigenvalue 0.

The Model: Two Substructures. The dynamics described above is
applicable to any model of the protein, its substructures, and
their relative free energies. Here, we first apply the dynamics to
the simplest possible model of the substructures of CI2. The
model has the following four states: (i) the denatured state, D,
in which neither the helix nor the sheet is formed; (ii) a partially
folded state, �, in which only the helix is formed; (iii) a partially
folded state, �, in which only the �-sheet is formed; and (iv) the
native state, N, in which both the helix and sheet are formed and
packed against each other.

In this simple four-state model, the energy landscape is charac-
terized by the dimensionless free-energy differences g�, g�, and gN

of the states �, �, and N, each taken with respect to the denatured
state D, which is defined as having zero free energy.

The folding kinetics of this model can be solved exactly by
determining the eigenvalues � and eigenvectors Y� of the matrix
W. Because this model has four states, W is a 4 � 4 matrix. In
units of 1�to, the eigenvalues are given by � � 0, 1 � q, 1 � q,
and 2, where

q �
1 � egN�g��g�

��1 � e�g���1 � e�g���1 � egN�g���1 � egN�g��
. [5]

Because we have �1 � q � 1, the three nonzero eigenvalues are
positive and describe the relaxation to the equilibrium state of
the model (see Eq. 4). The equilibrium state simply is coYo, where
Yo is the eigenvector with eigenvalue 0.

This model exhibits two-state folding kinetics under two
conditions. First, the native state must be stable; the free-energy
gN of the native state must be significantly smaller than the free
energies of the other three states. Under such folding conditions,
the equilibrium native state will be more populated than the
other three states. Second, the intermediate states � and � must
have positive free energies, relative to D, so that the system will
have a kinetic barrier, which is required to achieve single-
exponential dynamics.

Under these two conditions, the three Boltzmann weights
egN�g��g�, egN�g�, and egN�g� in Eq. 5 are much less than 1 and also
much less than e�g� and e�g�. Therefore, these three Boltzmann
weights can be neglected. We set them equal to zero. The factor
q in Eq. 5 then simplifies to the following expression:

q �
1

��1 � e�g���1 � e�g��
. [6]

For large barrier energies g� and g�, we have e�g� �� 1 and e�g�

�� 1 and, therefore, (1 � e�g�)(1 � e�g�) � (1 � e�g� � e�g�).
If we next use the expansion (1 � x)�1�2 � 1 � x�2 with x � e�g�

� e�g� �� 1, the smallest nonzero relaxation rate, or folding rate,
k ' 1 � q is given by

k �
1
2

�e�g� � e�g��. [7]

The folding rate k is much smaller than the other two relaxation
rates 1 � q and 2. In that case, these two fast relaxations
constitute an initial ‘‘burst phase,’’ and the model otherwise gives
two-state single-exponential folding behavior with the slowest
rate k (see Eq. 4). The folding rate k simply is the sum of the rates
for the two possible folding routes: one folding route in which �
forms first and the other in which � forms first. The factor 1�2
in the equation above arises because a molecule, after reaching
one of the barrier states � or �, either falls back to D or falls
forward to N, with almost equal probability.

By using this model, we next explore the effects of mutations.
Consider a mutation within the �-helix. The free energy of the
helix will change from g�3 g� � �g�, and the free energy of the
native state will change from gN 3 gN � �gN. In contrast, g� is
not affected by the mutation. The folding rate of the mutant will
be kmut � k(g���g�, g�), with k given by Eq. 7. For small
perturbations �g�, we have ln kwt � ln kmut � � (� ln k�� g�)�g�.
For mutations in the �-helix, the � value defined in Eq. 1 has the
following general form:

� � ��

�g�

�gN
, [8]

with

§The transition rates obey detailed balance wnm Pe
m � wmn Pe

n, where Pe
n � exp[�Gn�(RT)]

is the equilibrium weight for the state n. Detailed balance ensures that the system
ultimately reaches thermal equilibrium.

Fig. 1. The native structure of CI2 consists of a four-stranded �-sheet packed
against an �-helix (Protein Data Bank ID code 1COA).
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�� � �
� ln k
� g�

�
e�g�

e�g� � e�g�
. [9]

Hence, the � value is a product of the two following terms: a
structural factor �� and an energetic factor �g���gN. The term
�� describes the fractional structure formation of the �-helix
within the TSE. In this example, the TSE consists of the two
barrier states � and � on the two parallel folding routes. ��

ranges between 0 and 1. We have �� � 1 for g� �� g� when the
state � dominates the TSE, and �� � 0 when � dominates the
TSE.

Whereas �� gives structural information, the second term,
�g���gN, can take on either negative or positive values. Thus,
this term accounts for nonclassical � values �0 or �1. In the
simplest case, �gN � �g� � �g��. Here, �g�� is the free-energy
change for a tertiary contact between the �-helix and the
�-sheet, for example. In that case, negative � values arise when
�g�� is larger in magnitude and opposite in sign to that of �g�.
That is, a negative � value is predicted when a helical mutation
also has a counteracting and larger effect on a tertiary contact.
Correspondingly, � � 1 occurs when the following two condi-
tions are met: (i) �g�� is opposite in sign but smaller in
magnitude than �g�, and (ii) �� is sufficiently large. This
explanation of nonclassical � values may also rationalize why
more � values are �0 than �1 (42). If g� and g�� have a similar
magnitude, it should be more difficult to satisfy the latter two
conditions than the former condition.

However, our model is rather general and captures also that
nonclassical � values can arise from shifts in the free energy of
the denatured state. For example, if a mutation only lowers the
free energy of the denatured state, we have �g� � 0 and �gN �
0, which gives a negative � value according to Eq. 8. In contrast,
the traditional structural interpretation of � values fails if
mutations shift the free energy of the denatured state (48).

In this simple example, a mutation in the �-helix affects only
a single structural element formed in the TSE: the �-helix. In
general, mutations may affect several structural elements of the
TSE. A generalization of Eq. 8 is then � � (
i�i �gi)��gN with
�i � �(� ln k)�(� gi), provided that the free energies gi of the
structural elements are additive.

Mutations in the �-Helix of CI2. To model the folding kinetics of
CI2, we must consider at least four substructural units: the
�-helix and the three strand pairings �2�3, �3�4, and �1�4. These
substructures correspond to contact clusters on the native con-
tact map of CI2 (see Fig. 2). Therefore, the model energy
landscape of CI2 is more complex than the landscape of the
simple four-state model given above. However, under two
assumptions, Eq. 3 also holds for the helix of CI2. These
assumptions are as follows: (i) the helix is either fully formed or
not formed in each of the states of the TSE, and (ii) the helix does
not form tertiary contacts in the TSE. Under these assumptions,
the free-energy contribution of the helix to a state of the TSE (in
which the helix is formed) simply is g�, and then �� has the same
interpretation as described above.¶

To test Eq. 8, we consider the 20 single-residue mutations in the
CI2 helix (2). We estimate the change in intrinsic helix stability �g�

from helicities predicted by the program AGADIR (44–46) (see
Table 1). The experimentally measured change in folding rate for
these mutations, log(kwt

exp�kmut
exp ), correlates with �g� with a coeffi-

cient r � 0.83, and the experimentally determined � values

correlate with �g���gN
exp with r � 0.85 (see Fig. 3). According to

Eq. 8, the change in log k is proportional to �g�, and the � values
are proportional to �g���gN

exp, both with proportionality constant
��. From the two linear fits shown in Fig. 3, we obtain the estimate
�� � 0.88 � 0.12. We have estimated the errors for �� by using a
jackknife method in which up to two data points are deleted
randomly from the data set (see legend to Fig. 3). This estimate for
�� indicates that the helix is almost fully formed in the TSE. In

¶These two assumptions are clearly simplifying. Based on unfolding simulations, Daggett
et al. (21) argue for a crucial tertiary interaction between the residues Ala-16 of the �-helix
and Ile-49 of the �-sheet in the TSE of CI2. In contrast, Lazaridis and Karplus (23) found that
‘‘the number of contacts made by the Ala side chain [in the TSE] . . . depend[s] primarily
on the presence of the helix and not on interactions with �-strands.’’

Fig. 2. Contact matrix of CI2. Each black dot represents a contact between
two amino acids in the native structure, with a distance of �6 Å between the
C� or C� atoms of the amino acids. The four large clusters of contacts
correspond to the main structural elements of CI2: the �-helix and the �-strand
pairings �2�3, �3�4, and �1�4. The few ‘‘isolated’’ contacts represent either
turns or tertiary interactions of �-helix and �-sheet.

Table 1. Data for single-residue mutations in the �-helix of CI2

Mutation RT ln(kwt
exp�kmut

exp ) �gN
exp �exp �g� �g���gN

exp

S12G 0.23 0.8 0.29 0.28 0.35
S12A 0.38 0.89 0.43 0.14 0.16
E14Q 0.36 0.29 1.23 0.54 1.86
E14D 0.10 0.52 0.2 0.08 0.15
E14N 0.53 0.7 0.75 0.54 0.77
E15Q 0.25 0.47 0.53 0.56 1.19
E15D 0.16 0.74 0.22 0.13 0.18
E15N 0.57 1.07 0.53 0.57 0.53
A16G 1.15 1.09 1.06 0.82 0.75
K17A 0.14 0.49 0.28 0.04 0.08
K17G 0.87 2.32 0.38 0.80 0.34
K18G 0.68 0.99 0.7 0.75 0.76
V19A �0.13 0.49 �0.26 �0.41 �0.84
I20V 0.52 1.3 0.4 0.14 0.11
L21A 0.33 1.33 0.25 �0.01 �0.01
L21G 0.48 1.38 0.35 0.26 0.19
Q22G 0.07 0.6 0.12 0.04 0.07
D23A �0.23 0.96 �0.25 �0.41 �0.43
K24A �0.23 0.65 �0.35 0.11 0.17
K24G 0.31 3.19 0.1 0.12 0.04

Experimental data for folding rates kwt
exp and kmut

exp of wild type and mutants,
stability changes �gN

exp, and � values are from Itzhaki et al. (2). The change
�g� � ln(P�

wt�P�
mut) in the ‘‘intrinsic helix stability’’ g� is estimated from helici-

ties P� predicted by AGADIR (44–46). The wild-type sequence of the 13-residue
helix is SVEEAKKVILQDK. Helicities have been calculated at the experimental
temperature 298 K, pH 6.25, and ionic strength 0.03 mol, with acetylated N
terminus and amidated C terminus of the peptide to avoid terminal charges.
The energetic quantities RT ln(kwt

exp�kmut
exp ), �gN

exp, and �g� are given in kcal�mol.
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agreement with this interpretation, molecular dynamics unfolding
simulations indicate that a fraction of 0.91 � 0.14 of the helical
residues are structured in the TSE (21).

Discussion
Our model gives a physical explanation for nonclassical � values,
but an alternative explanation is in terms of experimental errors.
Sánchez and Kiefhaber (47) have observed that mutations with
nonclassical � values often have relatively small changes �gN in
stability. Because �gN appears in the denominator of the ex-
pression for �, it means that nonclassical � values can arise when
a mutation has little effect on the protein stability. Sánchez and
Kiefhaber argue that unavoidable experimental errors may be
responsible for the nonclassical � values, and that � values for
mutations with �gN � 1.7 kcal�mol are unreliable. Others have
argued that this error threshold should be considerably smaller,
�0.6 kcal�mol (16, 48). The analysis of Sánchez and Kiefhaber

is based on the assumption that different mutations at a given
residue position should lead to the same ‘‘true’’ � value for this
residue position. Our model gives a different interpretation. In
our model, different mutations at a given position can affect the
energy landscape in different ways. For example, we believe
E14Q in the CI2 helix may affect the helicity significantly,
whereas E14D does not (see Table 1).

Our model can explain isolated nonclassical � values, such as the
four in the �-helix of CI2 (see Table 1). They are ‘‘isolated’’ insofar
as they are interspersed among classical � values within a local
region of the protein. There are other cases in which nonclassical
� values are clustered together within a given region of the protein.
In the second �-helix of ACBP for example, seven � values are
clearly negative, whereas the other six � values are close to 0.
Previously, clustered nonclassical � values have been explained in
terms of parallel flow processes on slightly more complex energy
landscapes than we have considered here (49). That is, mutations
that destabilize a particular substructure can cause a back flow on
the energy landscape into faster flow channels, leading to an
increase in the folding rate and negative � values.

Here, we considered the �-helix of CI2 to illustrate our structural
interpretation of � values. One reason is that the helix is very well
characterized (i.e., a large number of � values is available). Another
reason is that these � values cover a wide range of possible values,
from �0.35 to 1.23. Two other well characterized helices are the
�-helices of protein L (9) and G (10). There are 15 single-residue
mutations that have been considered in the protein L helix. One of
the � values is �0.39, whereas the others span a rather narrow
range from �0.05 to 0.28 (9). Similarly, one of nine � values for the
helix of protein G is �0.81, whereas the others range from 0.05 to
0.55. In both cases, our model reproduces the clearly negative,
nonclassical � value, which leads to relatively high correlation
coefficients of 0.58 and 0.81 between the experimental and theo-
retical � value distributions. But because the other � values lie in
a rather narrow range, the statistical uncertainties from experimen-
tal and modeling errors are high, and �� cannot be determined
reliably.

Summary
The � values give information about the routes of protein
folding. The central question is: What information do they give?
Previous modeling has been limited in certain ways. First, some
models treat only topological aspects of folding and, therefore,
cannot explain how single-site mutations can have the large
effects on folding rates that are often observed. Second, current
models usually make some plausible, but ad hoc, assumption
about folding routes, transition states, and reaction coordinates.
Protein folding is sufficiently different from simpler reactions
that some of these assumptions are not likely to be valid. In
particular, � values are often assumed to reflect only structural
information about transition states. Here, we present a more
rigorous approach for interpreting � values, and we show that �
values have both structural and energetic components. We show
that our approach gives a consistent interpretation of mutational
experiments on the CI2 helix.
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