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ABSTRACT AdCLD-CoV19-1, a chimeric adenovirus-based severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) vaccine, was previously reported to elicit robust 
antibody responses in mice and non-human primates after a single dose. In this study, 
we conducted a systems serology analysis to investigate changes in humoral immune 
responses induced by varying doses of the AdCLD-CoV19-1 vaccine in a phase I clinical 
trial. Serum samples from participants receiving either a low or a high dose of the 
vaccine were analyzed for antibody features against prototype SARS-CoV-2 spike (S) 
domains (full-length S, S1, S2, and receptor binding domain), as well as Fc receptor 
binding and effector functions. While both low- and high-dose vaccines induced robust 
humoral immune responses following vaccination, the quality of antibody features 
differed between the dose groups. Notably, while no significant difference was observed 
between the groups in the induction of most S1-specific antibody features, the high-
dose group exhibited higher levels of antibodies and a stronger Fc receptor binding 
response specific to the S2 antigen. Moreover, univariate and multivariate analyses 
revealed that the high-dose vaccine induced higher levels of S2-specific antibodies 
binding to FcγR2A and FcγR3B, closely associated with antibody-dependent neutrophil 
phagocytosis (ADNP). Further analysis using the Omicron BA.2 variant demonstrated 
that the high-dose group maintained significantly higher levels of IgG and FcγR3B 
binding to the S2 antigen and exhibited a significantly higher ADNP response for the S2 
antigen compared with the low-dose group. These findings underscore the importance 
of considering diverse humoral immune responses when evaluating vaccine efficacy and 
provide insights for optimizing adenovirus vector-based SARS-CoV-2 vaccine doses.

IMPORTANCE Optimization of vaccine dose is crucial for eliciting effective immune 
responses. In addition to neutralizing antibodies, non-neutralizing antibodies that 
mediate Fc-dependent effector functions play a key role in protection against vari
ous infectious diseases, including coronavirus disease 2019. Using a systems serology 
approach, we demonstrated significant dose-dependent differences in the humoral 
immune responses induced by the AdCLD-CoV19-1 chimeric adenovirus-based severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine, particularly against 
the SARS-CoV-2 spike 2 domain. These findings highlight the importance of assessing 
not only neutralizing antibody titers but also the quality and functionality of antibody 
responses when evaluating vaccine efficacy.

KEYWORDS systems serology, SARS-CoV-2, adenovirus vector-based vaccine, effector 
function, spike protein

S ince the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) in 2019, over a hundred vaccine candidates for coronavirus disease 2019 
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(COVID-19) have been developed (1). As of August 2023, more than 10 vaccines 
have received full or emergency authorization from the World Health Organization 
(WHO) (2). Numerous studies have highlighted the importance of humoral immune 
responses for protection against SARS-CoV-2, with neutralizing antibodies proposed 
as correlates of protection (CoP) (3–7). However, despite the emphasis on neutralizing 
antibodies as critical indicators of immunity against COVID-19, several studies have 
also focused on non-neutralizing antibodies, which may confer Fc-mediated protection 
against SARS-CoV-2 infection (8–13). Furthermore, binding antibodies exhibit greater 
resilience against diverse SARS-CoV-2 variants than neutralizing antibodies (13–15). This 
resilience is significant considering that non-neutralizing Fc-functional antibodies not 
only constitute a large portion of the total antibodies binding to the SARS-CoV-2 spike 
(S) protein (16) but also facilitate protective immunity via Fc-mediated effector func
tions, such as antibody-dependent neutrophil phagocytosis (ADNP), antibody-depend
ent cellular phagocytosis (ADCP), antibody-dependent complement deposition (ADCD), 
and antibody-dependent natural killer (NK) cell activation (ADNKA) by interacting with Fc 
receptors (FcR) present on various immune cells (17). In line with this, many studies have 
shown that non-neutralizing antibodies play a pivotal role in protection against various 
infectious diseases through antibody Fc-mediated effector functions (18–21).

Systems serology is an advanced approach that provides a comprehensive under
standing of humoral immune responses in individuals infected with pathogens or 
immunized with various vaccines by analyzing multiple features, including antibody 
isotyping and subclassification, FcR binding profiling, and Fc-mediated effector functions 
(22, 23). Unlike traditional serological assessments, which primarily measure the quantity 
and neutralizing capacity of antibodies, this approach integrates high-throughput 
experimental techniques and computational methods to analyze antibody features 
and functions, allowing for a comprehensive insight into the quality and function of 
humoral immune responses. Furthermore, insights from systems serology can elucidate 
the immune CoP, helping identify the antibody features associated with successful 
vaccination, thereby guiding the design of more effective vaccines (10–13).

Previously, we reported that immunization with a single dose of AdCLD-CoV19, 
a chimeric adenovirus (Ad5/35) vector-based wild-type SARS-CoV-2 vaccine, induced 
robust SARS-CoV-2 S-specific antibody responses in mice and non-human primates 
(24). Moreover, we demonstrated enhanced neutralizing antibody responses against 
the SARS-CoV-2 pseudovirus and its variants of concern following prime or booster 
administration of AdCLD-CoV19-1 (25, 26). Subsequently, the efficacy of the vaccine 
is being evaluated in phase 3 clinical trials following completion of safety and dose 
selection in phase 1 clinical trials.

We hypothesized that humoral immune responses may differ between groups 
receiving different vaccine doses and that the resulting serological disparities in 
antibodies would influence variations in Fc-dependent effector functions. Therefore, we 
present a systems serology analysis of individuals who received either a low dose or a 
high dose of the AdCLD-CoV19-1 vaccine in phase 1 clinical trials. The results from the 
enzyme-linked immunosorbent assay (ELISA) and neutralizing antibody assay, traditional 
methods for evaluating SARS-CoV-2 vaccine efficacy, showed no significant differences 
between the two dose groups post-vaccination. However, using systems serology, both 
univariate and multivariate analyses revealed that levels of multiple antibody features 
related to the prototype SARS-CoV-2 full-length S (FS) and S2 domains were significantly 
higher in the high-dose group compared with the low-dose group, while no significant 
differences were observed in the S1 domain and receptor binding domain (RBD). In 
addition, we demonstrated that these features indeed influence the functional assay, 
specifically the ADNP against the S2 domain, resulting in significant differences between 
the two dose groups. Furthermore, our analysis was expanded to include the Omicron 
BA.2 variant. Using systems serology, we observed that the high-dose group maintained 
significantly higher levels of specific antibody features targeting the S2 antigen of BA.2. 
Notably, these distinct antibody characteristics translated into significantly elevated 
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ADNP phagoscores for the S2 domain of BA.2 in the high-dose group compared with the 
low-dose group. These findings indicate that while the quantity and neutralizing capacity 
of antibodies may be similar across different doses, the antibody features and effector 
functions induced by varying vaccine doses can exhibit notable differences. Therefore, 
this study offers valuable insights for establishing criteria to evaluate vaccine efficacy in 
clinical trials.

RESULTS

AdCLD-CoV19-1 induces robust humoral immune responses against 
prototype SARS-CoV-2 in adults

Serum samples from a Phase I non-randomized multicenter study (NCT05047692) were 
used to comprehensively evaluate the serological profiles elicited by varying doses 
of the AdCLD-CoV19-1 vaccine (27). Samples were obtained from healthy male and 
female participants aged 19–64 years, who had not previously been infected with 
COVID-19 or vaccinated against SARS-CoV, MERS-CoV, or SARS-CoV-2. The study involved 
two experimental groups, both vaccinated on day 0. Group 1 received a low dose of 
AdCLD-CoV19-1 (5.0 × 1010 viral particles) as a single intramuscular injection (n = 20), 
while Group 2 received a high dose (1.0 × 1011 viral particles) using the same administra
tion method (n = 20). The serum samples used for analysis were collected on day 0, 
before vaccination, and on day 28, 4 weeks post-vaccination.

Prototype SARS-CoV-2 FS-specific IgG antibody and neutralizing antibody titers were 
measured using ELISA and a focus reduction neutralization test (FRNT) as the primary 
endpoint of vaccine efficacy in phase 1 clinical trials (Fig. 1A and B). As expected, both 
the low- and high-dose groups exhibited a significant increase in IgG antibody titers 
against the FS protein following vaccination (Fig. 1A). Similarly, neutralizing antibody 
titers against SARS-CoV-2 were substantially elevated in both dose groups on day 28 
compared with those before vaccination (Fig. 1B). However, no significant differences 
between the two dose groups post-vaccination were observed in either the binding or 
neutralizing antibody titers despite these antibody titers being slightly higher in the 
high-dose group than in the low-dose group (P = not significant; Fig. S1).

Therefore, we applied a systems serology approach to clinical serum samples from the 
two groups to comprehensively investigate the humoral immune responses induced by 
varying doses of the AdCLD-CoV19-1 vaccine, including antibody profiling, FcR binding 
profiling, and Fc-mediated effector functions, using the prototype SARS-CoV-2 as the 
antigen (Fig. 1C). Using systems serology, we showed that the overall humoral immune 
responses were significantly increased by the two varying doses of the vaccine compared 
with prevaccination, whereas the breadth and quality of antibody features were different 
between the two dose groups (Fig. 1C). Systems serology analyses revealed robust 
enhancements in all four functional assays (ADCD, ADCP, ADNP, and ADNKA) against 
SARS-CoV-2 FS in both dose groups (Fig. 1C; Fig. S2). In addition, a significant increase in 
antibodies (IgG, IgG1, IgG3, and IgA1) specific to the four SARS-CoV-2 S antigens was 
observed in both groups (Fig. 1C; Fig. S3A , B, C and F). However, an S-specific IgG4 
antibody response was not induced by a single dose of AdCLD-CoV19-1 (Fig. 1C; Fig. 
S3E). Notably, variations in the increase in antigen-specific IgG2 and IgM were observed 
in the low- and high-dose groups. While the low-dose group showed a significant 
increase in the IgG2 response limited to FS and S1, the high-dose group exhibited a 
significant increase against all four antigens (Fig. 1C; Fig. S3C). Moreover, no considerable 
increase in IgM levels was observed in the low-dose group, whereas the high-dose group 
showed a significant increase against the FS antigen (Fig. 1C; Fig. S3G). In FcR profiling, 
significant increases were observed in all five FcRs (FcγR2A, FcγR2B, FcγR3A, FcγR3B, and 
neonatal FcR (FcRn)) against the four SARS-CoV-2 domains in both groups (Fig. 1C; Fig. 
S4). Overall, these results indicate that the AdCLD-CoV19-1 vaccine induces a broad and 
potent humoral immune response against the prototype SARS-CoV-2 and that varying 
doses of the adenoviral vector-based vaccine may induce different antibody characteris
tics.
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AdCLD-CoV19-1 induces distinct antigen-specific antibody features between 
the low- and high-dose groups

To further investigate the differences in antibody profiles between the two groups 
following vaccination, we compared the isotypes and subclasses of antibodies in serum 
samples collected from the two groups 28 days post-vaccination against four proto
type SARS-CoV-2 antigens (FS, S1, S2, and RBD) (Fig. 2). Importantly, the high-dose 
group exhibited significantly higher levels of IgG and IgG1 antibodies against both the 
FS and S2 antigens compared with the low-dose group. In contrast, there were no 
significant differences in antibodies against the S1 and RBD antigens between the two 
groups (Fig. 2A and B). Additionally, higher levels of IgG2 antibodies against the FS, S1, 
and S2 antigens were observed in the high-dose group compared with the low-dose 
group; however, both doses induced modest levels of these antibodies (Fig. 2C; Fig. 

FIG 1 Overall humoral immune responses across the two dose groups post-vaccination. Violin plots (representing medians, interquartile ranges, minima, and 

maxima) showing the antibody levels in the low- and high-dose groups on days 0 and 28. Individuals were vaccinated on day 0 with two different doses. Dots 

represent the participants (n = 20). (A) Anti-SARS-CoV-2 S IgG titers were measured as log10 binding antibody units/mL (BAU/mL) using ELISA. (B) Log10 titers 

of neutralizing antibodies against SARS-CoV-2 measured using the FRNT assay. For the comparison of changes in antibody levels, a Mann–Whitney U test was 

performed. The P value is indicated in the figure. (C) Polar plots depicting the mean percentile of prototype SARS-CoV-2-specific antibody features for the two 

dose groups on days 0 and 28. Percentile rank scores were determined for each antibody feature across all individuals. The colors represent the following feature 

groups: light-yellow, antibody-dependent functional assays; orange, FcR profiling; and light green, antibody isotypes and subclasses. The SARS-CoV-2 FS antigen 

was used for the functional assays. SARS-CoV-2 FS, S1, S2, and RBD antigens were used for antibody and FcR profiling. ****P < 0.0001.
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S3C). Consistent with previous preclinical studies (24–26), the AdCLD-CoV19-1 vaccine 
predominantly elicited FS-specific IgG1 and IgG3 antibody responses. However, unlike 
the IgG1 antibody responses, there were no significant differences in IgG3 antibody 
levels between the two groups (Fig. 2D). For the isotypes, S1-specific IgA1 and FS-specific 
IgM antibody titers were higher in the high-dose group than the low-dose group (Fig. 2E 
and F). Interestingly, except for IgG2 and IgA1, no significant differences were observed 
in antibody features targeting S1 and the RBD between the two dose groups on day 
28 post-vaccination. These data indicate that the high-dose group exhibited distinct 
antibody profiles compared with the low-dose group, particularly against the FS and S2 
antigens.

S2-specific FcR binding profiles differ significantly between the high- and 
low-dose groups

The interaction between antibodies and FcRs is crucial for inducing Fc-mediated effector 
functions. Therefore, we compared the FcR binding profiles between the two dose 
groups at 28 days post-vaccination against four prototype SARS-CoV-2 antigens (Fig. 
3). Similar to the antibody features, the high-dose group showed superiority over 
the low-dose group in terms of overall FS-specific antibody binding to all tested 
FcRs. Furthermore, it is noteworthy that the high-dose group exhibited higher levels 
of S2-specific antibodies binding to FcRs compared with the low-dose group, with 
significant increases observed in S2-specific FcγR2A and FcγR3B binding (Fig. 3A and 
D). In contrast, the binding of both S1- and RBD-specific antibodies to FcRs was similar 

FIG 2 Differences in antibody architecture between the two groups on day 28 post-vaccination. Violin plots illustrating univariate comparisons of antibody 

profiling specific to prototype SARS-CoV-2 FS, S1, S2, and RBD between the low- and high-dose groups on day 28. Data are presented as geometric mean 

fluorescence intensity (GMFI). The analyzed antibody isotypes and subclasses are (A) IgG, (B) IgG1, (C) IgG2, (D) IgG3, (E) IgA1, and (F) IgM, which are specific to 

four different antigens. The two groups were compared using the Mann–Whitney U test. The P values are shown in the figure. *P < 0.05, **P < 0.01, and ***P < 

0.001.
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between the two dose groups. No significant differences were observed between the 
two groups in the binding of antibodies to FcRn and FcγR3A, irrespective of the antigens 
(Fig. 3C and E). These results suggest that distinct FcR binding profiles may be induced 
depending on the dosage of the adenovirus vector-based SARS-CoV-2 vaccine.

ADNP response against the S2 domain differs significantly between the high- 
and low-dose groups

We compared various effector functions activated by the interaction between antibod
ies and FcRs across each dose group 28 days post-vaccination to investigate whether 
distinct antibody features influenced functional outcomes against the prototype 
SARS-CoV-2 (Fig. 4). When evaluating the four functional assays for the FS antigen, no 
significant differences were observed between the two dose groups (Fig. 4A), although 
the ADNP response was higher in the high-dose group compared with the low-dose 
group. Given the observed high levels of S2-specific antibodies and their binding to 
FcγR2A and FcγR3B (Fig. 2 and 3), which are FcRs highly expressed on neutrophils, we 
investigated whether these antibody features contributed to an increase in the ADNP 
response. To this end, an ADNP assay was conducted using the S1 and S2 antigens 
(Fig. 4B). No significant differences in ADNP responses against the S1 domain were 
detected between the two groups. However, a significantly higher phagoscore for the S2 
domain was observed in the high-dose group compared with the low-dose group. Taken 
together, these results suggest that S2-specific antibodies induced by an adenovirus 
vector-based SARS-CoV-2 vaccine play an important role in activating Fc-mediated 
antibody effector functions.

FIG 3 Differences in FcR architecture between the two dose groups on day 28 post-vaccination. Violin plots showing univariate comparisons of FcR profiling 

specific to prototype SARS-CoV-2 FS, S1, S2, and RBD between the low- and high-dose groups on day 28. FcR binding for (A) FcγR2A, (B) FcγR2B, (C) FcγR3A, 

(D) FcγR3B, and (E) FcRn is expressed as GMFI. The two groups were compared using the Mann–Whitney U test. The P values are shown in the figure. *P < 0.05 

and **P < 0.01.
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Low- and high-dose groups show distinct antibody features targeting FS and 
S2 antigens

To identify the specific antibody features closely associated with each dose group and 
analyze how effectively these features differentiated the two groups, sparse partial least 
squares discriminant analysis (sPLS-DA) was conducted based on data from day 28 
(Fig. 5A, B and C). Although some subjects from each dose group overlapped in the 
sample plot, there was a notable difference between the two groups (Fig. 5A). The 
receiver-operating characteristic (ROC) curve and the area under the curve (AUC) value 
were used to evaluate the discriminative performance of the sPLS-DA model (Fig. 5B). In 
the comparison between the two dose groups, the AUC value was approximately 0.89. 
Within the loading plot based on component 1, two selected variables, FcγR2A for FS and 
IgG for S2, were associated with the high-dose group, while only IgG4 for S2 was selected 
for the low-dose group (Fig. 5C). These trends in the multivariate analysis were consistent 
with previous univariate results, showing that the levels of FcγR2A for FS (Fig. 3A) and IgG 
for S2 (Fig. 2A) were higher in the high-dose group than in the low-dose group. Although 
S2-specific IgG4 was selected for the low-dose group, the differences in antibody titers 
before and after vaccination against all four antigens were not significant in either group 
(Fig. S3E).

Finally, we conducted a correlation network analysis using the three key features 
selected from the sPLS-DA to identify additional characteristics that differentiated the 
low- and high-dose groups (Fig. 5D). The two features associated with the high-dose 
group were highly correlated with multiple variables for FS and S2 antigens. IgG1, 
FcγR2A, and FcγR3B specific to the S2 antigen correlated with the two key features of 
the high-dose group. These newly derived features specific to the S2 antigen have also 
been verified in previous results, which showed higher values in the high-dose group 
than in the low-dose group (Fig. 2B and 3C D, ). Furthermore, FcγR2A specific to the 
FS antigen was highly correlated with ADNP for FS. This result may explain the higher 
phagoscore values observed in the high-dose group compared with the low-dose group 
against the FS antigen in the ADNP assay, although the difference was not significant 
(Fig. 4A). Overall, the results of the computational analysis suggest that the antibody 
features specific to the FS and S2 antigens vary between the low- and high-dose groups. 
Moreover, the enhanced ADNP response to FS and S2 antigens in the high-dose group 
may have been driven by these specific antibody characteristics.

FIG 4 Fc-mediated effector functions of the two dose groups on day 28 post-vaccination. (A) Violin plots showing univariate comparisons of four Fc-mediated 

effector functions specific to prototype SARS-CoV-2 FS between the low-dose and high-dose groups on day 28. Measurements are presented as GMFI for C3 

deposition, indicating ADCD; as phagocytosis scores for ADCP and ADNP; and as the percentage of CD107a-positive cells, representing ADNKA. (B) The ADNP 

results for the low- and high-dose groups on day 28 with S1 and S2 antigens are shown as violin plots. The two groups were compared using the Mann–Whitney 

U test. The P values are shown in the figure. *P < 0.05.
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AdCLD-CoV19-1 elicits distinct S2-specific antibody features against Omicron 
BA.2 variant in the high-dose group

To build on the previously observed superiority of the high-dose group in S2-specific 
antibody features against the prototype SARS-CoV-2, we extended our analysis to 
variants of concern by conducting systems serology analyses using the Omicron BA.2 
variant (Fig. 6; Fig. S5). Specifically, we tested profiling assays for IgG (Fig. 6A; Fig. S5A), 

FIG 5 Multivariate analysis of the two dose groups post-vaccination. A sPLS-DA was performed using antibody feature data from the two dose groups on 

day 28. (A) Sample plot with 0.95 ellipse confidence level illustrating the separation of antibody features between individuals in low- and high-dose groups. 

Colors indicate the dose groups: blue indicates the high-dose group and orange indicates the low-dose group. (B) ROC curve and AUC for the model containing 

components 1 and 2. The AUC value, calculated to compare the two dose groups, was 0.8974. (C) The antibody features that significantly contributed to the 

differentiation between the high-dose group (blue, pointing left) and the low-dose group (orange, pointing right) are shown and ranked by the loading score 

for component 1. (D) A co-correlation network was constructed based on three selected features from the loading plot for X-variate 1 using Spearman’s rank 

correlation. Only correlations with |r| > 0.7 to at least one of the highlighted features in gray are displayed.
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FcγR2A (Fig. 6B; Fig. S5B), and FcγR3B (Fig. 6C; Fig. S5C) and ADNP (Fig. 6D; Fig. S5D) 
against three Omicron BA.2 antigens (FS, S1, and S2), as these features are strongly 
associated with neutrophil activity and were significantly higher in the high-dose group 
than in the low-dose group for the prototype SARS-CoV-2 S2 antigen. Similar to the 
results observed in Fig. 1C, both the low- and high-dose groups exhibited significant 
increases in all assays for all tested antigens post-vaccination (Fig. S5).

When evaluating the differences between the two dose groups post-vaccination, no 
significant differences were found between the groups against the S1 antigen (Fig. 6). 
However, significant differences were observed in antibody features against the FS and 
S2 antigens. For the FS antigen, FcγR2A levels were significantly higher in the high-dose 
group compared with the low-dose group (Fig. 6B), while IgG and FcγR3B levels against 
the S2 antigen were significantly higher in the high-dose group than in the low-dose 
group (Fig. 6A and C).

Last, we demonstrated that these distinct antibody features in the high-dose 
group did indeed influence  functional outcomes by showing significantly  higher 
phagoscore for the S2 domain in the high-dose group compared with the low-dose 
group (Fig. 6D). In conclusion, through these experiments, we demonstrated that 
the distinct S2-specific  antibody features observed in the high-dose group were not 
limited to the prototype SARS-CoV-2 but were also applicable to variants of concern 
such as BA.2.

DISCUSSION

In this study, using a systems serology approach, we demonstrated that vaccination with 
different doses of the AdCLD-CoV19-1 vaccine, a chimeric adenovirus-based wild-type 
SARS-CoV-2 vaccine, induced distinct antibody features and Fc-mediated effector 
functions. Both the low- and high-doses of AdCLD-CoV19-1 elicited robust humoral 

FIG 6 Profiling assays and ADNP of the two dose groups on day 28 post-vaccination against the Omicron BA.2 variant. Violin plots showing univariate 

comparisons of profiling assays and ADNP specific to Omicron BA.2 FS, S1, and S2 between the low- and high-dose groups on day 28. Antibody features of 

(A) IgG, (B) FcγR2A, and (C) FcγR3B are expressed as GMFI. (D) The ADNP results are presented as phagocytosis scores. The two groups were compared using the 

Mann–Whitney U test. The P values are shown in the figure. *P < 0.05.
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immune responses following vaccination, while no significant difference was observed 
between the two dose groups, as determined by ELISA and FRNT assays. However, using 
systems serology, we found significantly higher levels of particular antibody features 
(IgG, IgG1, FcγR2A, and FcγR2B) specific to the FS antigen in the high-dose group 
compared with the low-dose group on day 28. These findings are consistent with 
those reported for the Ad26.COV2.S vaccine from Janssen (28). Importantly, while no 
significant difference was observed between the two groups in inducing most S1- and 
RBD-specific antibody features, the high-dose group exhibited higher levels of distinct 
antibody features (IgG, IgG1, FcγR2A, and FcγR3B) specific to the S2 antigen compared 
with the low-dose group, which is in line with the previous evidence showing that 
both S2- and FS-specific FcR binding features were predominantly enhanced features in 
non-human primates that received the highest dose of the Ad26.CoV2.S vaccine (29). 
Given that the S2 domain is the most conserved region across CoV strains (30), this 
finding is supported by the observation that SARS-CoV-2 S2-specific IgG features are 
associated with cross-reactivity induced by prior exposure to human CoV antigens (31). 
In addition, antibodies targeting the S2 domain have been shown to be elicited more 
rapidly following exposure to SARS-CoV-2 than those targeting other domains (32).

Both FcγR2A and FcγR3B are abundantly expressed on the surface of neutrophils (33, 
34). FcγR2A on neutrophils has a high affinity for IgG, particularly IgG1, and regulates 
phagocytosis (35). FcγR3B, the most abundant protein on the surface of neutrophils, 
binds to multimeric IgG1 and IgG3 but has little to no binding affinity for IgG2 and 
IgG4 (33). Through these binding interactions, individuals vaccinated with ChAdOx1 
nCoV-19 experienced a reduced rate of breakthrough infections for COVID-19 (36). 
Moreover, S2-specific FcR binding antibodies induced by COVID-19 mRNA vaccination 
were most actively increased to induce phagocytosis in monocytes and neutrophils 
during breakthrough infections with variants of concern such as Delta and Omicron 
(37). In line with this, we found that a single dose of the AdCLD-CoV19-1 vaccine 
predominantly elicited antigen-specific IgG1 and IgG3 antibody responses. Furthermore, 
sPLS-DA analysis revealed that both FcγR2A for FS and IgG for S2 were closely associated 
with the high-dose group. This association was further confirmed by correlation network 
analysis, which showed a strong correlation between two key features related to multiple 
variables for FS and S2 antigens, including ADNP for FS.

Notably, in an ADNP analysis involving the S1 and S2 antigens, we found a signif
icantly higher phagoscore for the S2 domain in the high-dose group than in the 
low-dose group. Furthermore, we extended our analysis to examine the antibody 
responses against the Omicron BA.2 variant. Similar to the results observed with the 
prototype SARS-CoV-2 strain, the high-dose group exhibited significantly higher levels 
of S2-specific antibody features against BA.2, including IgG and FcγR3B levels, compared 
with the low-dose group. This was associated with enhanced functional activity, with 
the high-dose group demonstrating a significantly higher phagoscore for the BA.2 S2 
domain in the ADNP assay. Recent studies also have shown that ADNP activity strongly 
correlates with protection against severe COVID-19 and serves as a key predictor of 
disease outcomes. For instance, ADNP was a critical functional response associated with 
survival from SARS-CoV-2, as it was more robust in individuals recovering from the 
virus and aided in clearing the infection (10). Moreover, after receiving the CoronaVac, a 
whole inactivated virus COVID-19 vaccine, ADNP responses demonstrated cross-reactiv
ity against both the wild-type and Omicron variants (38). In non-human primate studies, 
ADNP was linked to viral control in the upper respiratory tract against the Omicron BA.4 
and BA.5 variants (39).

One limitation of our study is that our results were based on serum samples collected 
at only two time points: pre- and post-vaccination. Therefore, additional studies are 
required to assess long-term follow-up serum samples, extending beyond 4 weeks 
post-vaccination, to evaluate changes in antibody features and immunity when receiving 
a different vaccine as a booster shot. Nonetheless, the effectiveness of the single-dose 
AdCLD-CoV19-1 vaccine has been confirmed in various preclinical studies (24–26) and 
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is further substantiated by the identification of heightened immunological responses 
following the administration of the single-dose vaccine in this clinical study.

Approved adenovirus-vectored COVID-19 vaccines include ChAdOx1 nCoV-19 
(AZD1222) from AstraZeneca and Ad26.COV2.S from Janssen. ChAdOx1 nCoV-19 and 
Ad26.COV2.S utilize viral vectors derived from the chimpanzee Y25 adenovirus and 
human adenovirus type 26, respectively (40, 41). Several studies have been conducted 
on the systems serology analysis of these two vaccines (28, 29, 36, 42–44). For instance, 
humoral immune responses were investigated in humans and non-human primates 
by varying the dose of the Ad26.CoV2.S vaccine (28, 29, 42). However, these studies 
predominantly examined the changes in antibody features against the SARS-CoV-2 FS 
protein and RBD.

In this study, we explored the humoral immune profiles against various SARS-CoV-2 
S domains, including FS, S1, S2, and RBD. To the best of our knowledge, this study is the 
first systems serology investigation to report the differences in antibody characteristics, 
particularly focusing on the S2 domain, across the vaccinees who received a single 
dose of AdCLD-CoV19-1. We also demonstrated that high-dose AdCLD-CoV19-1 was 
superior to low dose in terms of the levels of various immunoglobulins and FcR binding. 
Moreover, we found that these variables influenced Fc-dependent antibody effector 
functions, with the high-dose group demonstrating a superior ADNP phagoscore for 
the S2 domain compared with the low-dose group, not only against the prototype 
SARS-CoV-2 but also the Omicron BA.2 variant. These findings highlight the importance 
of considering not only neutralizing antibody levels but also various changes in humoral 
immune responses from the vaccine dose testing stage onwards, offering insights for 
optimizing the efficacy of adenovirus vector-based SARS-CoV-2 vaccines.

MATERIALS AND METHODS

Study population

Serum samples from the Phase I clinical trial (NCT05047692), which was non-randomized 
and conducted across multiple centers, were used to thoroughly analyze the serological 
responses triggered by different dosages of the AdCLD-CoV19-1 vaccine developed 
against the prototype strain of SARS-CoV-2 (27). Samples were collected between 
September 9, 2021, and November 5, 2021, from healthy Korean adult males and females 
aged 19–63 years who had not been previously infected with COVID-19 or vaccinated 
against SARS-CoV, MERS-CoV, or SARS-CoV-2. All participants provided written informed 
consent. The study consisted of two experimental groups, both of which received 
vaccinations on day 0. Group 1 received a lower dose of AdCLD-CoV19-1 (5.0 × 1010 

viral particles) via a single intramuscular injection (n = 20), while Group 2 received a 
higher dose (1.0 × 1011 viral particles) using the same method (n = 20). Serum samples 
were collected on day 0 before vaccination and day 28, 4 weeks post-vaccination. Table 
1 summarizes the demographic characteristics of the study participants. These samples 
were then used to evaluate the antibody responses, neutralization titers, and immune 
cell reactions induced by the vaccine formulations in the participants of the study.

Antigen coupling with beads

All antigens used for the analyses were biotinylated (#A39257, Thermo Scientific), 
desalted with Zeba Columns (#89889, Thermo Scientific), and coupled to the designated 
beads for each assay. Luminex assays were conducted using four prototype SARS-CoV-2 
antigens, including FS protein (#40589-V08H4, Sino Biological), S1 (#40591-V08H, Sino 
Biological), S2 (#40590-V08H1, Sino Biological), and RBD (#40592-V08H, Sino Biological), 
as well as three Omicron BA.2 variant antigens, which included FS protein (#SPN-C522b, 
ACROBiosystems), S1 (#S1N-C52Hv, ACROBiosystems), and S2 (#S2N-C52Hh, ACROBio
systems). These antigens were attached to Luminex Magplex-Avidin microspheres # 
MA-A012-01, # MA-A013-01, # MA-A014-01, and # MA-A015-01. The complexes were 
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then incubated with blocking buffer (5% BSA in PBS) to be later washed and pooled in 
assay buffer (1× PBS + 0.1% BSA + 0.05% Tween-20).

Functional assays utilized SARS-CoV-2 antigen-coupled yellow-green fluorescent 
neutravidin-labeled microspheres (#F8776, Invitrogen) for phagocytosis and red 
fluorescent neutravidin-labeled microspheres (#F8775, Invitrogen) for complement 
deposition. The antigen-microsphere complexes were treated with blocking buffer and 
washed twice with 0.1% BSA (#A3803-100G, Sigma-Aldrich) in PBS (#10010023, Gibco).

Serum sample preparation

All frozen serum samples were thawed at room temperature, followed by heat inactiva
tion by placing them in heat blocks set to 56°C for 30 minutes. Samples were diluted with 
PBS and later stored in a freezer at −80°C.

Enzyme-linked immunosorbent assay

ELISA was performed as previously described (45). Ninety-six-well plates (#3590, 
Corning/Costar) were coated with the stable trimer form of SARS-CoV-2 S protein 
(#SPN-C52H9, Acro Biosystems) at a concentration of 2.0 µg/mL in Dulbecco’s phosphate 
buffer saline (#SH30028.03, HyClone) and incubated overnight at 4°C. The plates were 
washed four times with 1× wash buffer (PBS + 0.05% Tween 20 (#P1379, Sigma-Aldrich)) 
per well and then blocked with blocking buffer (#37538, Thermo Scientific) for 2 hours 
at room temperature. Serum samples were initially diluted 1:20, followed by a threefold 
serial dilution. After blocking, the plates were washed once, and the diluted samples 
were added. All plates were incubated for 1 hour at room temperature with shaking. 
Following the wash step, the plates were incubated with an HRP-conjugate detection 
antibody solution (#555788, BD Pharmingen) diluted at 1:1,000 in the blocking buffer for 
1 hour at room temperature with shaking. After the final wash, 3,3',5,5'-tetramethylbenzi
dine (TMB) substrate (#5120-0077, KPL) was added to the plates and the reaction was 
stopped with TMB stop solution (#5150-0021, KPL). The optical density was measured 
at wavelengths of 450 nm and 650 nm using a microplate reader (Spectramax, Molec
ular Device). The IgG titer was presented as binding antibody unit per mL (BAU/mL) 

TABLE 1 Demographic characteristics of study participants in the AdCLD-CoV19-1 Phase I clinical trial

Low-dose group High-dose group
(5.0 × 1010 VP/dose) (1.0 × 1011 VP/dose)
n = 20 n = 20

Gender
  Male, n (%) 11 (55.00) 14 (70.00)
  Female, n (%) 9 (45.00) 6 (30.00)
Age (years)
  Mean ± SD 37.90 ± 12.29 40.75 ± 9.71
  Median 36 42.5
  Min, max 19.00, 57.00 24.00, 63.00
Height (cm)
  Mean ± SD 169.55 ± 9.42 172.39 ± 7.49
  Median 169.35 173.25
  Min, max 154.00, 183.90 155.70, 186.50
Weight (kg)
  Mean ± SD 70.75 ± 10.04 70.94 ± 12.89
  Median 71.5 69.4
  Min, max 56.00, 86.20 51.60, 101.00
BMI (kg/㎡)
  Mean ± SD 24.60 ± 2.81 23.73 ± 3.10
  Median 25.1 23.25
  Min, max 19.20, 29.70 18.90, 29.90
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according to the WHO international standard (NIBSC code 20/136), using Softmax Pro 
software (Version 5.4.1).

Focus reduction neutralization test

Vero cells (#CCL-81, ATCC) were prepared in Dulbecco’s modified Eagle medium (DMEM; 
#11995065, Invitrogen) supplemented with 10% FBS and 1% Antibiotic-Antimycotic 
(#15240062, Gibco) and seeded at a density of 2.0 × 104 cells/well in 96-well flat bottom 
plates (#167008, Thermo Scientific) and incubated overnight at 37°C with 5% CO2. Using 
DMEM containing 2% FBS, samples were serially diluted threefold, and SARS-CoV-2 
stocks were diluted to 1.8 × 104 PFU/mL. Serum was mixed with viruses (540 PFU/well) 
in U-bottom 96-well plates (#34196, SPL) and incubated at 37°C with 5% CO2 for 30 
minutes. Vero cell plates prepared the day before were washed with serum-free DMEM, 
exposed to the virus-serum mixture (450 PFU/well), and incubated at 37°C with 5% CO2 
for 5 hours. The cells were rinsed with PBS, fixed with 10% formalin (#HT501128-4L, 
Sigma-Aldrich), and permeabilized with ice-cold 100% methanol (#32213–1L, Sigma-
Aldrich). The plates were washed with PBS and treated with a blocking buffer (PBS + 
1% BSA (#A3803-100G, Sigma-Aldrich) + 0.5% goat serum (#Ab7481, Abcam) + 0.5% 
Tween-20 (#T9100-100, GenDEPOT)) for 30 minutes. Anti-SARS-CoV-2 nucleoprotein 
rabbit mAb (#40143-R001, Sino Biological) was diluted 3,000-fold in blocking buffer 
and added to the plates, followed by incubation for 1 hour at 37°C. The plates were 
washed with washing buffer (PBS + 0.5% Tween-20), and goat anti-rabbit IgG-HRP 
diluted 2000-fold in blocking buffer was added and incubated for another hour at 37°C. 
After rinsing the plates thoroughly, True Blue solution (#5510-0030, SeraCare) was added 
for staining. The plates were then washed with tap water before counting the foci using 
a cell imaging reader (Cytation 7, BioTek). Neutralizing antibody titers were determined 
using SoftMax Pro GxP software (Version 7.1.2).

Antibody-dependent complement deposition

ADCD was performed as previously described (46). Red fluorescent NeutraAvidin-coated 
beads were coupled with biotinylated SARS-CoV-2 FS antigens. The antigen-coupled 
beads were incubated with diluted plasma samples (diluted 1:10 in PBS) at 37°C for 
2 hours to form immune complexes and subsequently washed. RPMI 1640 medium 
(#11875119, Gibco) with 10% FBS (#16000044, Gibco) was used to reconstitute lyophi
lized guinea pig complement (#CL4051, Cedarlane). The reconstituted guinea pig 
complement (#CL4051, Cedarlane) was added to the washed immune complexes and 
incubated at 37°C for 50 minutes. Deposited C3 was detected using an anti-C3 FITC-
conjugated goat IgG (#0855385, MP Biomedicals). After a 15-minute incubation for C3 
immunostaining, the samples were fixed with 0.5% paraformaldehyde (#554655, BD) in 
PBS and measured to determine the GMFI of FITC C3 deposition via flow cytometry using 
iQue3 (Sartorius).

Antibody-dependent cellular phagocytosis

ADCP was performed as previously described (47). Yellow-green fluorescent NeutraAvi
din-coated beads were linked to biotinylated SARS-CoV-2 FS antigens. These antigen-
bead combinations were exposed to serum diluted 1:200 in PBS at 37°C for 2 hours and 
then washed with PBS. Subsequently, the resulting immune complexes were mixed with 
2.5 × 104 THP-1 cells (#TIB-202, ATCC) per well in THP-1 medium (RPMI 1640 + 10% FBS + 
1.14% Antibiotic-Antimycotic) and incubated overnight in a 37°C and 5% CO2 environ
ment. The samples were fixed with 0.5% paraformaldehyde in PBS the following day 
and analyzed with iQue3. Phagocytic scores were calculated based on the percentage of 
THP-1 cells containing fluorescent beads multiplied by the number of beads phagocy
tosed by each cell (percentage of bead-containing cells × MFI bead-positive/1,000,000).
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Antibody-dependent neutrophil phagocytosis

ADNP was tested as described previously (48). Yellow-green fluorescent NeutraAvidin-
coated beads were conjugated with biotinylated SARS-CoV-2 antigens. These antigen-
bead complexes were then incubated with serum diluted 1:80 (or 1:40 for the Omicron 
BA.2 FS antigen) in PBS at 37°C for 2 hours, followed by washing with PBS. Subsequently, 
the immune complexes were combined with 5.0 ×104 HL-60 cells (#CCL-240, ATCC) 
per well in HL-60 medium (RPMI 1640 + 11.4% FBS + 1.14% GlutaMax I (#35050–061, 
Gibco) + 1.14% Antibiotic-Antimycotic) and incubated for 1 hour in a 37°C and 5% CO2 
incubator. HL-60 cells were previously differentiated in HL60 differentiating medium 
consisting of 0.91% DMSO (#D2650, Sigma-Aldrich) supplemented with 11.4% FBS and 
1.14% GlutaMax I in RPMI 1640 6 days before sample analysis. After incubation, the 
neutrophils were stained with the CD11b antibody (#555388, BD BioSciences) diluted 
1:1 in PBS. Following a 15-minute incubation, the cells were washed with PBS and 
fixed with 0.5% paraformaldehyde diluted in PBS. The percentage of antibody-mediated 
phagocytic activity was quantified using iQue3. Phagocytic scores were calculated as 
the percentage of neutrophils containing fluorescent beads multiplied by the number 
of beads phagocytosed by each neutrophil (percentage of bead-containing cells × MFI 
bead positive/1,000,000).

Antibody-dependent natural killer cell activation

CD107a expression in NK-92 cells was measured as described previously (43, 49). Briefly, 
a 96-well ELISA plate (#439454, Thermo Scientific) was coated with 30 µg of SARS-CoV-2 
FS antigens and incubated at 37°C for 2 hours. The coated antigens were blocked 
with 5% BSA in PBS and incubated overnight at 4°C. Serum samples, diluted 1:60 in 
PBS, were added to the wells and incubated for 2 hours at 37°C. The plates were 
then washed thoroughly with PBS. NK-92 cells (#PTA-8836, ATCC) were prepared by 
resuspending them in NK cell culturing media (#5150, StemCell) supplemented with 
10% horse serum (#16050-122, StemCell), 0.02 µg/mL IL-2 IS (#130-097-744, Miltenyi 
Biotec), and 1% penicillin-streptomycin (#15140122, Invitrogen). For NK cell detection, 
anti-CD107a-PE-Cy5 antibody (#555802, BD BioSciences), brefeldin A (diluted to 5 mg/mL 
in DMSO, #B6542, Sigma), and GolgiStop (#554724, BD BioSciences) were added to the 
medium. NK-92 cells were seeded at a density of 5 × 104 cells per well and incubated 
for 5 hours in a 37°C and 5% CO2 incubator. The cells were then transferred to a 96-well 
V-bottom plate, fixed, and permeabilized using a fixation/permeabilization kit (#554714, 
BD Biosciences). The fixed cells were analyzed using iQue3, with gates set on singlet and 
CD107a+ cells.

Antibody and FcR profiling

Antigen-specific antibodies and FcR profiling were performed as previously described 
(48). Antibodies and FcRs specific to the four biotinylated SARS-CoV-2 antigens (FS, S1, 
S2, and RBD) were measured by attaching them to Luminex Magplex-Avidin micro
spheres. The microspheres were blocked and combined in assay buffer before seed
ing into 96-well U-bottom plates (#34196, SPL) at a density of 4,000 antigen-coupled 
Magplex microspheres per well. The serum dilution factors varied for each antibody 
isotype and FcR assay for optimization. Serum concentrations for each type were 
prepared in PBS as follows: for prototype SARS-CoV-2 antigens, IgG (1:640), IgG1 (1:320), 
IgG2 (1:160), IgG3 (1:320), IgG4 (1:320), IgM (1:80), IgA1 (1:160), FcγR2A (1:80), FcγR2B 
(1:80), FcγR3A (1:80), FcγR3B (1:160), and FcRn (1:80), and for Omicron BA.2 antigens, 
IgG (1:320), FcγR2A (1:80), and FcγR3B (1:80). The diluted serum was co-incubated 
with the beads for 2 hours on a plate shaker at 650 rpm. Thereafter, the plates were 
washed with 0.05% Tween in PBS. Isotype stains (Southern Biotech) were diluted in assay 
buffer at specific concentrations (IgG (#9040-09) = 1:200, IgG1 (#9054-09) = 1:1,000, IgG2 
(#9070-09)  = 1:200, IgG3 (#9210-09) = 1:200, IgG4 (#9200-09) = 1:200, IgM (#9020-09) = 
1:200, and IgA1 (#9130-09) = 1:200). FcR stains were prepared by tagging Streptavidin-PE 
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(#PJ315S-1, Agilent) to FcRs obtained from Sino Biological (FcγR2A (#10374-H27H1-B), 
FcγR2B (#10259-H27H-B), FcγR3A (#10389-H27H1-B), FcγR3B (#11046-H27H-B), and FcRn 
(#CT071-H27H-B)) in assay buffer. The plates were then incubated at room temperature 
on a plate shaker at 650 rpm for an hour, washed with 0.05% Tween in PBS, and then read 
using iQue3. The results are presented as GMFI of phycoerythrin for each sample.

Statistical analyses

All calculations and visualization were performed with SAS version 9.4, R version 4.3.3, 
and GraphPad Prism version 8.3.0. For statistical analyses, all values were log-transformed 
(log10) except for ADCP, ADNP and ADNKA. Statistical differences between the two 
groups in violin plots were calculated using a two-sided Mann–Whitney U test (signifi-
cance levels: *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001). The solid lines in the 
violin plot indicate the 25th and 75th quartiles, and the dashed line indicates the median 
value.

To assess and compare the induced immune response across various dose groups 
and over different time points, a circular plot was constructed. Each value was nor
malized by subtracting the minimum value and then dividing them by the range, 
defined as the difference between the maximum and minimum values across all time 

points; 
Valuefeature −Min  All valuesfeature

Max  All valuesfeature  −Min  All valuesfeature . sPLS-DA was conducted using 

the function “splsda” of R package “mixOmics” to select the features which are important 
to discriminate the group (50). We employed 10-fold cross-validation, and the proce
dure was repeated 10 times to ensure selecting the most effective combination of the 
components.
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