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1. The deoxyfluoro-D-glucopyranose 6-phosphates are substrates for both yeast and rat
liver glucose 6-phosphate dehydrogenase. 2. The Vmaz. values (relative to D-glucose 6-
phosphate) were determined for a series of D-glucose 6-phosphate derivatives substituted
at C-2. The Vmax. values decreased with increasing electronegativity of the C-2 substituent.
This is consistent with a mechanism involving hydride-ion transfer. 3. 2-Deoxy-D-arabino-
hexose 6-phosphate (2-deoxy-D-glucose 6-phosphate) showed substrate inhibition with
the yeast enzyme but not with the rat liver enzyme. 4. 2-Amino-2-deoxy-D-glucose 6-phos-
phate (D-glucosamine 6-phosphate) was a substrate for the yeast enzyme but a competitive
inhibitor for the rat liver enzyme. 5. Lineweaver-Burk plots for the D-glucose 6-phosphate
derivatives with yeast glucose 6-phosphate dehydrogenase were biphasic.

Although the inductive effect of substituents on the
rate of dehydrogenation by horse liver alcohol de-
hydrogenase has been studied (Blomquist, 1966;
Tsai, 1968), the effect on the rate of dehydrogenation
by glucose 6-phosphate dehydrogenase (D-glucose
6-phosphate-NADP+ oxidoreductase, EC 1.1.1.49)
has not been examined, because suitable derivatives
have not previously been available. The enzymic
synthesis of the deoxyfluoro-D-glucopyranose 6-
phosphates and 2-chloro-2-deoxy-D-glucose 6-phos-
phate (Bessell & Thomas, 1973) has now provided
suitable derivatives. The dehydrogenation occurs at
the anomeric carbon atom (C-1) of glucose 6-phos-
phate, and hence the inductive effect on the dehydro-
genation reaction of a substituent on the vicinal
carbon atom can be studied by using C-2-substituted
D-glucose 6-phosphates. The series of compounds
D-glucose 6-phosphate, D-glucosamine 6-phosphate,
2-deoxy-D-arabino-hexose 6-phosphate, 2-chloro-2-
deoxy-D-glucose 6-phosphate and 2-deoxy-2-fluoro-
D-glucose 6-phosphate have been studied as substrates
for both yeast and rat liver glucose 6-phosphate
dehydrogenase.

Experimental

Glucose 6-phosphate dehydrogenase (EC 1.1.1.49;
type I purity from yeast; 350 units/mg), ATP and
NADP+ were purchased from Boehringer Corp.
(London) Ltd., London W.5, U.K. Hexokinase
(EC 2.7.1.1; C-301 from yeast; 200-300 units/mg),
D-glucosamine 6-phosphate and 2-deoxy-D-arabino-
hexose 6-phosphate were obtained from Sigma (Lon-
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don) Chemical Co., London S.W.6, U.K. Deoxy-
halogeno-D-glucose 6-phosphates were prepared
from the corresponding deoxyhalogeno-D-glucose
and ATP by using yeast hexokinase (Bessell &
Thomas, 1973).

Preparation of glucose 6-phosphate dehydrogenase
from rat liver

Rat liver glucose 6-phosphate dehydrogenase was
purified by an extension of the method of Dickens &
Glock (1951). Male Wistar rats (approx. 200g) were
starved for 24h and fed on a synthetic fat-free diet for
3 days. The rats were then killed by neck dislocation
and their livers removed and cooled in ice. Stage 1.
The livers (30g) were homogenized with sufficient cold
KC (1.2 %, w/v) to give a 20% (w/v) suspension. The
resulting suspension was centrifuged at 100000g for
60min and the supernatant retained. Stage 2. The
supernatant from Stage 1 was adjusted to pH4.5 by
the slow addition of 0.5M-acetic acid. The precipitate
which formed was removed by centrifuging at 3000g
for 30min. The resulting supernatant was immedi-
ately adjusted to pH 7.5 by the addition of 0.1 M-
NaOH. The precipitate which formed was again re-
moved by centrifugation. Stage 3. (NH4)2SO4 was
added with mechanical stirring to the Stage 2 super-
natant to give a 40 %-saturated solution. After stand-
ing for 1 h the precipitate was removed by centrifuging
at 3000g for 30min. Additional (NH4)2SO4 was added
to the supematant as before to give a 60 %-saturated
solution. The solution was left for 2h and the pre-
cipitate was then separated by centrifugation as
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described above. Stage 4. The fraction precipitating
between 40 and 60% saturation from Stage 3 was
dissolved in 0.01 M-Tris-HCG buffer, pH7.5 (approx.
1 5ml), and dialysed twice for 24h with the same buffer
(total volume 5 litres). The dialysis residue (approx.
20ml) was applied to a column (20cmx2cm) of
DEAE-cellulose (Whatman DE-52) previously equi-
librated with the same buffer and containing 0.1 mm-
NADP+. Elution with a linear gradient (0.01 M-tris-
HCG buffer, containing 0.1 mM-NADP+, pH7.5,
200ml; 0.01 M-Tris-HCl buffer containing 0.5M-KCl
and 0.1 mM-NADP+, pH7.5, 200ml) at a flow rate
of 20ml/h gave a purified preparation of glucose
6-phosphate dehydrogenase.
The enzyme solution was concentrated by vacuum

dialysis by using a Sartorius membrane (Sartorius-
membranfilter G.m.b.H., Gottingen, Germany).

This preparation was used in all subsequent experi-
ments with the rat liver enzyme. Although not of a
high specific activity (0.5 unit/mg) the preparation
was free of glucose phosphate isomerase (EC 5.3.1.9)
and phosphogluconate dehydrogenase (decarboxyl-
ating) (EC 1.1.1.44) activities. Crystalline glucose
6-phosphate dehydrogenase has been prepared from
rat liver with a specific activity of 128 units/mg
(Matsuda & Yugari, 1967).

Initial-rate measurements
Glucose 6-phosphate dehydrogenase activity was

assayed in 0.1 M-Tris-HCl buffer, pH7.5, in the ab-
sence of Mg2+ by using the standard procedure of
observing the rate of increase of E340. For the deter-
mination of the kinetic constants, given in Tables I
and 2, the concentrations of the glucose 6-phosphate
derivatives used were in the range from one-tenth to
twice the Km value. Higher concentrations could not
be used because sufficient material was not available.
The concentrations ofNADP+ used were in the range
from one to ten times the Km value.

Rates for yeast glucose 6-phosphate dehydrogenase
were measured by using a Pye Unicam SP.500 mono-
chromator with a Gilford model 220 absorbance
indicator, the output of which was connected to a
Honeywell strip-chart recorder. The full-scale de-
flexion of the recorder was set to correspond to a
AE340 of 0.1. Rates for rat liver glucose 6-phosphate
dehydrogenase were measured by using a Cary model
16KC kinetic spectrophotometer, the output ofwhich
was connected to a Varian strip-chart recorder model
G-2510. The full-scale deflexion of the recorder was
set to correspond to a AE340 of 0.01 or 0.02. The cell
compartment was thermostatically maintained at
30°C in both cases. Silica cells (1 cm light-path)
were filled with all components ofthe reaction mixture
except the enzyme, in a total volume of 2.9ml. The
reaction was initiated with enzyme (0.1 ml) suitably
diluted with 0.1 M-Tris-HCl buffer, pH 7.5.

Data processing

Values of Ka, Kb, K,a and V..,x. in eqn. (1) were
obtained by using a computer program written by
Cleland (1963). Ka, in this case, is the Michaelis con-
stant for the glucose 6-phosphate derivative, Kb, is the
Michaelis constant for NADP+ and Kia is the inhibi-
tion constant for the glucose 6-phosphate derivative.
The program was slightly modified by Dr. L. I. Hart
to run on theLondon UniversityCDC 6600 computer.

Vmax. A][B]
V=

Kia Kb + [A]Kb +[B]Ka +[A][B] (1)

Values of K,, Km and Vmax. in eqn. (2) for linear com-
petitive inhibition were obtained by using a com-
puter program written by Cleland (1963):

Vmax.[SI
V = Km(l + [I]/Kf) + [S] (2)

For substrate inhibition data were fitted to eqn. (3):

Vmax. [S]
V=

Kna + [S] + [S]2/Kf (3)

Values ofKi,m K, and Vmax. were obtained from eqn. (3)
by using a pH-function curve-fitting program written
by Cleland (Cleland, 1967, eqn. 25). This program
was modified by Dr. L. I. Hart to fit eqn. (3) by using
V4 weights, but being a non-iterative procedure the
best final values may not have been obtained.

Results

Most of the D-glucose 6-phosphate derivatives
used were substrates for yeast glucose 6-phosphate
dehydrogenase. The kinetic constants were obtained
by using eqn. (1) and are given in Table 1. A double-
reciprocal plot for 2-deoxy-2-fluoro-D-glucose 6-
phosphate is shown in Fig. 1. 2-Deoxy-2,2-difluoro-
D-arabino-hexose 6-phosphate and 2-deoxy-2-fluoro-
D-mannose 6-phosphate, prepared in situ from the
corresponding D-hexose and ATP by using yeast
hexokinase, were not substrates for yeast glucose
6-phosphate dehydrogenase. The kinetic constants
for the D-glucose 6-phosphate derivatives, when rat
liver glucose 6-phosphate dehydrogenase was used,
were also obtained by using eqn. (1) and are given in
Table 2. A double-reciprocal plot for 2-chloro-2-
deoxy-D-glucose 6-phosphate is shown in Fig. 2.
D-Glucosamine 6-phosphate was not a substrate but
was a competitive inhibitor, and the K, value, deter-
mined by using eqn. (2), is 0.75±0.05mM. The appa-
rent Km value for D-glucose 6-phosphate (NADP+
concentration 0.16mM) was obtained from the com-
petitive-inhibition results by using eqn. (2) and is
0.031+0.002mM. The competitive inhibition by D-
glucosamine 6-phosphate is shown by a double-
reciprocal plot in Fig. 3. Although inhibition at high
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Table 1. Kinetic constants for yeast glucose 6-phosphate dehydrogenase
For experimental details see the text. The values are means+ S.E.M.

Compound
D-Glucose 6-phosphate
2-Deoxy-2-fluoro-D-glucose 6-phosphate
2-Chloro-2-deoxy-D-glucose 6-phosphate
2-Deoxy-D-arabino-hexose 6-phosphate
D-Glucosamine 6-phosphate
3-Deoxy-3-fluoro-D-glucose 6-phosphate
4-Deoxy-4-fluoro-D-glucose 6-phosphate

Ka (mM)
0.070± 0.017
1.18 ±0.15
0.80 ±0.13

15±10
3.99 ±0.77
3.04 ±0.75
1.10 ±0.19

Kia (mM)
0.083 ± 0.036
0.41 ±0.18
2.10 ±0.63

1.45 ±0.74
2.91 ± 1.38
0.19 ±0.16

Kb (AtM) Relative
(NADP+) Vmax.
15±5 1
43±6 0.016
22+4 0.33
32±7 0.64
41±11 0.04
45± 16 0.12
35± 8 0.12

600

.-q

A500

< 400

-Q
_l

0 1 2 3
1/[2-Deoxy-2-fluoro-D-glucose 6-phosphate] (mM-')

Fig. 1. Yeast glucose 6-phosphate dehydrogenase:
variation of the reciprocal of the initial rate with the
reciprocal of the 2-deoxy-2-fluoro-D-glucose 6-phos-
phate concentration for several constant NADP+

concentrations

For experimental details see the text. NADP+ con-
centrations used were: A, 12.5,UM; *, 25,UM; Ei,
50,tM; O, 100,&M; A, 200,UM.

concentrations of glucose 6-phosphate was not ob-
served with either yeast or rat liver glucose 6-phos-
phate dehydrogenase, inhibition was observed with
high concentrations of 2-deoxy-D-arabino-hexose
6-phosphate with the yeast enzyme. This observation
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has not been previously reported, although the Km
value for 2-deoxy-D-arabino-hexose 6-phosphate for
yeast glucose 6-phosphate dehydrogenase has been
determined (Greiling & Kisters, 1965). A value
(4.5mM) lower than the value of 15±10mM reported
in the present paper was given. The initial velocities
obtained from various concentrations of 2-deoxy-D-
arabino-hexose 6-phosphate at a constant concentra-
tion of NADP+ fitted eqn. (3). The values obtained
for the apparent Km and K, at different NADP+
concentrations are given below the double-reciprocal
plot in Fig. 4. The double-reciprocal plot at various
NADP+ concentrations and constant 2-deoxy-D-
arabino-hexose 6-phosphate concentrations is shown
in Fig. 5. Straight-line plots could be obtained only at
high and low concentrations of 2-deoxy-D-arabino-
hexose 6-phosphate, i.e. when the initial velocities
were low. At medium concentrations, when the
initial velocities were maximal, deviation from line-
arity was observed. The initial velocities obtained
therefore do not fit eqn. (4) for uncompetitive sub-
strate inhibition (Cleland, 1970):

Vmax. [A][B]
Kia Kb + [A]Kb + [B]Ka + [A][B] + [A][B]2/K,

The Km value for 2-deoxy-D-arabino-hexose 6-phos-
phate, quoted in Table 1, was computed by using eqn.
(1). The Km value for NADP+ and the relative Vmax.
were estimated graphically. Initial velocities obtained
from concentrations of 2-deoxy-D-arabino-hexose
6-phosphate (2.5-10mM) and NADP+ (0.025-
0.20mM) were used because straight lines could be
obtained from double-reciprocal plots in this con-
centration range.

If the double-reciprocal plot for 2-deoxy-2-fluoro-
D-glucose 6-phosphate with yeast glucose 6-phosphate
dehydrogenase (see Fig. 1) is examined it shows that
although one straight line can be drawn through the
points a more exact fit would be obtained if two
straight lines were drawn, one through the points at
high 1/[S] values and one with a greater slope through
the points at low 1/[S] values. These two straight lines
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Table 2. Kinetic constants for rat liver glucose 6-phosphate dehydrogenase

For experimental details see the text. Values are means± S.E.M.

Compound
D-Glucose 6-phosphate
2-Deoxy-2-fluoro-D-glucose 6-phosphate
2-Chloro-2-deoxy-D-glucose 6-phosphate
2-Deoxy-D-arabino-hexose 6-phosphate
3-Deoxy-3-fluoro-D-glucose 6-phosphate
4-Deoxy-4-fluoro-D-glucose 6-phosphate*

Ka (mM)

0.010± 0.003
1.94 ±0.44
0.82 ±0.05
1.39 ±0.24
3.93 ± 0.83

3.0

Kb (,LM) Relative
KLa (mM) (NADP+) Vmax.

0.026±0.018 9.3±2.4 1
1.72 ±1.69 8.6±5.3 0.027
0.69 ±0.20 6.9±0.6 0.89
5.19 ±3.66 3.8±1.6 0.055

- 8.4 0.25
0.4

* The kinetic constants for this compound are only approximate values because insufficient amounts were available
for an accurate determination.
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1/[2-Chloro-2-deoxy-D-glucose 6-phosphate] (mM-')

Fig. 2. Rat liver glucose 6-phosphate dehydrogenase:
variation of the reciprocal of the initial rate with the
reciprocal of the 2-chloro-2-deoxy-D-glucose 6-phos-
phate concentration for several constant NADP+

concentrations

For experimental details see the text. NADP+ con-
centrations used were: *, 9.6,UM; o, 19.2,UM; o,
48,.zM; A, 96,UM.

would intersect and indicate an abrupt transition,
although more experimental points would be needed
to verify this. Transitions between two linear sections
were observed in the double-reciprocal plots for all
of the D-glucose 6-phosphate derivatives when the

reciprocal of the initial velocity was plotted against
the reciprocal of the sugar phosphate concentration.
These transitions were found to be more marked

with 2-deoxy-2-fluoro-D-glucose 6-phosphate (see
Fig. 1) and D-glucosamine 6-phosphate, which had
low relative Vmax. values, and also with 2-deoxy-D-
arabino-hexose 6-phosphate (see Fig. 4). The plot
against the reciprocal of the NADP+ concentration
also showed this transition in a few cases.

This type of transition has been observed with
yeast glucose 6-phosphate dehydrogenase when the
reciprocal ofthe initial velocity was plotted againstthe
reciprocal ofthe D-glucose 6-phosphate concentration
(Rutter, 1957; Anderson et al., 1968) and also with
glucose 6-phosphate dehydrogenase from sweet
potato (Muto & Uritani, 1970). This transition is
thought to be due to negative co-operativity between
the binding sites of subunits (Dalziel & Engel, 1968;
Koshland & Neet, 1968). The change in slope results
from the fact that 'sequential binding of ligand pro-
duces successively new sites of lower affinity but
higher turnover number' (Conway & Koshland,
1968). The apoenzyme of yeast glucose 6-phosphate
dehydrogenase exists as a dimer, but the NADP+-
enzyme complex exists as a tetramer (Yue et al., 1969).
These transitions could be due to negative co-opera-
tivity between the four D-glucose 6-phosphate-bind-
ing sites as saturation of the enzyme by D-glucose
6-phosphate is approached, and the transition is more
marked at low enzyme velocities.
Although these transitions were observed with

yeast glucose 6-phosphate dehydrogenase they were
not observed with the rat liver enzyme (see Fig. 2).

2-Deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-
mannose and 2-deoxy-2,2-difluoro-D-arabino-hexose
are all good substrates for yeast hexokinase (Bessell
et al., 1972). Since the products are either not sub-
strates (2-deoxy-2-fluoro-D-mannose 6-phosphate,
2-deoxy-2,2-difluoro-D-arabino-hexose 6-phosphate)
or a poor substrate (2-deoxy-2-fluoro-D-glucose 6-
phosphate) for yeast glucose 6-phosphate dehydro-
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so
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1/[2-Deoxy-D-arabino-hexose 6-phosphate] (M-')

Fig. 4. Inhibition of yeast glucose 6-phosphate de-
hydrogenase at high 2-deoxy-D-arabino-hexose 6-

phosphate concentrations

0 5 10 Is

1/[D-Glucose 6-phosphate] (mM-')

Fig. 3. Competitive inhibition of rat liver A
6-phosphate dehydrogenase by D-glucosam

phosphate

The variation of the reciprocal of the initial
plotted against the reciprocal ofthe D-glucose (
phate concentration for several constant con
tions of D-glucosamine 6-phosphate: *, 8n
4mM; e, 2mM; 0, Imm; o, 0.5mM; A, nor
experimental details see the text.

The variation of the reciprocal of the initial rate is
plotted against the reciprocal of the 2-deoxy-D-
arabino-hexose 6-phosphate concentration for several
constant concentrations of NADP+; *, 25,UM;
0, 5O,UM; O, 1OO/UM; A, 200,UM. For [NADP+]
200,UM, KM = 11.5±0.6mM, KG = 61.6±0.6mM; for
(NADP+] 100/LM, K, = 12.1 ±0.7mM, K = 48.2
±0.6mM; for [NADP+] 50,uM, KM= 17.6±0.6mM,

20 K, = 30.8±0.5mM; for [NADP+] 25Mm, the data did
20 not fit eqn. (3) sufficiently well to give values of Km

and K,. For experimental details see the text.

glucose
mine 6-

rate is
6-phos-
icentra-
nM; A,
ie. For

genase the effect of the fluorinated D-hexoses on the
coupled enzyme system (hexokinase-glucose 6-phos-
phate dehydrogenase) was determined by measuring
the competitive inhibition of D-glucose phosphoryla-
tion. The Kt values obtained by using eqn. (2) are
for 2-deoxy-2-fluoro-D-glucose, 0.22±t0.03mM, for
2-deoxy-2-fluoro-D-mannose, 0.20±0.02mM and
for 2-deoxy-2,2-difluoro-D-arabino-hexose, 0.34±
0.06mM. These values agree reasonably well with the
Km values obtained with yeast hexokinase (Bessell
et al., 1972) and show that these compounds are good
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inhibitors of glucose phosphorylation in vitro.
6-Deoxy-6-fluoro-D-glucose (Bessell et al., 1971) is a
competitive inhibitor of yeast hexokinase and the
K, value, determined by using eqn. (2), was 12.7±
1.5mM. 6-Deoxy-6-fluoro-D-glucose is not an inhi-
bitor of yeast glucose 6-phosphate dehydrogenase.

Discussion

Yeast glucose 6-phosphate dehydrogenase is
fairly specific as far as substrate configuration is
concerned. Only the ,-anomer of D-glucopyranose
6-phosphate is a substrate for the enzyme (Salas
et al., 1965) and neither the C-2 epimer, D-mannose
6-phosphate, nor the C-3 epimer, D-allose 6-phos-
phate, are substrates or inhibitors (Egyud & Whelan,
1963). The C-4 epimer, D-galactose 6-phosphate,
however, is a substrate (Egyud & Whelan, 1963), and
shows that the stereochemistry at C-4 is not so im-
portant. Inversion of both C-2 and C-3 of the D-
gluco configuration gives the D-altro configuration,
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Fig. 5. Yeast glucose 6-phosphate a
variation of the reciprocal of the initic
reciprocal of the NADP+ concentrati
concentrations of 2-deoxy-D-arabino-)

phate

For experimental details see the tex
arabino-hexose 6-phosphate concen
were: A, 100mM; *, 75mM; o, 50n
A, 12.5mM.

and it is thus surprising that D-altrose
a substrate (Egyud & Whelan, 1963).
explained if the conformation of D-g]
phate in solution is considered. D-G]
phate should exist in aqueous solution
extent in the pyranose form with each
Cl conformation, i.e. all the hydroxyl
equatorial in the , anomer. Howev
conformation of fl-D-altropyranose
HO-2 and HO-3 will be axial. oc-D-Altr
the other hand, exists in both the 1C a
mations in aqueous solution (Angyal, 1
IC conformation HO-1, HO-2 and
equatorial, thus resembling the Ci co
D-glucopyranose. It is possible, there
a-anomer of D-altropyranose 6-phosi
the enzyme in the 1C conformation.
Replacement ofa ring hydroxyl grou

substituent does not result in loss of
the deoxyfluoro-D-glucose 6-phosphat
strates. The K. values, listed in Tables I
derivatives for both yeast and rat livei

a

X V b- H 0

H -Ho~ ~ H

HO x O

H H

X- OH, H, F, CI,NH3+

Fig. 6. C1 conformation of C-2 substituted ,B-D-gluco-
pyranose 6-phosphates and the structure of c-substi-

tuted acetic acids

same order, but the relative V,,=. values are quite
different. 3-Deoxy-3-fluoro-D-glucose 6-phosphate
and 4-deoxy-4-fluoro-D-glucose 6-phosphate each
have a high relative Vmax. value (0.12-0.40), but the
C-2-substituted D-glucose 6-phosphates have widely

30 40 different relative Vmax. values.
When the deoxyfluoro-D-glucopyranoses were

examined as substrates for yeast hexokinase (Bessell
dehydrogenase: et al., 1972) it was found that, although these deriva-
1 rate with the tives had different Km values, all of them had high
ion for several relative Vmax. values because the substitutions were
hexose 6-phos- made at a part of the molecule distant from the part

involved in the reaction. However, with the D-glucose
ct. 2-Deoxy-D- 6-phosphate derivatives, substitution at C-2 is substi-
itrations used tution at the vicinal carbon to the carbon atom in-
aM; o, 25mM; volved in the reaction. The large variation in the rela-

tive Vmax. values could be explained by the inductive
effect of the C-2 substituent. If the hydrogen atom is
removed from C-I by hydride transfer in the dehydro-
genation reaction an electron-withdrawing substi-

6-phosphate is tuent at C-2 should retard the enzymic rate, whereas
This might be at C-3 and C-4 little effect would be expected.
lucose 6-phos- The order of electronegativity of the C-2 substi-
lucose 6-phos- tuents can be established from the dissociation con-
to a very large stants of c-substituted aliphatic carboxylic acids
anomer in the (Kortum et al., 1961). The comparison between
groups will be these compounds and C-2-substituted D-glucose
er, in the C1 6-phosphates is shown in Fig. 6. The order is
6-phosphate NH3+>F>Cl >OH>H. If the effect of the C-2

ropyranose, on substituent on the enzymic rate simply reflects
tnd Cl confor- electronegativity, then the order of Vmax. values
969) and in the should be H>OH>Cl>F>NH3'. For the yeast
HO-3 will be enzyme the order found experimentally is OH >H
nformation of >Cl>NH3+>F. The relative Vmax value for 2-
-fore, that the deoxy-D-arabino-hexose 6-phosphate is slightly lower
)hate binds to than expected. This value, however, was only found

by extrapolation, because inhibition was observed at
p by a fluorine high substrate concentrations. The relative Vm.,.
binding, since value for D-glucosamine 6-phosphate is higher than
tes are all sub- expected. Although D-glucosamine 6-phosphate
1 and 2, for the exists in aqueous solution in a zwitterionic form, it
r are all of the may not do so completely in the active site of the
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1.0 r0

0.8

d0.6

D 0.4

0.2

Al
0 10 20 30 40 50

104 x Dissociation constant (K) of the a-substituted
acetic acid

Fig. 7. Correlation between the relative Vmax. for some
C-2-substituted D-glucose 6-phosphates and the dis-
sociation constants of the correspondingly substituted

a-substituted acetic acids
For details see the text. The dissociation constants
were obtained from Kortum et al., 1961. The substi-
tuents were: o, OH; A, H; oL, Cl; *, F; A, NH3+.

enzyme if the pKa of the protonated amino group is
lower (pKa for the protonated amino group of
2-aminoethanol 1-phosphoric acids is 10.89±E0.014;
Clarke et al., 1955). A higher proportion of the D-
glucosamine 6-phosphate molecules would then have
a non-protonated amino group at pH7.5 and a higher
relative Vmax. value than expected would be obtained.
The correlation between the electronegativity of the
C-2 substituent and the relative Vmax. values for the
yeast enzyme is shown in Fig. 7.
For the rat liver enzyme the order found experi-

mentally is OH>Cl>H>F>NH3+. Only the
hydrogen substituent is out of order in this case, but
as the relative Vmax. value for 2-deoxy-D-arabino-
hexose 6-phosphate is much lower than expected the
effect of the C-2 substituents cannot solely be elec-
tronic and factors such as steric factors must be con-
sidered as well. Hydrogen and fluorine atoms are
smaller than a hydroxyl group whereas a chlorine
atom is approximately of the same size [covalent
radii: H, 0.030nm (0.30A); F, 0.064nm (0.64A);
Cl, 0.099nm (0.99A); O+H, 0.096nm (0.96A);
Pauling, 1950]. This could explain the high relative
Vmax. value for 2-chloro-2-deoxy-D-glucose 6-phos-
phate.

The substrate inhibition observed with 2-deoxy-D-
arabino-hexose 6-phosphate is noteworthy, since not
only was this not observed with D-glucose 6-phos-
phate but the inhibition only occurred with the yeast
enzyme.
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