Abstract
1. The ability of Escherichia coli ribosomes to function in poly(U)-directed protein synthesis was measured at elevated temperatures by using thermostable supernatant factors from Bacillus stearothermophilus. The amount of polyphenylalanine synthesized at 55°C was about the same as at 37°C, but the rate of synthesis was increased approximately fivefold. At 60°C the activity of the ribosomes was halved. 2. E. coli ribosomes can sustain the loss of approx. 10% of the double-helical secondary structure of RNA without losing activity. 3. Within the active ribosome the double-helical secondary structure of the rRNA moiety is stabilized compared with isolated rRNA, as judged by enzymic hydrolysis and by measurements of E260. 4. The main products, over the range 0–55°C, of ribonuclease T1 digestion of the smaller subribosomal particle of E. coli were two fragments (s020,w 15S and 25.3S) of approximately one-quarter and three-quarters of the size of the intact molecule, revealing the presence of a `weak spot' where intramolecular bonds appear insufficient to hold the fragments together. 5. Subribosomal particles of B. stearothermophilus were more stable to heating, by approx. 10°C, than those of E. coli, and the stabilization of double-helical secondary structure of the RNA moiety was more striking. 6. Rabbit reticulocyte ribosomes were active in poly(U)-directed protein synthesis at 45°C, and half the activity was lost after heating to 53°C. Active subribosomal particles of rabbit reticulocytes and of oocytes of Xenopus laevis, like the bacterial subribosomal particles, underwent a conformational change to a slower-sedimenting form on heating. The temperature range of the transition depended on the species. 7. Slower-sedimenting particles, whether produced by EDTA treatment or by heating, had different `melting' profiles compared with active subribosomal particles, providing another indication of conformational differences. 8. Comparison of the properties of the various subribosomal particles revealed greater variation in the secondary structure of the protein moieties (judged by measurement of circular dichroism) than in the secondary structure of the RNA moieties, which appeared to have features in common.
Full text
PDF![775](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c182/1177875/fb7938755eb0/biochemj00601-0108.png)
![776](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c182/1177875/28fd1bca5497/biochemj00601-0109.png)
![777](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c182/1177875/640334565901/biochemj00601-0110.png)
![778](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c182/1177875/8bf278af322a/biochemj00601-0111.png)
![779](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c182/1177875/54000dc464d0/biochemj00601-0112.png)
![780](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c182/1177875/56e58c1ab826/biochemj00601-0113.png)
![780-1](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c182/1177875/156dc524c3d4/biochemj00601-0114.png)
![781](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c182/1177875/5854397e353f/biochemj00601-0115.png)
![782](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c182/1177875/b59414e2b7b5/biochemj00601-0116.png)
![783](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c182/1177875/6d97d95023bc/biochemj00601-0117.png)
![784](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c182/1177875/060c3b30e133/biochemj00601-0118.png)
![785](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c182/1177875/3a40d871abf8/biochemj00601-0119.png)
![786](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c182/1177875/0da829bc592f/biochemj00601-0120.png)
![787](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c182/1177875/4340d446da9f/biochemj00601-0121.png)
![788](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c182/1177875/b759b4b6cfe3/biochemj00601-0122.png)
![789](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c182/1177875/5247b1c38f29/biochemj00601-0123.png)
![790](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c182/1177875/c26f5a765060/biochemj00601-0124.png)
![791](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c182/1177875/85b50ad366ab/biochemj00601-0125.png)
![792](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c182/1177875/80437bb8e3c8/biochemj00601-0126.png)
![793](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c182/1177875/702e4f3575cf/biochemj00601-0127.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnstein H. R., Cox R. A., Hunt J. A. The function of high-molecular-weight ribonucleic acid from rabbit reticulocytes in haemoglobin biosynthesis. Biochem J. 1964 Sep;92(3):648–661. doi: 10.1042/bj0920648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bodley J. W. Irreversible thermal denaturation of Escherichia coli ribosomes. Biochemistry. 1969 Feb;8(2):465–475. doi: 10.1021/bi00830a002. [DOI] [PubMed] [Google Scholar]
- Brimacombe R., Morgan J. M., Cox R. A. An improved technique for the analysis of ribonucleoprotein fragments from Escherichia coli 30S ribosomes. Eur J Biochem. 1971 Nov 11;23(1):52–60. doi: 10.1111/j.1432-1033.1971.tb01591.x. [DOI] [PubMed] [Google Scholar]
- Brimacombe R., Morgan J., Oakley D. G., Cox R. A. Specific ribonucleoprotein fragment from the 30S subunit of E. coli ribosomes. Nat New Biol. 1971 Jun 16;231(24):209–212. doi: 10.1038/newbio231209a0. [DOI] [PubMed] [Google Scholar]
- Cahn F., Schachter E. M., Rich A. Polypeptide synthesis with ribonuclease-digested ribosomes. Biochim Biophys Acta. 1970;209(2):512–520. doi: 10.1016/0005-2787(70)90748-3. [DOI] [PubMed] [Google Scholar]
- Cotter R. I., McPhie P., Gratzer W. B. Internal organization of the ribosome. Nature. 1967 Dec 2;216(5118):864–868. doi: 10.1038/216864a0. [DOI] [PubMed] [Google Scholar]
- Cox R. A. A spectrophotometric study of the secondary structure of ribonucleic acid isolated from the smaller and larger ribosomal subparticles of rabbit reticulocytes. Biochem J. 1970 Mar;117(1):101–118. doi: 10.1042/bj1170101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox R. A. Conformation of nucleic acids and the analysis of the hypochromic effect. Biochem J. 1970 Dec;120(3):539–547. doi: 10.1042/bj1200539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox R. A., Ford P. J., Pratt H. Ribosomes from Xenopus laevis ovaries and the polyuridylic acid-directed biosynthesis of polyphenylalanine. Biochem J. 1970 Sep;119(2):161–164. doi: 10.1042/bj1190161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox R. A., Kanagalingam K., Sutherland E. Thermal denaturation in acidic solutions of double-helical ribonucleic acid from virus-like particles found in Penicillium chrysogenum. A spectrophotometric study. Biochem J. 1971 Nov;125(2):655–665. doi: 10.1042/bj1250655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox R. A. The effect of pancreatic ribonuclease on rabbit reticulocyte ribosomes and its interpretation in terms of ribosome structure. Biochem J. 1969 Oct;114(4):753–767. doi: 10.1042/bj1140753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox R. A. The secondary structure of ribosomal ribonucleic acid in solution. Biochem J. 1966 Mar;98(3):841–857. doi: 10.1042/bj0980841. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daya L., Gratzer W. B. On the association of basic proteins with RNA in ribosomes and artificial complexes. Biochim Biophys Acta. 1969 Mar 18;179(1):239–241. doi: 10.1016/0005-2787(69)90143-9. [DOI] [PubMed] [Google Scholar]
- Delihas N. Effect of ribonuclease on Escherichia coli ribosomes. Biochem Biophys Res Commun. 1970 Jun 5;39(5):905–910. doi: 10.1016/0006-291x(70)90409-2. [DOI] [PubMed] [Google Scholar]
- Delihas N. Liver ribosomal ribonucleic acid structural studies. Characterization of fragments from partial nuclease digestion. Biochemistry. 1967 Nov;6(11):3356–3362. doi: 10.1021/bi00863a004. [DOI] [PubMed] [Google Scholar]
- Friedman S. M., Weinstein I. B. Protein synthesis in a subcellular system from Bacillus stearothermophilus. Biochim Biophys Acta. 1966 Mar 21;114(3):593–605. doi: 10.1016/0005-2787(66)90107-9. [DOI] [PubMed] [Google Scholar]
- Godson G. N., Cox R. A. Structure of Escherichia coli ribosomes: effect of ribonuclease on the 30-S and 50-S subunits. Biochim Biophys Acta. 1970 Apr 15;204(2):489–501. doi: 10.1016/0005-2787(70)90169-3. [DOI] [PubMed] [Google Scholar]
- Hadjiolov A. A., Milchev G. I. Mononucleotide composition of rat liver ribosomal ribonucleic acid fragments obtained by partial ribonuclease T1 digestion. C R Acad Bulg Sci. 1967;20(12):1333–1336. [PubMed] [Google Scholar]
- Hüvös P., Vereczkey L., Gaál O. Incorporating activity of ribosomes and integrity of ribosomal RNA. Biochem Biophys Res Commun. 1970 Nov 25;41(4):1020–1026. doi: 10.1016/0006-291x(70)90187-7. [DOI] [PubMed] [Google Scholar]
- Kagawa H., Tokimatsu H., Fukutome H. Loss of subunit association ability of Escherichia coli ribosomes by washing and its recovery. J Biochem. 1971 Aug;70(2):225–234. doi: 10.1093/oxfordjournals.jbchem.a129634. [DOI] [PubMed] [Google Scholar]
- Kikuchi A., Monier R. Association of subunits in purified preparations of Escherichia coli ribosomes. FEBS Lett. 1970 Dec;11(3):157–159. doi: 10.1016/0014-5793(70)80517-8. [DOI] [PubMed] [Google Scholar]
- Kikuchi A., Monier R. Heat inactivation of Escherichia coli ribosomal subunits. Biochimie. 1971;53(6):755–761. doi: 10.1016/s0300-9084(71)80116-5. [DOI] [PubMed] [Google Scholar]
- Krajewska E., Szer W. Comparative studies of amino acid incorporation in a cell-free system from psychrophilic Pseudomonas sp. 412. Eur J Biochem. 1967 Sep;2(2):250–256. doi: 10.1111/j.1432-1033.1967.tb00132.x. [DOI] [PubMed] [Google Scholar]
- Lodish H. F., Robertson H. D. Regulation of in vitro translation of bacteriophage f2 RNA. Cold Spring Harb Symp Quant Biol. 1969;34:655–673. doi: 10.1101/sqb.1969.034.01.076. [DOI] [PubMed] [Google Scholar]
- Mangiantini M. T., Tecce G., Toschi G., Trentalance A. A study of ribosomes and of ribonucleic acid from a thermorphilic organism. Biochim Biophys Acta. 1965 Jun 8;103(2):252–274. doi: 10.1016/0005-2787(65)90166-8. [DOI] [PubMed] [Google Scholar]
- Nair K. G., Arnstein H. R. Further observations on the polynucleotide-induced stimulation of protein synthesis by cell-free preparations from rabbit reticulocytes. Biochem J. 1965 Nov;97(2):595–606. doi: 10.1042/bj0970595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nomura M., Traub P., Bechmann H. Hybrid 30S ribosomal particles reconstituted from components of different bacterial origins. Nature. 1968 Aug 24;219(5156):793–799. doi: 10.1038/219793b0. [DOI] [PubMed] [Google Scholar]
- Näslund P. H., Hultin T. Structural and functional defects in mammalian ribosomes after potassium deficiency. Biochim Biophys Acta. 1971 Nov 29;254(1):104–116. doi: 10.1016/0005-2787(71)90117-1. [DOI] [PubMed] [Google Scholar]
- PETERMANN M. L., PAVLOVEC A. Ribonucleoprotein from a rat tumor, the Jensen sarcoma. III. Ribosomes purified without deoxycholate but with bentonite as ribonuclease inhibitor. J Biol Chem. 1963 Jan;238:318–323. [PubMed] [Google Scholar]
- Pratt H., Cox R. A. Dissociation of ribosomes from oocytes of Xenopus laevis into active subparticles. Biochem J. 1971 Oct;124(5):897–903. doi: 10.1042/bj1240897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reboud A. M., Arpin M., Reboud J. P. Ribosomal subunits from rat liver. 1. Isolation and properties of active 40-S and 60-S subunits. Eur J Biochem. 1972 Apr 11;26(3):347–353. doi: 10.1111/j.1432-1033.1972.tb01773.x. [DOI] [PubMed] [Google Scholar]
- Saunders G. F., Campbell L. L. Ribonucleic acid and ribosomes of Bacillus stearothermophilus. J Bacteriol. 1966 Jan;91(1):332–339. doi: 10.1128/jb.91.1.332-339.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schweet R., Lamfrom H., Allen E. THE SYNTHESIS OF HEMOGLOBIN IN A CELL-FREE SYSTEM. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1029–1035. doi: 10.1073/pnas.44.10.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stenesh J., Holazo A. A. Studies of the ribosomal ribonucleic acid from mesophilic and thermophilic bacteria. Biochim Biophys Acta. 1967 Apr 18;138(2):286–295. doi: 10.1016/0005-2787(67)90489-3. [DOI] [PubMed] [Google Scholar]
- Szer W. Enzymatic degradation of ribosomal RNA in isolated purified ribosomes. Biochem Biophys Res Commun. 1969 Jun 6;35(5):653–658. doi: 10.1016/0006-291x(69)90454-9. [DOI] [PubMed] [Google Scholar]
- Tal M. Thermal denaturation of ribosomes. Biochemistry. 1969 Jan;8(1):424–435. doi: 10.1021/bi00829a058. [DOI] [PubMed] [Google Scholar]
- Zamir A., Miskin R., Elson D. Interconversions between inactive and active forms of ribosomal subunits. FEBS Lett. 1969 Apr;3(1):85–88. doi: 10.1016/0014-5793(69)80103-1. [DOI] [PubMed] [Google Scholar]