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category 3 patients: a retrospective
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Abstract

Purposes The presence of clinically significant prostate cancer (csPCa) is equivocal for patients with prostate imaging
reporting and data system (PI-RADS) category 3. We aim to develop deep learning models for re-stratify risks in PI-
RADS category 3 patients.

Methods This retrospective study included a bi-parametric MRI of 1567 consecutive male patients from six centers
(Centers 1–6) between Jan 2015 and Dec 2020. Deep learning models with double channel attention modules based
on MRI (AttenNet) for predicting PCa and csPCa were constructed separately. Each model was first pretrained using
1144 PI-RADS 1–2 and 4–5 images and then retrained using 238 PI-RADS 3 images from three training centers (centers
1–3), and tested using 185 PI-RADS 3 images from the other three testing centers (centers 4–6).

Results Our AttenNet models achieved excellent prediction performances in testing cohort of center 4–6 with the
area under the receiver operating characteristic curves (AUC) of 0.795 (95% CI: [0.700, 0.891]), 0.963 (95% CI: [0.915, 1])
and 0.922 (95% CI: [0.810, 1]) in predicting PCa, and the corresponding AUCs were 0.827 (95% CI: [0.703, 0.952]) and
0.926 (95% CI: [0.846, 1]) in predicting csPCa in testing cohort of center 4 and center 5. In particular, 71.1% to 92.2% of
non-csPCa patients were identified by our model in three testing cohorts, who can spare from invasive biopsy or RP
procedure.

Conclusions Our model offers a noninvasive screening clinical tool to re-stratify risks in PI-RADS 3 patients, thereby
reducing unnecessary invasive biopsies and improving the effectiveness of biopsies.

Critical relevance statement The deep learning model with MRI can help to screen out csPCa in PI-RADS category 3.
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Key Points
● AttenNet models included channel attention and soft attention modules.
● 71.1–92.2% of non-csPCa patients were identified by the AttenNet model.
● The AttenNet models can be a screen clinical tool to re-stratify risks in PI-RADS 3 patients.

Keywords Deep learning, MRI, Clinically significant prostate cancer, PI-RADS

Graphical Abstract

TThe AttenNet models with double channel attention modules  can greatly reduce 
unnecessary biopsies and thereby decrease the risk-benefit ratio of biopsy for PI-RADS 
3 patients.

3D-AttenNet model can predict clinically significant 
prostate cancer in PI-RADS category 3 patients: a 
retrospective multicenter study
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Background
The diagnosis and management of prostate cancer (PCa)
have substantially evolved over the last few decades [1]. At
present, transrectal ultrasound-guided biopsy, fusion
biopsy, and prostate-specific antigen (PSA) are the most
common tools for earlier diagnosis or screening of PCa.
Yet, these methods often yield false positive results or
missing diagnoses, while the biopsy is somewhat invasive
and not always well accepted by patients [2].
Multiparametric magnetic resonance imaging (mpMRI)

of the prostate has been widely utilized for the detection
and risk stratification of clinically significant prostate
cancer (csPCa) [3–5]. According to the prostate imaging
reporting and data system version 2.1 (PI-RADS v2.1) [6],
prostatic lesions detected on mpMRI are scored 1–5. PI-
RADS 1–2 indicates very low and low probabilities
of having csPCa, whereas PI-RADS 4–5 suggests a
high probability [6, 7]. As for lesions with PI-RADS
3, the presence of csPCa is considered to be equivocal

[6]. In clinical practice, PI-RADS 3 patients usually
require biopsies. However, some recent studies suggest
that most PI-RADS 3 lesions do not contain csPCa [8],
which poses the question of whether or not a biopsy is
really necessary [9].
To overcome the shortcomings of the semi-

quantification of PI-RADS assessment, recent studies
have used radiomics methods to discriminate between
csPCa and non-csPCa for PI-RADS 3 patients [10–14].
However, extracting radiomics features greatly relies on
the slice-by-slice manual delineation of lesions in MR
images, which is time-consuming and laborious, parti-
cularly when a larger number of samples are used to
construct radiomics models [15, 16].
Deep learning (DL) can mine information in images and

characterize the intrinsic features of tumors, accurately
reflecting tumors’ spatial heterogeneity [17, 18]. Com-
pared to the radiomics methodology, DL methods are
almost independent of the manual delineation of tumors
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and can provide automatic analysis of medical images and
have also been widely used in recent years to detect PCa
[19–22]. These studies use DL methods to detect csPCa
lesions regardless of the PI-RADS scores [6, 7], but none
was specifically focused on differentiating amongst PI-
RADS 3 lesions. Indeed, whether a DL model could
provide incremental value to precisely screen out csPCa
from those equivocal lesions is yet unknown. Therefore, it
is very likely that the decisive features for detecting csPCa
from these patients are much subtler than those with the
other PI-RADS categories (i.e., PI-RADS 1, 2, 4, and 5).
Thus, developing a new DL model sensitive to these
subtle decisive features is necessary to detect csPCa in PI-
RADS 3 patients.
Indeed, this study used datasets from multiple centers

to construct novel DL models with double attention
modules for predicting csPCa and PCa in equivocal PI-
RADS 3 patients.

Materials and methods
Patients
Patients suspected of PCa from six centers were enrolled
between Jan 2015 and Dec 2020. The inclusion criteria
were the following: (1) those who underwent standard
prostate 3.0-T MRI within 4 weeks before biopsy; (2)
those who underwent standard transrectal ultra-
sonography (TRUS)/MRI fusion or cognitive fusion
targeted biopsy and systematic biopsy. Exclusion criteria
were: (1) Incomplete MRI sequence or poor image
quality (displacement or motion artifacts); (2) previous
history of biopsy or surgery or treatment for PCa.
Table S1 summarizes the baseline characteristics of the
patients from the six centers. The study flowchart is
shown in Fig. 1.
The Ethics Committee of center 1 approved this study,

and the requirement of written informed consent was
waived.

Prostatic MRI and PI-RADS assessment
All examinations were performed on 3.0-T MRI scanners
with pelvic phased-array coils at six centers. The details of
the MRI parameters are shown in Table S2 and Supple-
mentary Section 1.
The index lesions in multiparametric prostate MRI

images of all included patients were assessed by five
board-certified radiologists and two expert-level radi-
ologists according to the PI-RADS v2.1 [6]. The details of
the PI-RADS assessment are described in Supplementary
Section 2. Finally, of the 2006 patients, 78.9% (1583/2006)
were patients with PI-RADS 1, 2, 4, and 5, and 21.1%
(423/2006) were patients with PI-RADS 3. Table 1 sum-
marizes the baseline characteristics of PI-RADS category
3 patients for each center.

Histopathology
Patients with PI-RADS category ≥ 3 underwent targeted
MRI-guided biopsy in conjunction with systemic trans-
rectal ultrasound (TRUS)-guided biopsy or cognitive
fusion biopsy in conjunction with systemic TRUS-guided
biopsy; patients with PI-RADS 1–2 underwent only sys-
temic TRUS-guided biopsy. In terms of histopathology,
patients with ISUP ≥ 3 were defined as having csPCa, and
those with ISUP ≥ 1 were defined as having PCa [8, 23].
The details of the histological review are described in
Supplementary Section 3. Table 1 summarizes the details
of the results of the histopathology assessment for each of
the 6 centers.

Study cohort
Patients with PI-RADS 1, 2, 4, and 5 of centers 1–3 were
used as a pretraining cohort (total N= 1144), and PI-
RADS 3 patients from the same centers were used as the
training cohort (total N= 238). For centers 4–6, PI-RADS
3 patients were used as external testing cohorts (total
N= 185) (Fig. 1), and PI-RADS 1, 2, 4, and 5 patients
(N= 439) were not applied in the present study. In each
pretraining and training cohort, the patients were ran-
domly divided into two datasets, including nine-tenth (i.e.,
the training dataset) and one-tenth patients (i.e., the
tuning dataset), which were used to train the network
weights and optimize the hyperparameters of the DL
model, respectively.

Prostate MRI data preprocessing
The preprocessing of prostate MRI images included data
de-identification, registration, data harmonization, and
data augmentation (Supplementary Section 4) referring to
our previous study [22].

AttenNet model development
Model architecture
In the present study, two DL models were developed
separately to identify PCa and csPCa. These two models
had the same architectures, which were referred to as
AttenNet because they both included the channel atten-
tion and soft attention modules. As shown in Fig. 2, the
AttenNet model consisted of three parallel and indepen-
dent branches with the 3D regions of interest of T2WI,
DWI images, and ADC maps as inputs, respectively,
which used the state-of-art ResNet3D as the basic net-
work due to its ability to mine features of deep layers and
generate accurate predicting values using shortcut con-
nections [24].
A fusion network integrated these three branches with

the involvement of the soft attention module (Fig. 2a).
Recent studies [25] have suggested a difference in the
characteristics of cancer between the peripheral zone (PZ)
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and transitional zone (TZ) of the prostate. Further,
according to PI-RADS V2.1 [6], the PI-RADS assessment
category of lesions in TZ and PZ are dominantly depen-
dent on T2WI and DWI scores, respectively. Thus, in the
present study, we used the soft attention module to pro-
vide the location information of prostate lesions for the
AttenNet model. This information was used as a clinical
prior and can highlight the role of the corresponding
modality of images (i.e., T2WI, or/and DWI and ADC) for
the classification between csPCa and non-csPCa or that
between PCa and non-PCa (More details were in Sup-
plementary Materials Section 5).

Training strategy
The present study employed a transfer learning strategy to
develop DL models. Specifically, the DL model was first
trained using a pretraining cohort (i.e., the patients with PI-
RADS 1, 2, 4, and 5). Then DL model was retrained using

training cohorts and tested using testing cohorts, which
included only PI-RADS 3 patients. In this way, the knowl-
edge learned from the pretraining cohort was transferred to
the retraining step using the training cohort of PI-RADS 3.
Thus, using the transfer learning strategy, patients with PI-
RADS 3 and those with PI-RADS 1,2, 4, and 5 were con-
tributed to develop the DLmodel for the detection of csPCa
or PCa in PI-RADS 3 patients. Such a transfer learning
strategy may improve the performance of the DL model.

Statistical analysis
Independent t-tests were used to compare normally dis-
tributed continuous variables. Mann–Whitney U-tests
were used to compare non-normally distributed con-
tinuous variables. Chi-squared test was applied to assess
the categorical variables. Quantitative variables were
expressed as mean ± standard deviation (mean ± SD) or
median and interquartile range (IQR) as appropriate.

Included patients from SUH1st (center 1)
(n=705)

Included patients from SUH2nd (center 2) 
(n=550)

Included patients from ZJGH (center 3)
(n=127)

Exclusion criteria
� No biopsy or RP with clinical reasons (n=4408)
� Previous therapies for PCa (n=536)
� Disqualified images (n=25)

Exclusion criteria
� No biopsy or RP with clinical reasons (n=3758)
� Previous therapies for PCa (n=378)
� Disqualified images (n=64)

Exclusion criteria
� No biopsy or RP with clinical reasons (n=338)
� Previous therapies for PCa (n=67)
� Disqualified images (n=19)

Patients with prostatic MRI for 
diagnosis of PCa in SUH1st between 

Jan 2016 and Dec 2020 (n=5674)

Patients with prostatic MRI for diagnosis 
of PCa in SUH2nd between May 2015 and 

Sep 2020 (n=4750)

Patients with prostatic MRI for 
diagnosis of PCa in ZJGH between Jan 

2018 and Dec 2019 (n=551)

Pretraining cohort (n=1144) and Training cohort (n=238)

Patients with prostatic MRI for 
diagnosis of PCa in CSH between Jan 

2017 and Dec 2020 (n=1560)

Included patients from CSH (center 4) 
(n=280)

Exclusion criteria
� No biopsy or RP with clinical reasons (n=890)
� Previous therapies for PCa (n=358)
� Disqualified images (n=32)

Patients with prostatic MRI for diagnosis 
of PCa in TZH between Jan 2015 and  Dec 

2020 (n=2485)

Included patients from TZH (center 5) 
(n=248)

Exclusion criteria
� No biopsy or RP with clinical reasons (n=1982)
� Previous therapies for PCa (n=198)
� Disqualified images (n=57)

Patients with prostatic MRI for 
diagnosis of PCa in SKH between Oct 

2018 and Dec 2020 (n=535)

Included patients from SKH (center 6) 
(n=96)

Exclusion criteria
� No biopsy or RP with clinical reasons (n=371)
� Previous therapies for PCa (n=46)
� Disqualified images (n=22)

External testing cohort
(n=185)

PI-RADS category 3
(n=98)

PI-RADS category 3
(n=64)

PI-RADS category 3
(n=23)

Fig. 1 Flowchart of the inclusion criteria and exclusion criteria of the multicenter study. center 1, SUH1st, the first affiliated hospital of Soochow
University; center 2, SUH2nd, the second affiliated hospital of Soochow University; center 3, ZJGH, People’s Hospital of Zhangjiagang; center 4, CSH,
Changshu no. 1 People’s Hospital; center 5, TZH, People’s Hospital of Taizhou; center 6, SKH, Suzhou Kowloon Hospital; PCa, prostate cancer
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Table 1 The baseline characteristics of the PI-RADS category 3 patients in training cohorts and external testing cohorts

Variable Training cohorts (centers 1–3, n= 238) External testing cohorts (centers 4–6, n= 185)

SUH1st

(center 1,

n= 82)

SUH2nd

(center 2,

n= 129)

ZJGH

(center 3,

n= 27)

Total CSH

(center 4,

n= 98)

TZH

(center 5,

n= 64)

SKH

(center 6,

n= 23)

Total p

Number of

subjects

82 129 27 238 98 64 23 185

Age (y), mean 68.5 ± 3.5 70.0 ± 7.8 78.0 ± 7.0 70.0 ± 7.8 69.9 ± 6.7 71.1 ± 8.2 70.3 ± 6.9 70.4 ± 7.3 0.231

PSA level,

median, (IQR)

10.5 (6.7–16.1) 11.1 (6.9–15.7) 11.2 (9.4–24.8) 11.1 (7.1–14.5) 11.4 (7.1–18.2) 8.2 (5.3–16.6) 10.1 (6.3–14.8) 9.9 (6.3–18.0) 0.445

D-max (mm),

median (IQR)

19.8 (16.5–26.8) 18.3 (13.8–23.2) 19.6 (11.9–28.2) 18.8 (14.5–24.9) 15.7 (12.5–20.7) 35.7 (21.0–45.4) 10.0 (7.5–12.5) 17.2 (12.8–31.0) 0.467

Prostate zone, n 82 129 27 238 98 64 23 185 0.918

PZ, n (%) 20 (24.4%) 24 (18.6%) 8 (29.6%) 52 (21.8%) 28 (28.6%) 3 (4.7%) 3 (13.0%) 34 (18.4%)

TZ, n (%) 59 (72.0%) 82 (63.6%) 19 (44.4%) 160 (67.2%) 68 (69.4%) 49 (76.6%) 20 (87.0%) 137 (74.1%)

PZ and TZ,

n (%)

3 (3.6%) 23 (17.8%) 0 (0.0%) 26 (10.9%) 2 (2.0%) 12 (18.8%) 0 (0.0%) 14 (7.6%)

Biopsy ISUP

grade, n (%)

81 129 27 237 96 64 22 182 0.929

GG0 (benign) 44 (54.3%) 100 (77.5%) 10 (37.0%) 154 (65.0%) 62 (64.6%) 46 (71.9%) 17 (77.3%) 125 (68.7%)

GG1 8 (9.9%) 23 (17.8%) 11 (40.7%) 42 (17.7%) 4 (4.2%) 1 (1.6%) 3 (13.6%) 8 (4.4%)

GG2 12 (14.8%) 3 (2.3%) 4 (14.8%) 19 (8.0%) 16 (16.7%) 4 (6.3%) 2 (9.1%) 22 (12.1%)

GG3 11 (13.6%) 2 (1.6%) 0 (0.0%) 13 (5.5%) 8 (8.3%) 7 (10.9%) 0 (0.0%) 15 (8.2%)

GG4 4 (4.9%) 0 (0.0%) 2 (7.4%) 6 (2.5%) 5 (5.2%) 3 (4.7%) 0 (0.0%) 8 (4.4%)

GG5 2 (2.5%) 1 (0.8) 0 (0.0%) 3 (1.3%) 1 (1.0%) 3 (4.7%) 0 (0.0%) 4 (2.2%)

Surgical ISUP

grade, n (%)

33 18 8 59 2 3 3 8 < 0.001

GG1 5 (15.2%) 14 (77.8%) 5 (62.5%) 24 (40.7%) 0 (0.0%) 0 (0.0%) 1 (33.3%) 1 (12.5%)

GG2 12 (36.4%) 2 (11.1%) 2 (25.0%) 16 (27.1%) 1 (50.0%) 2 (66.7%) 2 (66.7%) 5 (62.5%)

GG3 9 (27.3%) 2 (11.1%) 1 (12.5%) 12 (20.3%) 1 (50.0%) 1 (33.3%) 0 (0.0%) 2 (25.0%)

GG4 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

GG5 7 (21.2%) 0 (0.0%) 0 (0.0%) 7 (11.9%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Label, n (%) 82 129 27 238 98 64 23 185 0.251

non-PCa 44 (53.7%) 100 (77.5%) 10 (37.0%) 154 (64.7%) 62 (63.3%) 46 (71.9%) 18 (78.3%) 126 (68.1%)

PCa 38 (46.3%) 29 (22.5%) 17 (63.0%) 84 (35.3%) 36 (36.7%) 18 (28.1%) 5 (21.7%) 59 (31.9%)

Non-csPCa 64 (78.0%) 123 (95.3%) 24 (88.9%) 211 (88.7%) 83 (84.7%) 51 (79.7%) 23 (100%) 157 (84.9%)

csPCa 18 (22.0%) 6 (4.7%) 3 (11.1%) 27 (11.3%) 15 (15.3%) 13 (20.3%) 0 (0.0%) 28 (15.1%)

ECE, n (%) 33 18 8 59 2 3 3 8 0.837

Present 5 (15.2%) 4 (22.2%) 0 (0.0%) 9 (15.3%) 0 (100%) 1 (33.3%) 0 (0.0%) 1 (12.5%)

Absent 28 (84.8%) 14 (77.8%) 8 (100%) 50 (84.7%) 2 (0.0%) 2 (66.7%) 3 (100.0%) 7 (87.5%)

SVI, n (%) 33 18 8 59 2 3 3 8 0.514

Present 3 (9.1%) 0 (0.0%) 0 (0.0%) 3 (5.1%) 0 (0.0%) 0 (0.0%) 0 (100%) 0 (0.0%)

Absent 30 (90.9%) 18 (100%) 8 (100%) 56 (94.9%) 2 (100%) 3 (100%) 3 (100.0%) 8 (100.0%)

LNI, n (%) 15 1 1 17 1 3 1 5 1.000

Present 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Absent 15 (100.0%) 1 (100%) 1 (100%) 17 (100.0%) 1 (100%) 3 (100%) 1 (100%) 5 (100%)

Unless indicated otherwise, data are numbers of patients with percentages in parentheses. The p-value was evaluated by a two-tailed t-test with unequal variance.
Gleason grade (GG) is according to the 2014 International Society of Urological Pathology (ISUP) standards
PSA prostate-specific antigen, ciPCa clinically insignificant prostate cancer, csPCa clinically significant prostate cancer, PZ peripheral zone, TZ transition zone, CZ center
zone, AFMS anterior fibromuscular stroma, ECE extracapsular extension, SVI seminal vesicle infiltration, LNI lymph node invasion, D-max diameter in greatest
dimension; center 1, SUH1st, the first affiliated hospital of Soochow Universityxxx; center 2, SUH2nd, the second affiliated hospital of Soochow University; center 3, ZJGH,
People’s Hospital of Zhangjiagang; center 4, CSH, Changshu No.1 People’s Hospital; center 5, TZH, People’s Hospital of Taizhou; center 5, CSH, Changshu No.1 People’s
Hospital; center 6, SKH, Suzhou Kowloon Hospital
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Receiver operating characteristic (ROC) curves were
depicted to evaluate the classification performance of the
proposed models. In each external testing cohort, the
ROC curves of the models were compared using Delong
tests, and sensitivity (SEN), specificity (SPE), and accuracy
(ACC) were calculated at a threshold that maximized the
value of the Youden index in the tuning dataset of training
cohort. Decision curve analysis (DCA) was used to eval-
uate the net benefit of the patients using the biopsy
strategy based on the proposed model in the present
study. The statistical analysis was conducted with Python
(https://www.python.org, version 3.8.3) and MedCalc
software (Ostend, Belgium, https://www.medcalc.org,
version 19.6.4). A two-sided p < 0.05 was considered sta-
tistically significant in all statistical tests.

Results
Baseline characteristics
In the training cohort (centers 1–3), 35.3% (84/238) and
64.7% (154/238) patients were diagnosed as PCa and
benign (non-PCa), respectively and 11.3% (27/238) and
88.7% (211/238) as csPCa and non-csPCa, respectively.
The positive/negative number and ratio concerning PCa
and csPCa for each training and testing cohort are shown

in Table 1. More details are in Supplementary Materials
Section 6.

Diagnostic performance of DL models for predicting PCa
and csPCa in PI-RADS 3 patients
To evaluate the performance of the proposed AttenNet
models in predicting PCa and csPCa in PI-RADS 3
patients, an ablation experiment of the models with dif-
ferent modules was performed. As shown in Fig. 3, we
compared the performance of models among the ResNet,
ResNet combined with transfer module (ResNet-T),
ResNet combined with transfer and channel attention
modules (ResNet-TC), and AttentNet that referred to the
ResNet combined with a transfer, channel attention, and
soft attention modules. For the prediction of PCa, the
AttenNet model achieved an area under the ROC curve
(AUC) of 0.795 (95% CI: [0.700, 0.891]), 0.963 (95% CI:
[0.915,1.00]), and 0.922 (95% CI: [0.810, 1.00]) in the
external testing cohorts of center 4, center 5, and center 6,
respectively (Fig. 3a). Furthermore, the AUC of the
AttenNet model was significantly higher than those of the
other models (i.e., ResNet, ResNet-T, and ResNet-TC) in
center 4 (AUC= 0.661, 0.654, and 0.694, respectively) and
center 5 (AUC= 0.640, 0.749, and 0.757, respectively)
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Fig. 2 Flowchart of the development of the AttenNet models. a The architecture of the AttenNet Model with channel attention and soft attention
module. First, the VOIs were fed into a module of ResNet3D with channel attention; then, the three parallel and independent branches were used as
inputs; finally, the three branches were integrated into a fusion network with a soft attention module. b Details of ResNet3D with channel attention.
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transitional zone; Self-learning, the automatic and iterative change in the values of the elements of embedding vectors during the pretraining and
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0.661

(0.548,0.774)
55.1

(54/98)
88.9

(32/36)
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(22/62)
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(0.488,0.792)
39.1
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0.795

(0.700,0.891)
72.4

(71/98)
77.8

(28/36)
69.4

(43/62)
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 1.AttenNet      AUC: 0.827
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a

b
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Model (cutoff) Transfer
Channel
Attention

Clinical
prior

External testing cohort (CSH, center 4) External testing cohort (TZH, center 5)

AUC(95%CI) ACC(%) SEN(%) SPE(%) AUC(95%CI) ACC(%) SEN(%) SPE(%)

ResNet (0.029) 0.669(0.504,0.834) 44.9(44/98) 66.7(10/15) 41.0(34/83) 0.722(0.558,0.887) 56.2(36/64) 69.2(9/13) 52.9(27/51)

ResNet-T (0.748) √ 0.696(0.566,0.825) 76.5(75/98) 33.3(5/15) 84.3(70/83) 0.775(0.649,0.902) 78.1(50/64) 7.7(1/13) 96.1(49/51)

ResNet-TC (0.675) √ √ 0.739(0.612,0.866) 73.5(72/98) 46.7(7/15) 78.3(65/83) 0.831(0.705,0.957) 79.7(51/64) 15.4(2/13) 96.1(49/51)

AttenNet (0.287) √ √ √ 0.827(0.703,0.952) 0.926(0.846,1) 76.9(10/13)

PCa vs. Non-PCa

csPCa vs. Non-csPCa

73.5(72/98) 86.7(13/15) 71.1(59/83) 89.1(57/64) 92.2(47/51)

Fig. 3 (See legend on next page.)
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(Ps < 0.05, Fig. 3b). Although no difference in AUC was
observed between the AttenNet (AUC= 0.922) and
ResNet, ResNet-T, and ResNet-TC in center 6 (AUC=
0.611, 0.656, and 0.744, respectively) (Ps > 0.05, Fig. 3b),
the AUC of the former was numerically higher than those
of the latter. Thus, in terms of AUC, the AttenNet model
showed the best performance for predicting PCa among
these four DL models. Furthermore, in the external test-
ing cohorts of center 4, center 5, and center 6, the
AttenNet model achieved an ACC of 72.4% (71/98), 92.2%
(59/64), and 82.6% (19/23); an SEN of 77.8% (28/36),
94.4% (17/18), and 100% (5/5); SPE of 69.4% (43/62),
91.3% (42/46), and 77.8% (14/18), respectively (Fig. 3a).
As shown in Fig. 3c, for the prediction of csPCa, the

AttenNet model achieved an AUC of 0.827 (95% CI:
[0.703, 0.952]) and 0.926 (95% CI: [0.846, 1]) in the
external testing cohorts of center 4 and center 5,
respectively. As confirmed by the pathological exam, all
PI-RADS 3 patients in the external testing cohort of
center 6 were non-csPCa patients, and therefore the AUC
for predicting csPCa in this cohort could not be calculated
due to the lack of binary labels. Thus, the patients of this
cohort were not used to test the prediction of csPCa.
Further, in center 5, the AUC of the AttenNet model
(AUC= 0.926) was significantly higher than those of the
ResNet (AUC= 0.722, p= 0.037) and ResNet-T (AUC=
0.775, p= 0.017), and marginally higher than that of
ResNet-TC (AUC= 0.831, p= 0.063). Although no sig-
nificant difference in AUC was observed between the
AttenNet model (AUC= 0.827) and each of ResNet,
ResNet-T, and ResNet-TC in center 4 (AUC= 0.669,
0.696, and 0.739, respectively) (Ps > 0.05, Fig. 3d), the
AUC of the former was numerically higher than those of
the latter (Fig. 3d). Thus, in terms of AUC, the AttenNet
model showed the best performance for predicting csPCa
among these four DL models. In addition, in the external
testing cohorts of center 4 and center 5, the AttenNet
model achieved an ACC of 73.5% (72/98) and 89.1% (57/
64); a SEN of 86.7% (13/15) and 76.9% (10/13); a SPE of
71.1% (59/83) and 92.2% (47/51), respectively (Fig. 3c).
As revealed by DCA, the biopsy strategy based on the

AttenNet model shows greater net benefit than that
based on PI-RADS assessment (i.e., all PI-RADS

3 patients underwent the biopsy) for both detections
of PCa (Fig. 4a) and csPCa (Fig. 4b) in the external
testing cohorts. As shown in Fig. 4, the biopsy strategy
based on the AttenNet model shows greater net benefit
(Red line in Fig. 4) than that based on PI-RADS
assessment (i.e., all patients with PI-RADS category 3
underwent the biopsy in the present study) (Blue line in
Fig. 4) for detections of PCa (Fig. 4a) and csPCa (Fig. 4b)
in each external cohort.

Clinical practice of the AttenNet models for predicting PCa
and csPCa in PI-RADS category 3 patients
Figure 5 shows more details of the prediction results of
AttenNet models from the clinical practice perspective.
As shown in Fig. 5a, in each external testing cohort, the
PI-RADS 3 patients were upgraded to PI-RADS 3U and
downgraded to PI-RADS 3D according to the prediction
results of the PCa by AttenNet model (i.e., PCa or non-
PCa), respectively. The detailed results in each external
testing cohort are described in Supplementary Section 6.
As shown by Fig. 5a, 69.4% (Fig. 5a, center 4: 43/62) to
91.3% (Fig. 5a, center 5: 42/46) of benign
(i.e., non-PCa) patients were identified by our AttenNet
model from PI-RADS 3 patients of the external testing
cohorts. In other words, these benign patients would
have been spared from various clinical therapies and
anxieties if the AttenNet model had been used to diag-
nose PCa.
As shown in Fig. 5b, in each external testing cohort, PI-

RADS 3 patients were upgraded and downgraded to PI-
RADS 3U and PI-RADS 3D according to the prediction
results of csPCa by AttenNet model (i.e., csPCa and non-
csPCa), respectively. The detailed results in each external
testing cohort were described in Supplementary Section 7.
As shown in Fig. 5b, 71.1% (Fig. 4b, center 4: [48+ 11]/83)
to 92.2% (Fig. 5b, center 4: [43+ 4]/51) of non-csPCa
were identified by our AttenNet model from the equivocal
PI-RADS 3 patients of the external testing cohorts, all of
whom had undergone biopsies because these non-csPCa
patients could not be identified using PI-RADS assess-
ment. Those results suggest that our AttenNet model has
the potential to reduce unnecessary biopsies for non-
csPCa patients.

(see figure on previous page)
Fig. 3 Diagnosis performances of different deep learning models for predicting PCa and csPCa. a Diagnosis performances of the ResNet, ResNet-T,
ResNet-TC, and AttenNet models for predicting PCa in three external testing cohorts. The AttenNet model yields the highest AUC compared with the
other three models in predicting PCa. b ROC curves of the AttenNet model and the other three models for predicting PCa in three external testing
cohorts. c Diagnosis performances of the ResNet, ResNet-T, ResNet-TC, and AttenNet models for predicting csPCa in two external testing cohorts.
Similarly, the AttenNet model yields the highest AUC among all the models in predicting csPCa. d ROC curves of the AttenNet model and the other three
models for predicting csPCa in two external testing cohorts. ROC, receiver operating characteristics; AUC, area under ROC curve; ACC, accuracy; SEN,
sensitivity; SPE, specificity; center 4, TZH, People’s Hospital of Taizhou; center 5, CSH, Changshu No.1 People’s Hospital; center 6, SKH, Suzhou Kowloon
Hospital; PCa, prostate cancer; csPCa, clinically significant prostate cancer; ResNet-T, ResNet with transfer module; ResNet-TC, ResNet with transfer and
channel attention modules; AttenNet, ResNet combined with transfer, channel attention and soft attention modules
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The results of subgroup analysis with AttenNet models for
different levels of tumor size and PSA
Additionally, we assessed the performance of the AttenNet
models for predicting PCa and csPCa in subgroups of PI-
RADS 3 patients according to different levels of tumor size
and PSA. As revealed by the subgroup analysis (Fig. 6), the
AttenNet models for predicting PCa and csPCa achieved
satisfactory performance in different levels of D-max and
PSA (except for the subgroup of 0 ≤ PSA < 10 ng/mL for
predicting csPCa in the center 4) (Supplementary Section 8).

Discussion
The present study developed DL models with attention
modules (e.g., AttenNet), which achieved excellent

performance for detecting both PCa and csPCa in external
testing cohorts. The performance of our AttenNet model
for detecting csPCa in PI-RADS 3 showed similar ACC to
previous models assessing PI-RADS 1–5 patients [26, 27].
When our proposed model was used in clinical practice,
71.1–92.2% of non-csPCa patients were identified by our
deep learning model in two testing cohorts, who can
safely spare from invasive biopsy or radical prostatectomy
(RP) procedure. These findings suggested that the pro-
posed AttenNet models may be a promising tool to aid
the precise risk stratification of PI-RADS 3 patients. To
the best of our knowledge, this study first applied DL
methodology to predict PCa and csPCa in PI-RADS 3
lesions. In contrast to some previous radiomics studies
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Fig. 4 Results of DCA of AttenNet for predicting PCa and csPCa. a Results of DCA of AttenNet for predicting PCa in three external testing cohorts.
b Results of DCA of AttenNet for predicting csPCa in two external testing cohorts. The red lines indicate the net benefit of patients when using a biopsy
based on the AttenNet model for detecting PCa (a) and csPCa (b). The blue lines indicate the net benefit of patients when they were all predicted to be
positive (i.e., all patients with PI-RADS 3 underwent the biopsy) for the detection of PCa (a) and csPCa (b). The black lines indicate the net benefit of
patients when they were all predicted to be negative for the detection of PCa (a) and csPCa (b)
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Fig. 5 Clinical practice of AttenNet models for predicting PCa and csPCa in PI-RADS category 3 patients. a The downgrading and upgrading results of PI-
RADS category 3 patients using the AttenNet model for predicting PCa in three external testing cohorts of center 4, center 5, and center 6. b The
downgrading and upgrading results of PI-RADS category 3 patients using the AttenNet model for predicting csPCa in two external testing cohorts of
center 4 and center 5. PI-RADS, prostate imaging-reporting and data system version; PI-RADS 3U, PI-RADS category 3 upgrade; PI-RADS 3D, PI-RADS
category 3 downgrade; center4, CSH, Changshu No.1 People’s Hospital; center5, TZH, People’s Hospital of Taizhou; center6, SKH, Suzhou Kowloon
Hospital; PCa, prostate cancer; ciPCa, clinically insignificant prostate cancer; csPCa, clinically significant prostate cancer
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based on the manual segmentation and annotation of
prostatic lesions for PI-RADS 3 patients [10–14], the
present study can automatically mine the deep features of
the lesions and their periphery and therefore is more
conveniently applied to clinical practice.
Some recent studies have used deep learning methods to

explore the discrimination between csPCa and non-csPCa,
and achieved excellent diagnosis performance [27–29].
However, these studies developed the categorization
models based on the prostate lesions with PI-RADS 1–5
rather than PI-RADS 3. As an extension of these studies,
the present study not only constructed deep learning
models with additional soft and channel attention modules,
but also applied a transferring learning frame to achieve
categorizations from csPCa and PCa. The soft attention
module integrates the location information of lesions as
clinical prior into the AttenNet model. According to
reported guidelines of PI-RADS 2.1 [6], T2WI and DWI
scores play a dominant role in the clinical assessment of
prostate lesions when the lesions were in TZ and PZ,
respectively. Additionally, the use of contrast contributes
additional costs and time, as well as the potential risk of
gadolinium-based contrast administration complications.
It has been proposed that these clinical risks and burdens

could be reduced by eliminating the dynamic contrast
enhanced sequence altogether. Indeed, in this study, we
only included the biparametric MRI data in the module
training. The soft attention module increases the weight of
corresponding biparametric MRI images in the output of
the AttenNet model according to the location of the
lesions. This modulatory processing is consistent with the
evaluation criterion for the weight of sequences by PI-
RADS assessed by radiologists in clinical practice and
makes full use of the various information provided by
multi-modal MRI images. The channel attention module
can highlight important information throughout the pre-
training and training processes by filtering out features that
do not contribute to the classification, thereby helping to
achieve accurate output scores. As demonstrated by the
ablation experiments results, these attention modules gui-
ded the AttenNet model to focus on the critical features,
thereby achieving excellent diagnostic performance for
predicting PCa and csPCa.
In clinical practice, whether PI-RADS 3 patients require

a biopsy is still debatable. In fact, as a routine practice in
the clinical diagnosis of PCa [6, 7], PI-RADS 3 patients in
the present study were suspected of high risks and
therefore underwent biopsies to avoid missed diagnoses.

Patient group External testing cohort (CSH, center 4) External testing cohort (TZH, center 5)
AUC(95%CI) ACC(%) SEN(%) SPE(%) PPV(%) NPV(%) AUC(95%CI) ACC(%) SEN(%) SPE(%) PPV(%) NPV(%)

D-max (cm)

< 1.5 0.786(0.599,0.974) 74.2(46/62) 77.8(7/9) 73.6(39/53) 33.3(7/21) 95.1(39/41) 0.955(0.833,1) 92.3(12/13) 50(1/2) 100(11/11) 100(1/1) 91.7(11/12)

≥ 1.5 0.911(0.814,1) 72.2(26/36) 100(6/6) 66.7(20/30) 37.5(6/16) 100(20/20) 0.932(0.840,1) 88.2(45/51) 81.8(9/11) 90(36/40) 69.2(9/13) 94.7(36/38)

PSA (ng/ml)

0≤PSA<10 0.500(0,1) 66.7(28/42) 50(1/2) 67.5(27/40) 7.1(1/14) 96.4(27/28) 0.700(0.558,0.842) 95.1(39/41) 0(0/1) 97.5(39/40) 0(0/1) 97.5(39/40)

10≤PSA<20 0.845(0.666,1) 75.8(25/33) 75(3/4) 82.8(24/29) 37.5(3/8) 96(24/25) 1 88.9(8/9) 100(2/2) 85.7(6/7) 66.7(2/3) 100(6/6)

PSA≥20 0.841(0.666,1) 65.2(15/23) 100(9/9) 57.1(8/14) 60(9/15) 100(8/8) 0.850(0.639,1) 71.4(10/14) 80(8/10) 50(2/4) 80(8/10) 50(2/4)

Patient group External testing cohort (CSH, center 4) External testing cohort (TZH, center 5) External testing cohort (SKH, center 6)

AUC(95%CI) ACC
(%) SEN(%) SPE(%) PPV(%) NPV(%) AUC(95

%CI)
ACC
(%) SEN(%) SPE(%) PPV(%) NPV(%) AUC(95

%CI) ACC(%) SEN(%) SPE(%) PPV(%) NPV(%)

D-max (cm)

< 1.5 0.802
(0.678,0.925)

69.4
(43/62)

78.9
(15/19)

65.1
(28/43)

50
(15/30)

57.5
(28/32)

0.889
(0.700,1)

84.6
(11/13)

75
(3/4)

88.9
(8/9)

75
(3/4)

88.9
(8/9) 1 83.3

(5/6)
100
(1/1)

80
(4/5)

50
(1/2)

100
(4/4)

≥ 1.5 0.810
(0.665,0.954)

77.8
(28/36)

76.5
(13/17)

78.9
(15/19)

76.5
(13/17)

78.9
(15/19)

0.994
(0.981,1)

94.1
(48/51)

100
(14/14)

91.9
(34/37)

82.4
(14/17)

100
(34/34)

0.885
(0.725,1)

82.4
(14/17)

100
(4/4)

76.9
(10/13)

57.1
(4/7)

100
(10/10)

PSA (ng/ml)

0≤PSA<10 0.719
(0.537,0.902)

66.7
(28/42)

66.7
(8/12)

66.7
(20/30)

44.4
(8/18)

83.3
(20/24)

0.895
(0.715,1)

92.7
(38/41)

66.7
(2/3)

94.7
(36/38)

50
(2/4)

97.3
(36/37)

0.958
(0.839,1)

90.9
(10/11)

100
(3/3)

87.5
(7/8)

75
(3/4)

100
(7/7)

10≤PSA<20 0.804
(0.641,0.967)

75.8
(25/33)

70
(7/10)

78.3
(18/23)

58.3
(7/12)

85.7
(18/21)

0.889
(0.656,1)

88.9
(8/9)

100
(3/3)

83.3
(5/6)

75
(3/4)

100
(5/5)

0.833
(0.535,1)

85.7
(6/7)

100
(1/1)

83.3
(5/6)

50
(1/2)

100
(5/5)

PSA≥ 20 0.825
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Fig. 6 The results of subgroup analysis with AttenNet models for different levels of tumor size and PSA. a The performance of the AttenNet model for predicting
PCa in each subgroup. b The performance of the AttenNetmodel for predicting csPCa in each subgroup. Center 4, CSH, Changshu No.1 People’s Hospital; center 5,
TZH, People’s Hospital of Taizhou; center 6, SKH, Suzhou Kowloon Hospital; PCa, prostate cancer; csPCa, clinically significant prostate cancer; PSA, prostate-specific
antigen; ROC, receiver operating characteristics; AUC, area under ROC curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; D-max, diameter in greatest dimension
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However, such indiscriminate suspicions led to the over-
biopsies of 84.7% (83/98) and 79.7% (51/64) in the
external testing cohort of centers 4 and 5 respectively. In
contrast, 71.1% and 92.2% of non-csPCa were identified
by our proposed AttenNet model based on MRI images in
center 4 and center 5 cohorts, respectively. In other
words, the AttenNet model may avoid unnecessary
biopsies for some patients. Thus, the AttenNet model has
great potential to improve the SPE of the diagnosis of
csPCa based on MRI images and therefore, to decrease
the risk-benefit ratio of biopsy for PI-RADS 3 patients.
The AttenNet model can be regarded as a triage test to
decide which patients should undergo biopsy and which
patients could safely avoid immediate painful biopsy.
For PI-RADS assessment based on T2WI and DWI, one

of the important differences between PI-RADS 4 and 5 is
the D-max (< 1.5 cm and ≥ 1.5 cm,) [6]. In the present
study, the AttenNet models for predicting csPCa and PCa
achieved satisfactory AUCs in both D-max < 1.5 cm and
D-max ≥ 1.5 cm subgroups in all external testing cohorts.
The PSA level of > 20 ng/mL had a high probability of
PCa, whereas that within 0–20 ng/mL is associated with
PCa incidence of less than 25% [30]. In addition to these
two levels, even in moderate levels of PSA (i.e., 10–20 ng/
mL), the AttenNet model achieved satisfactory dis-
criminating performance in all external testing cohorts.
This excellent performance of the AttenNet models can
help increase radiologists’ diagnostic confidence.
There are several limitations in the present study. First,

the sample sizes were not the same at all centers. Second,
even though this is a multicenter retrospective study, a
prospective multicenter study with more image data is
needed in future research. Third, the data were from dif-
ferent MRI scanners. In the future, we will domore research
on this issue. Fourth, not all patients underwent RP treat-
ment for different clinical reasons; for some patients, biopsy
pathology was used as a standard reference. In fact, some
studies have reported that biopsy is a reliable way to detect
PCa. Finally, although patients identified by this model were
considered safe for the time being, follow-ups like repeat
MRI or PSA should need to be taken seriously.
In conclusion, The AttenNet models with double

channel attention modules achieved excellent perfor-
mance in predicting both PCa and csPCa in PI-RADS 3
patients. Therefore, this model can greatly reduce unne-
cessary biopsies and thereby improve the risk-benefit ratio
of biopsy for PI-RADS 3 patients.
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