Abstract
1. Two species of double-helical RNA isolated from mycelium of Penicillium chrysogenum were titrated with acid at 25°C and 95°C (solvent 0.1m-sodium phosphate buffer). At 25°C denaturation occurred at about pH3. At 95°C in the denatured form cytosine residues titrated as a simple monobasic acid of pK3.9 compared with pK≃2.5 for the native form at 25°C. 2. On thermal denaturation in neutral and acidic solutions one species of RNA (38% rG·rC) `melted' in three distinct stages, equivalent to a mixture of three species, namely one of about 25% rG·rC, another of about 33% rG·rC and a third of about 46% rG·rC: the relative proportions were 0.25:0.35:0.40. 3. On thermal denaturation in acidic solutions the increase in the fraction of ionized cytosine residues concomitant with the `melting' of rG·rC base pair also affects the spectrum especially at 280nm and serves to enhance the contribution of rG·rC base pairs at this wavelength. The increment in ε(P) at 280nm on `melting' an rG·rC base pair approaches 53501·mol−1·cm−1 depending on pH, compared with 33501·mol−1·cm−1 at pH7. In contrast ε(P) at 280nm is scarcely affected by `melting' rA·rU base pairs or by the protonization of adenine residues. 4. Changes in the spectrum of Escherichia coli rRNA on denaturation in acidic solutions were studied to yield the mole fractions of rA·rU and rG·rC base pairs `melting' at particular pH values.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cox R. A. A possible method for characterizing the secondary structure of ribonucleic acids. Biochem J. 1966 Jul;100(1):146–168. doi: 10.1042/bj1000146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox R. A. A spectrophotometric study of the secondary structure of ribonucleic acid isolated from the smaller and larger ribosomal subparticles of rabbit reticulocytes. Biochem J. 1970 Mar;117(1):101–118. doi: 10.1042/bj1170101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox R. A. Conformation of nucleic acids and the analysis of the hypochromic effect. Biochem J. 1970 Dec;120(3):539–547. doi: 10.1042/bj1200539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox R. A., Kanagalingam K., Sutherland K. S. Double-helical character of ribonucleic acid from virus-like particles found in Penicillium chrysogenum. Biochem J. 1970 Dec;120(3):549–558. doi: 10.1042/bj1200549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox R. A. The secondary structure of ribosomal ribonucleic acid in solution. Biochem J. 1966 Mar;98(3):841–857. doi: 10.1042/bj0980841. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FELSENFELD G., SANDEEN G. The dispersion of the hyperchromic effect in thermally induced transitions of nucleic acids. J Mol Biol. 1962 Dec;5:587–610. doi: 10.1016/s0022-2836(62)80088-6. [DOI] [PubMed] [Google Scholar]
- KIRBY K. S. A new method for the isolation of ribonucleic acids from mammalian tissues. Biochem J. 1956 Nov;64(3):405–408. doi: 10.1042/bj0640405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kallenbach N. R. Theory of thermal transitions in low molecular weight RNA chains. J Mol Biol. 1968 Nov 14;37(3):445–466. doi: 10.1016/0022-2836(68)90114-9. [DOI] [PubMed] [Google Scholar]
- LIFSON S., PEACOCKE A. R. The effect of sodium chloride on the reversible dissociation curves of denatured sodium deoxyribonucleate. Biochim Biophys Acta. 1956 Oct;22(1):191–192. doi: 10.1016/0006-3002(56)90241-4. [DOI] [PubMed] [Google Scholar]
- MARMUR J., DOTY P. Thermal renaturation of deoxyribonucleic acids. J Mol Biol. 1961 Oct;3:585–594. doi: 10.1016/s0022-2836(61)80023-5. [DOI] [PubMed] [Google Scholar]
