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Multiple myeloma (MM) is an incurable blood cancer with unclear aetiology. Proteomics is a valuable 
tool in exploring mechanisms of disease. We investigated the causal relationship between circulating 
proteins and MM risk, using two of the largest cohorts with proteomics data to-date. We performed 
bidirectional two-sample Mendelian randomization (MR; forward MR = causal effect estimation of 
proteins and MM risk; reverse MR = causal effect estimation of MM risk and proteins). Summary 
statistics for plasma proteins were obtained from genome-wide association studies performed using 
SomaLogic (N = 35,559; deCODE) and Olink (N = 34,557; UK Biobank; UKB) proteomic platforms and 
for MM risk from a meta-analysis of UKB and FinnGen (case = 1649; control = 727,247) or FinnGen 
only (case = 1085; control = 271,463). Cis-SNPs associated with protein levels were used to instrument 
circulating proteins. We evaluated proteins for the consistency of directions of effect across MR 
analyses (with 95% confidence intervals not overlapping the null) and corroborating evidence 
from genetic colocalization. In the forward MR, 994 (SomaLogic) and 1570 (Olink) proteins were 
instrumentable. 440 proteins were analysed in both deCODE and UKB; 302 (69%) of these showed 
consistent directions of effect in the forward MR. Seven proteins had 95% confidence intervals (CIs) 
that did not overlap the null in both forward MR analyses and did not have evidence for an effect in 
the reverse direction: higher levels of dermatopontin (DPT), beta-crystallin B1 (CRYBB1), interleukin-
18-binding protein (IL18BP) and vascular endothelial growth factor receptor 2 (KDR) and lower 
levels of odorant-binding protein 2b (OBP2B), glutamate-cysteine ligase regulatory subunit (GCLM) 
and gamma-crystallin D (CRYGD) were implicated in increasing MM risk. Evidence from genetic 
colocalization did not meet our threshold for a shared causal signal between any of these proteins and 
MM risk (h4 < 0.8). Our results highlight seven circulating proteins which may be involved in MM risk. 
Although evidence from genetic colocalization suggests these associations may not be robust to the 
effects of horizontal pleiotropy, these proteins may be useful markers of MM risk. Future work should 
explore the utility of these proteins in disease prediction or prevention using proteomic data from 
patients with MM or precursor conditions.

Keywords Proteomics, Multiple myeloma, Mendelian randomization, Genetic colocalization

Abbreviations
CRYBB1  Beta-crystallin 1
CRYGD  Gamma-crystallin D
CSF2  Granulocyte-macrophage colony stimulating factor 2
DPT  Dermatopontin
FSTL1  Follistatin-related protein 1
GCLM  Glutamate-cysteine ligase regulatory subunit
GWAS  Genome-wide association study
IL18BP  Interleukin 18 binding protein
IVW-MRE  Inverse variance weighted multiplicative random effects
Kb  Kilobase

1Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organisation, 
Lyon, France. 2Population Health Sciences, University of Bristol, Bristol, UK. 3MRC Integrative Epidemiology 
Unit, University of Bristol, Bristol, UK. 4University Hospitals Bristol and Weston NHS Foundation Trust, 
Bristol, UK. 5School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK. email:  
lucy.goudswaard@bristol.ac.uk

OPEN

Scientific Reports |         (2025) 15:3752 1| https://doi.org/10.1038/s41598-025-86222-5

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-86222-5&domain=pdf&date_stamp=2025-1-29


KDR  Vascular endothelial growth factor 2
LD  Linkage disequilibrium
Mb  Megabase
MGUS  Monoclonal gammopathy of unknown significance
MM  Multiple myeloma
MMP-9  Matrix metalloproteinase-9
MR  Mendelian randomization
NPX  Normalised protein expression
OBP2b  Odorant-binding protein 2b
PheWAS  Phenome-wide association study
RFU  Relative fluorescence unit
EDTA  Ethylenediaminetetraacetic acid
RSPO3  R-spondin-3
SNP  Single nucleotide polymorphism
TNFSF10  Tumour necrosis factor ligand superfamily member 10
UKB  UK Biobank

Multiple myeloma (MM) is the second most common haematological malignancy in the UK, with ~ 6000 new 
cases each year1. It is characterised by neoplastic proliferation of plasma cells in the bone marrow, resulting in 
overproduction of monoclonal immunoglobulins commonly referred to as paraprotein or M-protein. Nearly 
all cases of MM are preceded by the benign asymptomatic precursor condition, monoclonal gammopathy of 
unknown significance (MGUS)2,3. The diagnosis of active MM is based on the presence of M-protein in serum 
or urine, along with evidence of end-organ damage including hypercalcemia, renal insufficiency, anaemia, and 
bone lesions4. Patients with MM are at an increased risk of developing blood clots and are susceptible to recurrent 
and severe infections5–7. Periods of disease remission can be induced using chemotherapy regimens including 
proteosome inhibitors (e.g. bortezomib), immunomodulatory drugs (e.g. lenalidomide), and monoclonal 
antibodies (e.g. daratumumab), plus autologous stem cell transplant for a subset of eligible patients8 However, 
MM is currently incurable with a median overall survival of 6 years8. The pathogenesis of MM is not fully 
understood, potentially limiting the identification of curative therapeutic strategies.

Observational studies have reported multiple risk factors associated with the development of MM, including 
age, sex, ancestry, family history, and adiposity9–14. However, observational studies are often limited by reverse 
causation (for example, where an association between exposure and outcome is driven by prevalent outcome 
influencing the exposure) and confounding (for example, where an exposure-outcome association is spuriously 
identified due to the association between a third trait (confounder) with both the exposure and outcome)15. 
Mendelian randomization (MR) is an approach which uses genetic variants (alleles randomly assigned during 
gametogenesis; typically, single nucleotide polymorphisms (SNPs)) to estimate the causal effect of an exposure 
on an outcome16–18. When core assumptions are satisfied (Fig. 1; see statistical analysis section), MR is robust to 
biases observed in conventional observational analyses (e.g., reverse causation and confounding)15,19. Previous 
studies have used MR to investigate evidence for a causal role of known MM risk factors (such as obesity) in 
disease development and identified novel factors such as increased telomere length to be implicated in MM 
risk20.

Alterations in the abundance of specific circulating proteins has been used previously in cancer diagnosis 
and risk stratification21 and can also highlight mechanistic pathways22,23. There is evidence that the inclusion of 
proteomics in clinical prediction tools improves MM risk prediction in comparison to using clinical risk factors 
alone24. Furthermore, as proteins are the main target for small molecule drugs and biologics25, exploring the role 
of circulating proteins in MM risk using MR may identify targets for intervention. A recent MR study identified 
13 potentially causal proteins26 but was limited in scale and may suffer bias due to horizontal pleiotropy (where 
the genetic variant has an effect on the outcome that is not via its effect on the exposure; Fig. 1). Horizontal 
pleiotropy may occur as authors included trans genetic variants (variants not in or near the gene coding region 
for the protein of interest)27. As a result, these trans genetic variants are more likely to be pleiotropic variants 
than cis genetic variants). Authors also did not use an independent sample to replicate results26. We set out to 
systematically explore the relationship between circulating proteins and MM risk using two-sample MR with 
robust instrument selection15,19 and corroborate our findings using genetic colocalization.

Methods
Overview
Using data for circulating proteins from two genome-wide association studies (GWAS), we performed 
bidirectional two sample MR analyses to explore the causal role of circulating proteins in MM risk (Fig. 1). We 
performed a forward MR to estimate the effect of circulating proteins on MM risk and a reverse MR to estimate 
the effect of MM risk on circulating proteins. The latter was performed to evaluate evidence for reverse causality, 
where MM may influence protein levels. We performed genetic colocalization to investigate shared causal 
signals between circulating proteins and MM risk, which may strengthen evidence for causal effects identified 
in the MR analyses or highlight non-causal markers of MM risk that warrant further investigation28. Data for 
circulating proteins were obtained from GWAS performed in two independent studies of European ancestry: 
deCODE (SomaLogic) and UK Biobank (Olink). Data for MM risk were obtained from GWAS performed in 
two independent studies (UK Biobank and FinnGen) which we meta-analysed. Given overlap of UK Biobank 
data (which is a source of bias in MR29), we used deCODE proteins with the meta-analysis of MM risk and 
UK Biobank proteins with the FinnGen GWAS30,31. All GWAS performed followed standard quality control 
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procedures (for example, imputation quality score > 0.9 and minor allele frequency > 1%) to filter directly 
sequenced and imputed variants.

Circulating protein GWAS
GWAS data for up-to 4907 aptamers (4719 unique proteins) were obtained from Ferkingstad et al.32. Protein 
concentrations were measured from ethylenediaminetetraacetic acid (EDTA) plasma samples from 35,559 
Icelandic individuals (deCODE) using SomaScan® (SomaLogic). Briefly, a large proportion of the Icelandic 
population enrolled in a nationwide programme administered by deCODE genetics; 49,708 enrolled individuals 
underwent whole-genome sequencing while 166,281 additional individuals were genotyped with imputation 
based on the whole-genome sequencing data32. The SomaScan platform uses Slow Off-rate Modified Aptamers 
which make direct contact with proteins, enabling their detection and quantification in relative fluorescence 
units (RFUs) using a DNA microarray. Multiple aptamers can bind to a single protein (e.g., because of splice-
isoforms). UK Biobank is a population-based cohort of ~ 500,000 individuals aged 40–69 recruited between 
2006 and 2010 in the United Kingdom. Genotyping and imputation have been described previously33. Briefly, 
the genotyping and imputation involved a two-step imputation process performed first using the Haplotype 
Reference Consortium and then performed using a merged UK10K and 1000 Genomes Phase 3 reference 
panel, these two imputations were combined and the HRC imputed variant was kept in instances of duplication. 
Prior to genome-wide analysis, protein values were inverse rank normal transformed and adjusted for age, sex 
and sample age. These residuals were standardised again using an inverse rank normal transformation and a 

Fig. 1. Directed acyclic graph of bidirectional Mendelian randomisation analyses. (A) The effect of circulating 
proteins on multiple myeloma risk. (B) The effect of multiple myeloma risk on circulating proteins. The 
Mendelian randomization assumptions are given as 1–3: (1) the genetic variant is robustly associated with the 
exposure; (2) there are no confounders of the genetic variant and outcome association; (3) the genetic variant is 
associated with the outcome only via its association with the exposure. SNPs: single nucleotide polymorphism; 
pQTL: protein quantitative trait loci (SNPs associated with the abundance of a protein).
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linear mixed-model (LMM) GWAS was performed using BOLT-LMM32,34–36. Assuming the distribution of 
protein concentration was normal prior to inverse rank normal transformation, we interpret these units to be 
approximately equivalent to a normalized standard deviation (SD).

Genome-wide summary level data were also obtained for up to 2923 proteins from Sun et al.37. Protein 
concentrations were measured from EDTA plasma samples from 34,557 participants of European ancestry from 
UK Biobank using the Olink Explore 3072 panel. Briefly, Olink Explore 3072 uses a proximity extension assay 
(PEA) which uses matched pairs of antibodies with DNA tags that, once bound to their target protein, hybridise 
and can be amplified and quantified using polymerase chain reaction. Proteins are measured in normalised 
protein expression (NPX) units which are on a log2 scale38. Prior to genome-wide analysis, protein values 
were inverse rank normal transformed and a whole-genome regression model using a leave one chromosome 
out scheme was performed with REGENIE (version 2.2.1)37 adjusting for age, age2, sex, age × sex, age2 × sex, 
batch, centre, genetic array, time between blood sampling measurement and the first 20 principal components. 
Assuming the distribution of protein levels was normal prior to inverse rank normal transformation, we interpret 
these units to be approximately equivalent to a normalized SD.

Genetic instruments for circulating protein levels
In MR analyses of circulating proteins and MM risk we used cis-SNPs to instrument proteins. Cis-SNPs were 
obtained from the supplementary data of the original study. Briefly, a 1 mega base (1,000,000 bases; Mb) region 
was defined around each SNP reaching the genome-wide significance threshold specified in each GWAS (p 
value < 1.8 × 10−9 in deCODE; p value < 1.7 × 10−11 in UKB) which were ≤ 1 Mb from the transcription start site 
of the protein coding gene (discovery) or ≤ 1 Mb from the gene encoding the measured protein (replication). 
Starting with the SNP with the lowest p value, any overlapping regions were merged until no overlapping regions 
remained (major histocompatibility complex was treated as a single region). Linkage disequilibrium (LD) based 
clumping was used to identify whether regions were associated with multiple proteins; regional SNPs with high 
LD (r2 ≥ 0.8) were merged into a single region and the SNP with the lowest p value was considered the sentinel 
SNP. In total, 1192 of 4907 aptamers (deCODE) and 1860 of 2923 proteins (UKB) had available cis-SNPs.

Multiple myeloma genome-wide association studies
For our MR analyses using deCODE SomaLogic protein GWAS as the exposure, genome-wide summary level 
data for MM risk were obtained from a meta-analysis of 1649 cases and 727,247 controls from two GWAS 
conducted in UK Biobank and FinnGen. In UK Biobank39, MM case status was recorded according to the 
International Classification of Diseases 10th revision (ICD 10)40 following mapping to Phecode v.1.2 (code 204.4 
for MM)41. Cases were defined as those having the MM Phecode between recruitment (2006–2010) and the end 
of 2017; controls were defined as any individual who had not ever been diagnosed with MM (those who did not 
have the MM ICD 10 code). This gave a total of 564 MM cases and 455,784 controls at the time the GWAS was 
run. Models were adjusted for age, age2, sex, age × sex, age2 × sex and the top 20 PCs provided by UK Biobank. In 
FinnGen42 (cases = 1085; controls = 271,463), MM was recorded according to the International Classification of 
Diseases (ICD-O-3) following linkage with the Finnish Cancer Registers, controls were defined as any individual 
without any cancer diagnosis, and models were adjusted for sex, age, top 10 PCs, and genotyping batch. Meta-
analysis was performed to increase the power of the MM GWAS using METAL (version 2011-03-25) and results 
were filtered to remove SNPs with a heterogeneity p value ≤ 0.05 between the two GWAS43. The METAL software 
was used to combine test statistics and standard errors and control for population stratification as recommended 
in the METAL documentation44. Estimates for each SNP indicates the difference in disease risk for each copy of 
the effect allele.

Instruments for multiple myeloma risk
We used all SNPs which met the following requirement to instrument MM risk: a genome-wide significance 
threshold of p < 5 × 10−8 and an LD R2 threshold of 0.001 within a 10 kilo-base (kb) window to identify robust and 
independently associated SNPs. In the meta-analysis of MM GWAS, 1 SNP met the genome-wide significance 
threshold and was used to instrument MM risk. In the FinnGen MM GWAS no SNPs met the genome-wide 
significance threshold; instead, a lower threshold of p < 5 × 10−7 was used and 3 SNPs were identified. Of these, 
2 SNPs (rs555992394 and rs8141529) were available in the UKB proteomic GWAS data. In relaxing the p value 
threshold for the MM GWAS in FinnGen, we may invalidate a core assumption of MR that the instrument 
is robustly associated with the exposure. As such, we caution that these analyses were employed to evaluate 
possible conflicting evidence to the forward MR and should not be interpreted as causal estimates of MM 
liability on protein levels. We also explored possible pleiotropic effects that may arise from this relaxation via 
searching the SNP rsIDs in the IEU Open GWAS Project45, essentially performing a phenome-wide association 
study (PheWAS).

Statistical analysis
Mendelian randomization analysis
MR relies upon three core assumptions (Fig. 1): (1) the genetic variant is associated with the exposure, (2) there 
are no confounders of the genetic variant and outcome association (such as population structure), and (3) the 
genetic variant is associated with the outcome only via its association with the exposure (i.e., not via alternate 
pathways)16.

For all exposures, the following summary-level data were obtained from the original GWAS: rsID, effect 
allele, other allele, effect allele frequency (EAF), effect estimate, standard error of the effect estimate, p value of 
the effect estimate, and where available sample size for each SNP. Where individual SNP sample size was not 
available the overall sample size was used. Genetic variants were extracted from each outcome GWAS and, where 
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these were not available, proxy SNPs were included if LD was ≥ 0.8. For all SNPs, the inclusion of SNPs where the 
reference strand was ambiguous was allowed and the reference strand was inferred using minor allele frequency 
(where minor allele frequency was not ≥ 0.3, in which case the proxy SNP was excluded). Data were harmonized 
such that the exposure effect allele was on the increasing scale. As such, MR estimates for the effect of circulating 
proteins on MM risk are given as the per effect allele normalised SD unit increase in protein concentration whereas 
estimates for the effect of MM risk on circulating protein levels are given as the normalised SD unit difference 
in protein per effect allele increase in disease risk. We used F-statistics to assess instrument strength, with an 
F-statistic > 10 indicating a strong instrument46. F-statistics were calculated as: F = R2 × (N − 1 − k)/((1 − R2) × k), 
where k is the number of SNPs in the instrument and N is sample size of the SNP-exposure GWAS. R2 was 
calculated as: R2 = (2(b2) × EAF  ×   (1 − EAF))/((2(2) × EAF × (1 − EAF)) + ((SE2) × (2 × N) × EAF ×  (1 − EAF))), 
where b is the SNP-exposure association, EAF is the effect allele frequency of the SNP, SE is the standard error of 
the SNP-exposure association, and N is sample size of the SNP-exposure GWAS47. All exposure data are given in 
Supplementary Table 1 and Supplementary Table 2 for proteins and Supplementary Table 3 for MM.

For the forward MR analysis for circulating proteins and MM risk, two protein GWAS were used. Where 
proteins were measured by SomaLogic in deCODE, the MM GWAS used was the meta-analysis of FinnGen and 
UKB. Where proteins were measured by Olink in UKB, the MM GWAS was in FinnGen alone (to avoid sample 
overlap). To maximise power for MM risk, and given instrument strength for proteins was high48, we re-ran 
analyses for the UKB Olink proteins using the meta-analysis of the MM GWAS. Each protein was instrumented 
with a single cis-SNP49. As such, the Wald ratio50, which is the ratio of the SNP-outcome association divided 
by the SNP-exposure association, was used to estimate the effect of the protein on MM risk50. For the reverse 
MR, where there was a single SNP the Wald ratio was implemented, and where there were 2 or more (when 
instrumenting MM) an inverse variance weighted multiplicative random effects (IVW-MRE) model, which 
combines Wald ratios together in a meta-analysis, adjusting for heterogeneity51, was used as the primary model. 
The IVW-MRE model assumes that the strength of association of genetic instruments with the exposure does 
not correlate with the size of the pleiotropic effects and that the pleiotropic effects have an average of zero.

We performed Steiger directionality tests to assess whether the direction of effect being tested (either 
protein-MM risk or MM risk-protein) was supported52,53. The Steiger test calculates the variance explained in 
the exposure and the variance explained in the outcome by the exposure-related instruments. If more variance is 
explained in the outcome than the exposure, this may indicate a violation of MR assumption 3, that the genetic 
instrument is only associated with the outcome via the exposure52. When performing Steiger directionality tests 
with a single variant it can be difficult to distinguish between causal and pleiotropic models52. In such instances, 
and which we apply here, it is beneficial to combine evidence with that of bidirectional MR analyses and look 
for consistency. Proportion of variance liability was calculated for the UK Biobank MM GWAS using prevalence 
data for the United Kingdom and for the FinnGen MM GWAS using prevalence data for Finland. Prevalence 
data were obtained from the World Health Organization54. The 5-year prevalence of MM in the United Kingdom 
in 2022 was 1.4 per 100,000, and for Finland the prevalence was 1.1 per 100,000. These prevalence statistics were 
used to calculate a weighted prevalence for the meta-analysis of UK Biobank and FinnGen55.

Colocalization
We performed genetic colocalization analyses of all circulating proteins performed in the MR and MM risk. We 
extracted 125 kb, 250 kb, 500 kb and 1 Mb windows around the cis-SNP used in the MR analysis. We extracted 
all SNPs in these windows from the MM GWAS. We used the 1 Mb window as our main analysis and used the 
other windows to examine sensitivities to the number of SNPs included in the colocalization analysis. Signals 
present in multiple windows are unlikely to be driven by window size. Colocalization was implemented using 
the single causal variant assumption of Giambartolomei et al.56. The European population of the 1000 genomes 
reference panel (phase 3) was used to generate LD matrices. Priors were set based on 5000 SNPs57: p1 = 10−6, 
p2 = 10−6, and p12 = 10−7; where: p1 is the prior probability that a random SNP in the region is associated with 
the protein and not MM risk, p2 is the prior probability that a random SNP in the region is associated with MM 
risk and not the protein, and p12 is the prior probability that a random SNP in the region is associated with the 
protein and MM risk.

Identifying causal effects
We do not focus on p values in identifying potential causal relationships. Instead, we look for consistent evidence 
of effect in our two studies and use a multi-step approach to limit false positives: (1) the effect estimate was 
consistent in direction across both forward MR analyses, (2) the 95% CI did not overlap the null in both forward 
MR analyses, (3) a true direction of effect indicated by the protein-MM risk Steiger directionality test, and (4) 
there was no evidence for an effect in the reverse MR analysis. Furthermore, we consider evidence for a potential 
causal relationship to be strongest where there is also evidence from colocalization (h4 > 0.8).

Results
Causal effects of circulating proteins on MM risk
In our MR analyses using two independent protein GWAS to instrument protein levels, a total of 2564 proteins 
had suitable genetic instruments which were available in the outcome GWAS—994 proteins measured by 
SomaLogic and 1570 measured by Olink. 440 unique proteins (based on gene name) were measured and had 
instruments in both protein GWAS and 36% of these were instrumented by the same SNP. MR estimates for the 
forward MR are presented as odds ratios for MM risk, which are calculated for a per unit increase in protein. 
Results for all MR analyses are presented in Supplementary Table 4 and Supplementary Table 5.

In the MR analysis using data from deCODE (SomaLogic) proteins as the exposure and the FinnGen/
UKB meta-analysis of MM risk as the outcome, 53 circulating proteins had 95% CIs that did not cross the null 
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(Additional File 1; Supplementary Table 4; Fig. 2). There was evidence that higher levels of proteins such as 
dermatopontin (DPT) and Beta-crystallin 1 (CRYBB1) had an increasing effect on MM risk (ORs per normalised 
SD unit of protein 1.44 (95% CI 1.18–1.77) and 1.95 (95% CI 1.30–2.92), respectively). For all 53 proteins, Steiger 
directionality tests suggested the tested direction was the true causal direction (Additional File 1; Supplementary 
Table 6). In the reverse MR, there was evidence that MM risk may impact levels of 1 of the 53 proteins: matrix 
metalloproteinase-9 (MMP-9; Supplementary Table 7).

In the MR analysis using data from UK Biobank (Olink) proteins as the exposure and FinnGen myeloma 
GWAS as the outcome, 78 circulating proteins had MR estimates with 95% CIs that did not cross the null 
(Additional File 1; Supplementary Table 5, Fig.  3) and results were concordant when using the MM meta-
analysis (Additional File 1; Supplementary Table 8). For example, higher levels of proteins such as granulocyte–
macrophage colony stimulating factor (CSF2, OR 0.53, 95% CI 0.37–0.78), R-spondin-3 (RSPO3, OR 0.41, 95% 
CI 0.24–0.70) and tumour necrosis factor ligand superfamily member 10 (TNFSF10, OR 0.56, 95% CI 0.39–0.81) 
decreased MM risk and higher levels of dermatopontin (DPT) increased MM risk (OR 1.47, 95% CI 1.14–
1.90). For all 78 proteins, Steiger directionality tests suggested the tested direction was the true causal direction 
(Additional File 1; Supplementary Table 9). In the reverse MR, 1 of the 78 proteins (Odorant-binding protein 
2b, OBP2B) had evidence for an effect of MM risk on protein levels (Additional File 1; Supplementary Table 10). 
Both SNPs used to instrument MM risk were also associated with amyloidosis (rs555992394) and had evidence 
for having an effect on blood cell counts including lymphocyte count and red cell distribution width (rs8141529) 
in the pheWAS analysis. These effects may be part of the shared causal pathway rather than pleiotropic given that 
amyloidosis and MM both share the precursor condition, MGUS58, and that MM is known to have an effect on 
blood cell counts through myelosuppression59.

A total of 440 aptamers/proteins were shared across both MR analyses exploring the effect of circulating 
proteins on MM risk, therefore resulting in two MR estimates. For 157 of these aptamers/proteins, the cis-

Fig. 2. Estimates of the effect of circulating proteins (SomaLogic) on risk of multiple myeloma. Mendelian 
randomization analysis performed with protein genome-wide association study (GWAS) data from deCODE 
(SomaLogic) and outcome multiple myeloma data from meta-analysis of GWAS from UK Biobank and 
FinnGen. Proteins (Y axis) are represented by gene names (Additional File 1; Supplementary Table 4).
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SNP identified for each from the Olink GWAS was also the cis-SNP identified from the SomaLogic GWAS. 
Where proteins were included in MR analyses using instruments from both protein GWAS, effect estimates 
from both forward MR analyses are available in Supplementary Table 11. Of these shared proteins, a total of 
302 had consistent directions of effect (both negative or both positive beta coefficients) across MR analyses, 
seven of which had 95% CIs which did not overlap the null in both analyses. In the reverse MR, MM risk had 
little evidence for an effect on all seven of these circulating proteins (Fig. 4). Of these seven circulating proteins, 
an increase in abundance of four proteins (dermatopontin (DPT), beta-crystallin B1 (CRYBB1), interleukin-
18-binding protein (IL18BP) and vascular endothelial growth factor receptor 2 (KDR)) was associated with an 
increase in MM risk, while an increase in the abundance of 3 proteins (odorant-binding protein 2b (OBP2B), 
glutamate-cysteine ligase regulatory subunit (GCLM) and gamma-crystallin D (CRYGD)) was associated with 
decreased MM risk.

Fig. 3. Estimates of the effect of Olink circulating proteins on risk of multiple myeloma. Mendelian 
randomization analysis using exposure protein genome-wide association study (GWAS) from UK Biobank 
(Olink) and outcome multiple myeloma GWAS data from FinnGen. Proteins (Y axis) are represented by gene 
names (Additional File 1; Supplementary Table 5).
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Colocalization
In colocalization analyses for the seven proteins with MR evidence for a causal effect on MM risk (Fig. 4), evidence 
to support colocalization was limited across all windows (h4 < 0.8 Supplementary Table 12, Supplementary Table 13). 
There was evidence for a shared causal variant between one protein, uncharacterized family 31 glucosidase KIAA1161, 
and multiple myeloma (h4 = 0.84 across all colocalization windows). This protein was detected and quantified in 
deCODE (SomaLogic), where there was MR evidence to support a causal relationship, but it was not measured in 
UKB (Olink).

Discussion
In this study, bidirectional MR and genetic colocalization analyses were performed to identify whether 
circulating proteins causally impact MM risk. There was evidence using two protein GWAS that higher levels 
of four circulating proteins may increase MM risk and higher levels of three circulating proteins may decrease 
MM risk, however none of these results were supported by genetic colocalization, possibly indicative of low 
power or that estimates may not be robust to horizontal pleiotropy. A single protein, KIAA1161, measured 
only by SomaLogic, with evidence of an increasing effect on MM risk was supported by evidence from genetic 
colocalization.

Two previous MR studies have explored the effect of circulating proteins on MM risk. The first focused 
on inflammatory proteins alone26, whereas the second used GWAS data from protein levels measured by the 
SomaScan in a smaller sample (3301 participants) from the INTERVAL study60. Four of the 13 proteins with 
evidence for a causal relationship with MM risk by Wang et al. were also instrumented in our analysis. Our MR 
evidence (also using SomaScan) only supported a causal relationship for one of these proteins and MM risk 
(follistatin-related protein 1, FSTL1). We did not find evidence for a causal effect for the other three proteins, this 
may be due to the use of trans SNPs by Wang et al. which likely included pleiotropic pathways60.

All seven proteins with consistent evidence across our two protein datasets have limited evidence in the 
literature of having previously been implicated in the pathogenesis or progression to MM61. The strongest 
evidence for an effect was with dermatopontin on MM risk, where higher levels were associated with an 

Fig. 4. Effect of circulating proteins on multiple myeloma risk: consistent effects in Mendelian randomization 
analyses. Results are given for 7 proteins with consistent directions of effect, 95% confidence intervals (CIs) 
that do not cross the null, and no evidence of reverse effect across both MR analyses. Proteins (Y axis) are 
represented by gene names.
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increase in MM risk. DPT is an extracellular matrix protein and has been shown to promote adherence of whole 
bone marrow to extracellular matrix proteins in mice62. As this protein may have a role in the bone marrow 
microenvironment, it is possible that dysregulation of this protein could contribute to the MM pathology. The 
involvement of DPT in MM pathology needs to be further characterised, such as through mouse models of MM 
and by exploring whether DPT is dysregulated in the bone marrow in patients with MM. In the current study, 
MR evidence suggested that higher levels of KDR (VEGFR2) increased risk of MM, and there was no evidence 
for an effect in the reverse direction (MM risk on levels of VEGFR2). VEGFR2 is involved in endothelial 
migration and proliferation and is implicated in liver, renal and thyroid cancers, where it is now exploited as 
a drug target63. The role of VEGFR2 in the progression from healthy, through the precursors of MM (MGUS 
and smouldering myeloma), and to MM, should be further characterised, for instance, by generating proteomic 
data on patient samples. MR evidence suggested that higher levels of GCLM may result in a decrease in MM 
risk. GCLM is a subunit of an enzyme involved in the cellular glutathione (GSH) biosynthetic pathway, which is 
critical to cell survival. Treating MM cells with a proteasome inhibitor, bortezomib (an approved MM treatment), 
has been shown to lead to higher levels of GCLM. This is directionally consistent with the MR results, where 
higher levels of GCLM had a lowering effect on MM risk64. In addition, there was one protein with evidence of 
genetic colocalization: uncharacterized family 31 glucosidase KIAA1161, it is unclear how this protein might be 
involved in MM risk.

Our results point towards putative causal relationships between circulating proteins and MM risk. However, 
there are limitations to these analyses that need to be considered and results should be interpreted with caution. 
Firstly, we did not adjust for multiple testing in each individual MR analyses. As we attempted to perform a 
discovery and replication approach, we believe that adjusting for multiple testing would be too conservative, 
especially given that the MM GWAS used are not highly powered. Suitable genetic instruments were also not 
available for all proteins, therefore some potentially important protein-MM or MM-protein effects will inevitably 
be missed. We used a single cis-SNP to instrument circulating protein levels, which limited our ability to perform 
sensitivity analyses. The assumption of a single causal variant may be overly simplistic, however, approaches using 
multiple cis-SNPs would likely yield similar estimates given that the single cis-SNPs used were strongly associated 
with protein levels (median F statistic of 742 for UKB Olink proteins and 321 for deCODE SomaLogic proteins). 
Additionally, perturbations in one protein do not occur in isolation. Effects of a single protein may be because of 
its role in one or more pathways, and therefore it is likely that there is a much more complex interaction between 
circulating proteins and risk of MM, rather than one or a few proteins being solely responsible for the change in 
risk. Currently, exploring the contribution of proteins together (as opposed to performing univariable analyses) 
to MM risk remains a challenge. These analyses were performed in participants only of European ancestry living 
in the UK, Iceland and Finland, therefore findings may not be generalisable to participants of other ancestries 
or in other contexts. More highly powered GWAS are required in non-European ancestries in order to evaluate 
the role of circulating proteins in MM risk more broadly. Another possible limitation is that there may be some 
misclassification, where participants who were deemed as controls could include those with undetected MGUS 
or smouldering myeloma, and this may lead to estimates being biased (towards or away from the null).

We identified seven proteins which have consistent MR evidence across two proteomic datasets for a role 
in MM risk. Some of these proteins have previously been implicated in the other cancer types (VEGFR2 and 
GCLM), however relatively little is known about these seven proteins in relation to MM risk. Triangulation of 
evidence across study-designs is crucial to strengthening evidence of association; generating proteomic data 
from patients with MM (or its precursor conditions) will help to further understand the results observed here.

Data availability
All scripts are archived on Zenodo65 and available on GitHub66. Meta-analysis was performed following the 
METAL online documentation44. All analyses were performed using R version 4.1.2. MR analyses were per-
formed using TwoSampleMR (version 0.4.22)30. Colocalisation was performed using coloc (version 5.2.0)31. 
Weighted prevalence was calculated using the metaprop() function from the meta package55 (version 6.5-0). For 
the purpose of open access, the author(s) has applied a Creative Commons Attribution (CC BY) licence to any 
Author Accepted Manuscript version arising from this submission.
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