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The amino acid sequence of the T cell receptor (TCR) varies between T cells of an individual’s 

immune system. Particular TCR residues nearly guarantee mucosal-associated invariant T (MAIT) 

and natural killer T (NKT) cell transcriptional fates. To define how the TCR sequence affects T 

cell fates, we analyze the paired αβTCR sequence and transcriptome of 961,531 single cells. We 

find that hydrophobic complementarity-determining region (CDR)3 residues promote regulatory 

T cell fates in both the CD8 and CD4 lineages. Most strikingly, we find a set of TCR sequence 

features that promote the T cell transition from naive to memory. We quantify the extent of these 

features through our TCR scoring function “TCR-mem.” Using TCR transduction experiments, 

we demonstrate that increased TCR-mem promotes T cell activation, even among T cells that 

recognize the same antigen. Our results reveal a common set of TCR sequence features that enable 

T cell activation and immunological memory.

Graphical Abstract

In brief

The human immune system contains a vast repertoire of somatically recombined T cell receptor 

(TCR) sequences. To connect TCR sequence to T cell function, Lagattuta et al. analyze the paired 

αβTCR and transcriptome of >960,000 T cells. They identify TCR amino acids that promote T 

cell activation and immunological memory.
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INTRODUCTION

T cells are critical lymphocytes of the adaptive immune system. Early in T cell development, 

stochastic genome rearrangement on chromosomes 7 and 14 defines each T cell with its own 

T cell receptor (TCR).1 In the thymus and periphery, T cell differentiation depends critically 

on TCR activation.2–8 One prominent example is the PLZFhigh, innate-like transcriptional 

fate, which is nearly guaranteed when V(D)J recombination selects TRAV1–2 and TRAJ33, 

TRAJ20, or TRAJ12.9

Given the central role of the TCR in T cell activation and differentiation, we10 and others11–

16 have identified differences in TCR sequences (e.g., hydrophobicity, V gene selection) 

using bulk sequencing of flow-sorted T cell populations. However, bulk sequencing obscures 

the pairing of TCR α and β chains. Furthermore, flow sorting requires predefining T cell 

states for investigation and may miss important transcriptional heterogeneity of T cells.

Now, single-cell sequencing assays enable joint profiling of the TCR and transcriptome. In 

contrast to bulk sequencing methods, single-cell technology anchors α and β TCR reads 

to individual cells, allowing reconstruction of the full TCR α/β heterodimer. Moreover, 

genome-wide transcriptional analysis can comprehensively define T cell states. Early 

methods to jointly analyze TCR and transcriptional data17,18 have suggested that TCR 

sequence similarity may correspond to similarity in transcriptional state.

To statistically define the relationship between the TCR sequence and T cell state, we 

analyze 961,531 T cells with quality-controlled αβTCR and transcriptional profiling 

at single-cell resolution from seven published datasets (Table 1). Rather than pre-

specifying transcriptional states, we use paired dimensionality reduction to uncover relevant 

transcriptional states in an unbiased fashion. Our results define four TCR scoring functions 

that quantify the transcriptional fate predisposition conferred by the TCR. We apply these 

scoring functions to better understand thymic selection as well as cell state variation within 

antigen-specific T cell populations.

RESULTS

T cell transcriptional state annotation

To construct an accurately annotated reference of T cells, we used dataset 1 (from 

the COMBAT consortium19; Table 1) with 371,621 T cells from 122 individuals with 

multimodal TotalSeq profiling of mRNA and surface proteins. We clustered the cells in two 

ways: first, agnostic to protein expression (clusters A1–A9; Figures 1A and S1), and second, 

incorporating traditional surface markers via a linear multimodal strategy26,27 (clusters B1–

B9; Figure S2). Cluster A9, representing the PLZFhigh innate-like T cell state, accounted 

for nearly all canonical mucosal-associated invariant T (MAIT) or natural killer T (NKT) 

TCRs (Figures 1B and 1C). Clusters B1–B9 delineated CD4, CD8, central memory (CM), 

and effector memory (EM) states based on a curated list of 10 surface proteins, including 

CD45RO and CD45RA (Figure S2; STAR Methods). To standardize cell state definitions 

across datasets, we projected all additional datasets (Table 1) into these two embeddings and 

transferred annotations via k-nearest-neighbors classification (k = 5; STAR Methods).
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Transcriptional fate matching between T cells with the same TCR sequence from different 
individuals

We first used dataset 1 (Table 1) to assess whether perfect TCR sequence matching raised 

the likelihood of T cell state matching. Within an individual, identical TCR sequences likely 

reflect an expanded T cell clone, comprised of cells that tend to be transcriptionally similar. 

To avoid clonally related cells, we focused on identical TCR sequences sampled from two 

different individuals. We identified 115 pairs of “TCR twins”: two T cells from two different 

individuals with the same TCR α and β amino acid sequences (Figure 1D; STAR Methods). 

To test the general relationship between the TCR sequence and T cell state, we asked 

whether the transcriptional states of TCR twins were concordant more often than expected 

by chance. For statistical power in this analysis, we used relatively coarse clusters to define 

transcriptional states (A1–A9; Figure 1A).

Under the null, we would expect 25 (of 115) transcriptionally concordant TCR-twin pairs 

(see STAR Methods). Instead, we observed 80 (p = 6.1 × 10−28, exact binomial test, Figure 

1E; STAR Methods). To assess if this enrichment was explained by major histocompatibility 

complex (MHC)(-like) restriction, we repeated our analysis with MAIT cell and NKT cell 

TCRs removed and observed an enrichment in concordant states (p = 2.3 × 10−21, exact 

binomial test). Partitioning into CD4+ and CD8+ populations did not obviate enrichment 

either (p = 4.0 × 10−9, p = 0.00018, exact binomial test). Recognizing that SARS-CoV-2 

infection is a potential confound, we filtered to individuals that were PCR negative for 

SARS-CoV-2 but continued to observe enrichment in both dataset 1 and dataset 2 (13 

matches versus 6 expected by chance, p = 0.00048, exact binomial test; 11 matches versus 

6 expected by chance, p = 0.00138, exact binomial test). To account for shared human 

leukocyte antigen (HLA) alleles, we repeated this analysis in an HLA-genotyped dataset25 

and continued to observe enrichment regardless of whether the TCR twins were sampled 

from individuals with a shared HLA allele (p = 2.9 × 10−101, exact binomial test). Indeed, 

neither matched SARS-CoV-2 status nor matched HLA allele(s) significantly increased TCR 

twinning or similarity. These results suggest a consistent influence of TCR sequence on T 

cell fate in unrelated individuals.

This analysis is limited to TCRs found in more than one individual (“public TCRs”), 

which comprise <0.01% of the TCRs in this cohort. Public TCRs have distinct structural 

features28 and could demonstrate transcriptional state matching due to recognition of 

common antigens. We hypothesized, however, that these results were driven to some extent 

by the distinct biophysical features of the TCR sequences. If so, similar, but not identical, 

TCR sequences would also promote similar T cell fates.

A multidimensional approach to uncover TCR sequence features that guide T cell fate

To extend our study to private TCRs, we converted each TCR sequence into a vector of 

biophysical features. Consistent with other numerical representations of the TCR,17,29 we 

translated each amino acid residue in both the α and β chains of the TCR into five Atchley 

factors.30 These factors correspond to hydrophobicity, size, charge, secondary structure, 

and heat capacity. Applying this to α and β complementarity-determining and framework 

regions of the TCR yielded 1190 biophysical features. Excluding invariant positions and 
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framework regions and adding interaction terms between adjacent residues yielded 1,250 

TCR features (Figures 2A and 2B; Table S2; STAR Methods).

We aimed to identify TCR sequence effects on T cell state in an unbiased fashion, without 

restricting to preselected cell states. To find generalizable associations, we combined dataset 

1 with a second published dataset (dataset 2, Table 1; STAR Methods), resulting in 494,419 

quality-controlled T cells from 256 individuals. We applied regularized canonical correlation 

analysis (rCCA) (STAR Methods). Each axis identified by rCCA denotes a weighted sum of 

gene expression principal component (PC) scores (a transcriptional state) that correlates with 

a weighted sum of TCR sequence features.

We mitigated technical confounding in our rCCA implementation. First, to prevent 

confounding by variable clone size, we selected one cell at random to represent each 

clone. We confirmed that results were invariant to the specific set of cells sampled (STAR 

Methods). To mitigate overfitting, we added a ridge regularization to the covariance matrix 

for each of the inputs to rCCA, using 5-fold cross-validation to tune both lambda penalty 

values. To assess overfitting, we randomly assigned 68 donors to a validation test set, such 

that ~30% of clones (29.3%) were held out from training.

rCCA identifies four T cell fates informed by TCR sequence

We observed canonical correlations between the TCR sequence and T cell state descending 

from R = 0.54. To assess the statistical significance of each canonical correlation, we 

permuted our data 1,000 times and re-applied rCCA (STAR Methods). We observed 

empirical p values <0.001 for both training and held-out testing data for the first four 

canonical variates (CVs) (Figure 2C).

To interpret the four continuous T cell states identified by rCCA, we examined CVs 

1–4 in terms of cell scores and expression correlates (Figures 2D–2H; Table S3; STAR 

Methods). Cells scoring the highest on CV1 localized to transcriptional cluster A9 (Figures 

2E and S3A), the innate-like, PLZFhigh transcriptional fate for canonical MAIT and NKT 

cell TCRs (Figures 1B and 1C). CV2 tracked closely with CD8 versus CD4 surface 

expression, delineating CD4+ T versus CD8+ T populations (Figures 2F and S3B–S3D). 

These results point to families of peptide presentation molecules as the primary source 

of covariation between the TCR sequence and T cell state. Indeed, it is well established 

that unconventional (MR1, CD1d), MHC class I, and MHC class II families each prefer 

biophysically distinct αβTCR sequences.9,13,14,31–35

In addition to these known relationships, rCCA proposed previously unknown connections 

between the TCR sequence and T cell state. CV3 highlighted TCR sequence similarity 

between FOXP3-expressing CD4+ regulatory T (Treg) cells and KIR+HELIOS+ CD8 T 

cells (Figures 2G and S3E–S3K), which have recently been described as human CD8+ 

Treg cells.36 This suggests that the same TCR sequence features may promote suppressive 

functional states in both the CD4 and CD8 compartments. Most strikingly, CV4 appeared 

to capture TCR sequence differences between naive and memory T cells (Figures 2H and 

S3L). Surface protein measurements indicated that both EM and CM CD4+ and CD8+ T 
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cells scored highly on CV4 (Figures S3M and S3N). This raises the intriguing possibility 

that some sequence features render the TCR more generally prone to activation.

TCR scoring functions quantify TCR sequence features that inform T cell fate

The continuous T cell states defined by rCCA nominated four contrasts in T cell state 

for further study: PLZFhigh versus other, CD8T versus CD4T, regulatory T (Treg) versus 

conventional T (Tconv), and memory versus naive. For each of these recognizable T cell 

fate decisions, we used logistic regression on the same observations from datasets 1 and 2 

to learn a more precise predictive weighting scheme on the 1,250 TCR sequence features 

(Table S2; STAR Methods). As a secondary analysis, we trained separately on COVID-

positive and COVID-negative samples and verified that these predictive weighting schemes 

were robust to infection status (Figures S4A and S4B). We named each predictive weighting 

scheme, or TCR scoring function, by the T cell state of interest: “TCR-innate”’ to predict the 

innate-like, PLZFhigh state, “TCR-CD8” to predict the CD8+ state, “TCR-reg” to predict the 

Treg cell state, and “TCR-mem” to predict the memory state.

To interpret each of these TCR scoring functions, we examined relative contributions from 

each complementarity-determining region (CDR) and amino acid residue (Figures 2I–2P 

and S4C–S4F; STAR Methods). TCR-innate was characterized by critical amino acids 

in CDR2α, reflecting TRAV gene selection (Figure S4C). As expected from previous 

studies,13,14 TCR-CD8-high sequences were depleted for positive charge in the junctional 

mid-region of CDR3 (Figure 2N). TCR-reg reflected increased hydrophobic CDR3β 
residues in CD4 Treg cells, consistent with previous reports.10,12 Paired αβ TCR sequencing 

data revealed that enrichment for hydrophobic amino acids extended to CDR3α (Figure 

2O). For TCR-mem, feature dependence analysis highlighted the importance of CDR3α and 

CDR3β (Figure 2L). We assessed TCR-reg and TCR-mem separately in CD4+ and CD8+ T 

cells and observed that these TCR scoring functions were equally applicable to both lineages 

(Figures S4G and S4H; STAR Methods).

TCR scoring functions generalize across individuals

We considered the possibility that the associations between the TCR sequence and T cell 

state were driven by a subset of individuals. We first stratified each dataset by clinical 

status (COVID, sepsis, influenza, none of the above) and used mixed-effects logistic 

regression to calculate βTCRscore, the association between the TCR score calculated based 

on both α and β chains, and the target T cell state (βTCRscore = log odds ratio [OR] per 

standard deviation increase in TCR score; see STAR Methods). In each clinical stratum, 

we observed a statistically significant positive association for each TCR scoring function 

(24 tests, maximum p = 0.001; Figures 3A–3D; Table S4). Reassured that our TCR 

scoring functions were not driven by the clinical subset, we considered the possibility of 

an unknown individual-level mediator, such as HLA genotype. We computed βTCR-innate, 

βTCR-CD8, βTCR-reg, and βTCR-mem within each individual’s T cells separately and estimated 

the proportion of individuals for whom our TCR score does not raise the odds of its 

target T cell state(the local false sign rate37). Random effects meta-analysis indicated a 

near-zero proportion for each of our four TCR scoring functions (<1 × 10−6; Figures S4I–
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S4L; STAR Methods). We concluded that since our TCR scoring functions were robust to 

inter-individual variation, they should generalize to unseen samples.

We next applied our TCR scoring functions to data outside of our training set. In the 30% 

of dataset 1 and dataset 2 T cell clones held out from training, we observed replication 

of each TCR scoring function (Figures 3E–3H; STAR Methods). In an external dataset 

of peripheral blood T cells (dataset 3, Table 1), we observed a consistent and statistically 

significant increase in the odds of the T cell state of interest for each TCR scoring function 

(Figures 3I–3P; Table S4). Compared to T cells in the lowest TCR-mem decile, T cells in the 

highest TCR-mem decile had a 66% greater odds of being observed in a memory state (OR 

= 1.66, 95% confidence interval [CI] = [1.57–1.76], p = 3.5 × 10−68; Table S4). These results 

indicate a substantial role for TCR-mem in shaping the odds of T cell memory formation.

Alternative TCR scoring schemes

We next benchmarked our TCR scoring functions against existing TCR metrics. We 

previously developed a Treg cell TCR scoring function, “TiRP,” using the TCR β chain 

alone.10 With the additional information of the α chain, TCR-reg clearly outperformed TiRP 

(βTiRP = 0.14, 95% CI = [0.10–0.18]; βTCR-reg = 0.29, 95% CI = [0.25–0.32]; dataset 3 

CD4T cells). Amino acid interaction strength38 (AAIS) has been postulated to estimate a 

TCR’s average affinity to peptide-MHC (pMHC),39 but this has not been directly tested. In 

dataset 3, increasing AAIS corresponded to an increase in the odds of memory state only 

when applied to CDR3 amino acids (βAAIS = 0.02, 95% CI = [0.003–0.03], p = 0.008). 

The effect size for AAIS was minimal compared to TCR-mem (βTCR-mem = 0.14, 95% 

CI = [0.12–0.15]), however. Including AAIS as a covariate did not substantially change 

the estimated effect size of TCR-mem (conditional βTCR-mem = 0.14, 95% CI = [0.12–

0.15], heterogeneity p = 0.92). TCR-reg and TCR-mem clearly outperform these alternative 

TCR scoring functions by capturing both α and β TCR sequence features that promote 

recognition in the context of the TCR-pMHC interface.

We next wanted to assess if more complex models would provide better TCR scoring 

functions. For each of the four T cell states of interest, we trained a convolutional neural 

network (CNN) to detect possibly nonlinear associations between TCR amino acid motifs 

and T cell fate (STAR Methods). However, this deep learning approach provided no 

substantial benefit in discovery or external validation data (Figure S5; Table S6).

Untranslated products of V(D)J recombination do not affect T cell fate

Because stochastic V(D)J recombination precedes T cell fate decisions, TCR sequence 

associations to T cell state likely reflect causal effects of V(D)J recombination. However, 

a causal pathway that begins with V(D)J recombination and ends with the T cell state 

likely includes several important biological mediators. To better understand these mediators, 

we decomposed V(D)J recombination into three products: (1) DNA-level excisions and 

insertions, (2) amino acid changes in the surface TCR, and (3) antigen recognition. To 

isolate (1) from (2), we analyzed nonproductive V(D)J recombination sequences that are not 

translated into surface TCR proteins. Then, to distinguish (3) from (2), we examined the 

TCR sequences and T cell states of antigen-labeled single cells.
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Nonproductive TCR sequence transcripts can be detected when an out-of-frame V(D)J 

recombination event on one chromosome is followed by an in-frame V(D)J recombination 

event on the other.40 Due to stop codons and frameshift errors, these nonproductive 

TCRs represent V(D)J genome rearrangements that are not translated into surface antigen 

receptors.41 To assess whether these DNA-level changes are sufficient to produce the 

observed effects on T cell state, we applied our TCR scoring functions to nonproductive 

TCR sequences (dataset 4, Table 1). We observed no evidence of association for any of 

the four TCR scoring functions (p > 0.05). Down-sampling did not obviate associations 

for productive TCRs, confirming that the lack of association was not due to reduced 

statistical power (Table S4; STAR Methods). We concluded that the DNA-level excisions 

and insertions from V(D)J recombination are, in general, not sufficient to affect T cell state; 

recombination products must be expressed at the protein level.

TCR-mem predicts increased T cell activation within antigen-specific populations

T cell activation, marked by CD69 upregulation, is a critical first step in T cell memory 

formation.42,43 If TCR-mem increases the odds of memory formation by promoting early 

activation, then (1) recently activated T cells (CD69high, MK67high, CD38+, HLA-DR+) 

should exhibit high TCR-mem, and (2) this phenomenon should be apparent in Jurkat 

cells, which biologically resemble T cells in activation but not the subsequent steps of 

memory formation. We identified recently activated T cells (CD69high, MK67high, CD38+, 

HLA-DR+) in dataset 1 and observed that TCR-mem in this subset was just as high as 

TCR-mem in other memory subsets (Figure 4A). Thus, we hypothesized that TCR-mem 

sequence features promote T cell activation.

First, we tested whether higher TCR-mem led to greater cellular activation in Jurkat cells. 

We selected four naturally occurring TCR sequences found in human data23 that spanned 

the range of our TCR-mem metric and transduced each TCR into Jurkat cells (Figure 

4B). All four TCR sequences recognize the same “ELA-” antigenic peptide from melanoma-

associated antigen recognized by T cells (MART-1), presented on HLA-A*02:01.23 Thus, 

this array of TCR sequences allows us to examine whether changes in amino acid 

composition that increase TCR-mem indeed causally promote T cell memory formation 

while controlling for cognate antigen and HLA (Table 2).

Each TCR sequence exhibited greater CD69 upregulation compared to baseline (fold 

change > 1), confirming specific reactivity to the MART-1 antigen. However, the extent 

of activation, quantified by the percentage of CD69+ cells compared to baseline, clearly 

tracked with the TCR-mem score (Figure 4C). Thus, the TCR sequence features that we 

have observed to differ between memory and naive cells in vivo appear to causally promote 

T cell activation in vitro.

To assess the stability of this finding, we examined the CD69 response at different antigen 

doses. We titrated the amount of MART-1-expressing antigen-presenting cells (APCs) and 

repeated the overnight co-culture. These titrations showed the expected dose-response 

relationship, which indeed escalated with increasing TCR-mem (Figure S6A). At each 

antigen dose, increased TCR-mem scores corresponded to greater CD69 responses.
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We next assessed if altering individual residues to increase or decrease TCR-mem tracked 

with changes in activation. For this, we examined a different antigen, the “NLV-” peptide 

from the cytomegalovirus (CMV) antigen pp65 presented on HLA-A*02:01. We repeated 

the co-culture experiment with four TCR sequences that differ by one to four amino acids 

in CDR3α but are otherwise identical in sequence (Table 2). These TCRs were synthetically 

engineered and previously shown to recognize the “NLV-” antigenic peptide (Schub et al.44 

and Abdelfattah et al.45). As in the MART-1 experiments, we saw that each incremental 

gain in TCR-mem induced a greater fold change in activation (Figures 4D and S6B). Thus, 

our TCR-mem metric identifies replicable differences in immune reactivity between TCR 

sequences, even when sequence differences are as minor as one CDR3α amino acid.

To extend our analyses beyond these two HLA-A*02:01 antigens, we examined single-

cell profiling data23 (dataset 5, Table 1) with 44 Dextramers, including HLA-A*02:01, 

HLA-B*07:02, and HLA-B*35:01. Briefly, 80 million CD8+ T cells from the peripheral 

blood of four human donors were exposed to 44 pMHC-bar-coded Dextramers. Multimodal 

sequencing then assayed the αβTCR sequence, transcriptome-wide expression, and pMHC 

Dextramer counts for each Dextramer-positive cell. Using Symphony and k-nearest 

neighbors, we assigned T cell states based on our multimodal T cell reference (Figure 4E).

Following custom normalization of Dextramer Unique Molecular Identifier (UMI) counts 

(Figures S7A–S7D; STAR Methods), we observed a mixture of transcriptional states 

within each antigen-specific population (Figure S7E). This transcriptional heterogeneity is 

consistent with other tetramer-sorted single-cell RNA sequencing (scRNA-seq) studies,46–

48 demonstrating that T cells with the same antigen specificity vary in transcriptional 

phenotype. We wondered if TCR-mem helped to explain naive versus memory phenotypes 

within each antigen-specific population.

Within each antigen-specific population, we tested the association between TCR-mem and 

memory state using a single cell per TCR clone (STAR Methods). Consistent with our 

TCR transduction experiments, we observed β > 0 for the majority of antigens (19/29), 

including seven antigen-specific populations with a nominally significant (one-tailed p < 

0.05) result (Table S7). For example, among T cells recognizing IPSINVHHY presented 

on HLA-B*35:01, memory T cells bore TCRs with significantly higher TCR-mem scores 

(logistic regression βTCR-mem = 0.36, p = 0.02).

Given a lack of statistical power within each antigen-specific population (Figure S7F), we 

conducted a meta-analysis across antigen-specific populations. We observed a significant 

effect of TCR-mem on memory state, adjusted for antigen specificity (Figures 4F and S7G, 

logistic regression βTCR-mem = 0.11, p = 0.002; STAR Methods). We observed minimal 

evidence for a difference in βTCR-mem before and after adjusting for antigen specificity 

(heterogeneity p = 0.45) and minimal heterogeneity in βTCR-mem across antigen-specific 

populations (I2 = 29.2%, H2 = 1.41, Q = 39.6, p = 0.07). TCR-mem associations hold 

after adjusting for Dextramer staining intensity (STAR Methods) as a proxy for TCR-

pMHC affinity, which is thought to contribute to memory T cell development.49 These 

results suggest that TCR-mem sequence features predispose pMHC recognition in general, 

regardless of the cognate antigen.
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TCR-mem is distinct from antigen binding affinity

While TCR-mem is a property of the TCR sequence alone, binding affinity is a property 

of a TCR and antigen pair. For a given TCR sequence, binding affinity varies widely with 

choice of antigen. For example, TCR 1E650 exhibits approximately eight times greater 

binding affinity to RQFGPDWIVA-HLA-A*02 compared to ALWGPDPAAA-HLA-A*02 

(buried surface area: 32,593.7 compared to 3,956.5 Å2, PDBePISA). Thus, we did not 

expect TCR-mem to correspond to binding affinity for any particular antigen.

To assess whether TCR-mem corresponds to TCR-pMHC binding affinity, we (1) conducted 

tetramer dilution experiments, (2) examined published micropipette adhesion data, and (3) 

computed buried surface areas in crystal structures. First, we stained each of our four 

MART-1-specific Jurkat populations with increasing concentrations of MART-1 tetramer 

(Figure S6C). We approximated each TCR’s affinity to the MART-1 tetramer with EC5, 

the tetramer concentration at which 5% of Jurkat cells stain positively for tetramer. This 

5% threshold allowed us to learn dose-response relationships without inducing tetramer 

aggregation, extrapolating beyond the observed measurements, or generating false positives 

from negative control tetramers (Figure S6D). EC5 measurements for the MART-reactive 

TCRs did not reveal a clear relationship between TCR-mem and binding affinity (Figure 

S6E).

Given the potential limitations of tetramers,51,52 we next analyzed data from a micropipette 

adhesion assay that simultaneously measures two-dimensional (2D) TCR affinity and 

TCR sequence (iTAST).53 Compared to tetramers, micropipette adhesion assays are better 

able to detect low-affinity interactions, and better correspond to gold-standard surface 

plasmon resonance (SPR) affinity measurements.51,53 Moreover, iTAST enables the study of 

receptors and ligands in their native cell membrane context, without the possible confound 

of TCR transduction rate. The published iTAST dataset53 includes 33 αβ-paired TCRs 

that bind the hepatitis C virus (HCV) antigen KLVALGINAV complexed with HLA-A*02. 

We calculated TCR-mem scores for these 33 TCR sequences and again observed no clear 

relationship between TCR-mem score and binding affinity (R = −0.1; Figure S6F).

Third, we analyzed crystal structures of αβTCRs complexed with class I MHC from 

the Protein Data Bank (PDB). Following quality control, we obtained 138 structures, 

corresponding to 86 unique epitopes and 17 unique class I HLA alleles. We used PDBePISA 

to estimate the amount of surface area buried between the TCR and pMHC, a known 

proxy for binding affinity.54 We observed no significant relationship between TCR-mem 

and binding affinity (R = 0.009; Figure S6G). Thus, three lines of evidence (Figures S6E–

S6G) indicate minimal correspondence between TCR-mem and binding affinity. TCR-mem 

appears to capture a TCR characteristic that is distinct from binding affinity yet reliably 

promotes T cell activation. Investigators have found the relationship between TCR-pMHC 

binding and T cell activation to be complex.55,56

Thymic selection pressures on the TCR sequence continue in the periphery

Given the consistent association of TCR-mem to memory state across antigenic peptides, 

we hypothesized that TCR-mem reflects reactivity to the underlying MHC(-like) molecule. 

Lagattuta et al. Page 10

Cell Rep. Author manuscript; available in PMC 2025 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Specifically, to promote recognition of many different pMHCs, such reactivity would be 

focused on elements of MHC that are conserved across MHC genes and alleles. This TCR 

property, referred to as “generic MHC reactivity,” has been theorized based on thymic 

development in TCR-transgenic mice.57

If TCR-mem reflects generic MHC reactivity, then TCR-mem sequence features should 

also help to explain which T cells survive thymic positive selection. Only T cells with a 

sufficient signaling response to pMHC survive thymic positive selection, which is marked 

by progression from a double-positive (DP) phenotype to a single-positive (SP) phenotype. 

Thus, if TCR-mem reflects generic MHC reactivity, then SP T cells should have higher 

TCR-mem compared to DP T cells, 90%2 of which never progress to the SP stage.

Thus, we compared TCR-mem scores between SP and DP prenatal T cells (14,584 cells, 

dataset 6, Table 1; STAR Methods). TCR-mem was designed to describe differences 

between naive and memory TCRs in the periphery. We observed, however, that the same 

TCR sequence weighting scheme also described differences between DP and SP TCRs 

(Figure 5A, βTCR-mem = 0.14, p = 1.3 × 10−7; Table S4). Strikingly, the TCR-mem 

difference between SP and DP thymic T cells was statistically indistinguishable from the 

TCR-mem difference between memory and naive peripheral T cells (heterogeneity p = 

0.86). Thus, TCR differences between peripheral naive and memory T cells appear to 

echo TCR filtering by thymic positive selection (Figure 5B). The influence of TCR-mem 

persists in the absence of foreign and peripheral antigens, suggesting that TCR-mem reflects 

generic pMHC reactivity. While thymic selection imposes a minimum threshold for pMHC 

reactivity, TCRs that survive this threshold by a wider margin appear more likely to reach a 

memory T cell state in the periphery.

An alternative possibility we considered is that higher TCR-mem T cells had developed 

earlier in life and therefore accrued more opportunities to transition their transcriptional 

state. This time-related confound would require systematic shifts in V(D)J recombination 

with human age. However, we observed no relationship between age and TCR-mem (Figure 

S6H).

Prenatal TCR sequences from dataset 6 allowed us to further extend our age-related line of 

inquiry. Some prenatal T cells lack DNTT expression, precluding non-templated insertion of 

TCR nucleotides and resulting in systemically shorter TCR sequences.58 To identify these 

age-related TCRs, we applied IGoR59 to infer the number of nucleotide insertions in each 

thymic TCR. We observed that additional nucleotide insertions corresponded to a decrease 

in the odds of thymic positive selection, but this effect did not account for the effect of 

TCR-mem (Figure 5C). Controlling for the number of nucleotide insertions, TCR-mem 

actually demonstrated a stronger effect on the odds of positive selection (conditional βTCR-

mem = 0.22, 95% CI = [0.13–0.30], p = 3.8 × 10−7, compared to unconditional βTCR-mem = 

0.14, 95% CI = [0.09–0.19], p = 1.3 × 10−7; Table S4; STAR Methods). Thus, TCR-mem 

associations are not explained by developmental time points.

In contrast to TCR-mem, TCR-innate was not applicable to thymic data. Thymic T cells 

expressing canonical TCRs for MAIT cells and NKT cells had not yet reached the innate-
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like, PLZFhigh transcriptional fate (Figure 5D). This is consistent with previous reports 

showing that PLZFhigh fate acquisition is dependent on peripheral antigen recognition.60–62 

TCR-reg and TCR-CD8, however, were applicable to thymic data (Figures 5E and 5F, 

βTCR-CD8 = 0.78, p = 4.3 × 10−97; βTCR-reg = 0.14, p = 2.8 × 10−5; Table S4; STAR 

Methods), indicating that these associations between TCR sequence and T cell state are not 

dependent on peripheral antigen recognition. Evidently, TCR sequence features shape T cell 

differentiation outcomes in both the thymus and periphery, influencing which T cells are 

able to generate an effective immune response.

DISCUSSION

In this study, we define four TCR scoring functions that estimate the TCR’s contribution to 

four T cell fates. These scoring functions are robust across numerous genetic and clinical 

contexts. Even among T cells that recognize the same antigen, these TCR scores help to 

explain variation in T cell states.

Our CCA-based quantitative approach allows us to understand the relative strength of 

previously observed connection between TCR sequence and T cell state. The most 

deterministic relationship belongs to MAIT cells. Structural studies have shown that MHC-

like molecule MR1 buries small metabolite antigens so that they do not contact TCR.63,64 

Consequently, MAIT cell TCRs need only recognize MR1, which marks a highly distinct 

transcriptional population of PLZFhigh, innate-like T cells. This tight link from αβ TCR 

sequence to T cell fate is unusual; were there other relationships of similar magnitude, we 

believe that our model would have identified them.

We observe elevated CDR3 hydrophobicity in KIR+HELIOS+CD8 T cells, consistent with 

a previous report.18 Schattgen et al.18 hypothesized that this CD8 population may be “MHC-

independent, noncanonical, or self-specific.” Our framework unifies this observation with 

CD4 investigations10,16: KIR+CD8+ T cells, which may functionally represent human CD8 

Treg cells,36 appear to resemble CD4 Treg cells in terms of TCR sequence. In general, 

hydrophobic and aromatic (F, L, I, C, Y, W) junctional CDR3 residues (both α and β) may 

increase a T cell’s likelihood of recognizing self-antigens, driving FOXP3 Treg cell fate in 

the case of CD4 co-receptors and KIR+HELIOS+ fate in the case of CD8 co-receptors.

We take particular interest in TCR-mem because it describes TCR sequence features that 

are generally advantageous for reaching a memory T cell state. Our own tetramer dilution 

experiments, external micropipette adhesion data, and buried surface area calculations each 

indicate that TCR-mem is distinct from antigen binding affinity. Rather, our TCR-mem 

scoring function can distinguish which TCR sequences recognizing a common antigen are 

more likely to activate. We have shown this with respect to endogenous TCR sequences 

recognizing a self-antigen (MART-1) and engineered TCR sequences recognizing a viral 

antigen (pp65). Increased TCR-mem also corresponds to positive selection in the thymus, 

extending previous observations that T cells with high self-reactivity (CD5high) also have 

higher reactivity to foreign antigens.65–67 With TCR-mem, we have identified a common set 

of TCR sequence features that promote both central and peripheral68 selection of the T cell 

repertoire.
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It is now clear that a TCR sequence conveys two types of information: transcriptional 

fate bias and antigen specificity. Both types of information may be crucial to the immune 

response in autoimmunity, cancer, and infection. TCR features may play a particularly 

important role in influencing T cell fate for T cells that recognize autoantigens, which ought 

to be relatively anergic. The therapeutic design of TCRs may need to consider not only 

recognition of the antigenic target but also differentiation into an effective T cell state.

Limitations of the study

There are several limitations to our study. First, our study is restricted to αβ TCR sequences 

by virtue of the standard custom primer set for V(D)J amplification. The usage of gamma-

delta, rather than αβ, TCR genes, has clear effects on the transcriptional state69 that merit 

further study. Second, our approach to defining a standard set of TCR sequence features 

excluded T cells in which more than one α or one more than one β chain was detected. 

We expect that dual-α chain T cells follow similar relationships between the TCR sequence 

and T cell state, but demonstrating this would require separate analysis approaches. Lastly, 

our TCR scoring functions are consistent across individuals and antigens, but they are 

insufficient to accurately classify T cell states. After all, the TCR sequence is only one minor 

influence on the transcriptional state of a given T cell.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the lead contact, Soumya Raychaudhuri (soumya@broadinstitute.org).

Materials availability

Primary materials generated during this study are available upon request through the lead 

contact.

Data and code availability

• All sequencing data analyzed in this study were previously deposited in online 

databases (Table S1).

• Custom analysis code for this manuscript is available at https://github.com/

immunogenomics/tcrpheno_analysis. An R package to apply our TCR scoring 

functions to new data is available at https://github.com/kalaga27/tcrpheno.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

STAR★METHODS

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human samples—All human samples analyzed in this study were downloaded 

from online repositories from prior publications (Table S1), which list demographic 

characteristics. Sample sizes are listed in Table 1. Human samples were not divided into 
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experimental groups. There was minimal influence of sex on the results of the study (Table 

S4).

Cell lines—TCRβ-null Jurkat (J.RT3-T3.5, male) and HEK-293T (CRL-3216, female) cell 

lines were obtained from the American Type Culture Collection (ATCC). HEK-293T cells 

were engineered to express HLA-A2 and authenticated by flow cytometry as described 

previously.70 TCRβ-null Jurkat cells were authenticated by flow cytometry, verifying that 

they do not express TCR at the cell surface. TCRβ-null Jurkat cells were cultured in RPMI 

(Gibco, A10491-01) with 10% FBS (HyClone) and 1% penicillin-streptomycin (Invitrogen, 

15140-122). HEK-293T cells were cultured in DMEM (Gibco, 11995065) with 10% FBS 

(HyClone) and 1% penicillin-streptomycin (Invitrogen, 15140- 122). Cells were regularly 

tested for mycoplasma; results were always negative.

METHOD DETAILS

Generation of antigen-specific Jurkat cell lines—TCRβ-null Jurkat cells were 

spinfected with lentivirus at varying concentrations to achieve a multiplicity of infection 

(MOI) < 1 and introduced with TCRs of interest. Each TCR was encoded by a single 

construct containing the mouse TCR constant region. A total of 1 × 106 cells were spun 

with 8 μg mL–1 polybrene (Millipore, TR-1003-G) and lentivirus for 30 min at 800g in 

12-well plates. Cells were incubated at 37°C and the virus was washed off after 24 h. 

After spinfection for 48 h, surface expression of TCR constructs was confirmed by flow 

cytometry.

Tetramer generation—The HLA-A*02:01 MART-1 and pp65 peptides were synthesized 

by Genscript and loaded onto APC QuickSwitch Quant HLA-A*02:01 tetramers (MBL 

International). Negative control tetramers were prepared with Tax peptide (LLFGYPVYV) 

and loaded onto PE QuickSwitch Quant HLA-A*0201 tetramers (MBL International).

Endogenous antigen expression cocultures—Following 8–16-h incubation at 37°C, 

cells were washed twice with PBS supplemented with 2 mM EDTA (PBE) and 0.5% 

BSA. For endogenous antigen expression, 56-mer peptide fragments were reverse-translated 

and synthesized as gBlocks (IDT) with 5′ and 3′ BP recombination sites and cloned 

into pDONR221. Peptide antigens were subsequently cloned into pHAGE-CMV-Nflag-HA-

DEST-IRES-Puro destination vectors using LR clonase (ThermoFisher Scientific Gateway 

Clonase).

pp65 56-mer: 

RLKAESTVAPEEDTDEDSDNEIHNPAVFTWPPWQAGILARNLVPMVATVQSGARA*

MART-1 56-mer: 

MPREDAHFIYGYPKKGHGHSYTTAEEAAGIGILTVILGVLLLIGCWYCRRRNGYRA

Flow cytometry—All antibodies were purchased from BioLegend and were used at 1 μL 

per million cells. Cells were stained with antibodies for at least 30 min in PBE and then 

washed in PBE twice. Samples were acquired through the CytoFLEX (Beckman Coulter) 

flow cytometer and data were analyzed through FlowJo (version 5.0.0) software. When 
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screening for Jurkat activation following coculture with 293T cells, Jurkat cells were sorted 

from 293T cells based on CD40 expression (APC anti-mouse CD40 clone 3/23), and then 

stained for CD69 expression (PE anti-human CD69, clone FN50). For tetramer dilution 

experiments, CD3high Jurkat cells (BV421 anti-human CD3, 300434) were isolated, and then 

stained for tetramer positive-control (APC QuickSwitch, MBL International) and tetramer 

negative-control (PE QuickSwitch, MBL International).

QUANTIFICATION AND STATISTICAL ANALYSIS

The details of each statistical test can be found in the corresponding figure legend.

Sequencing read alignment—Sequencing data were deposited and downloaded as 

aligned sequencing reads (raw UMI counts for genes, ADTs, or TCR contigs) for Datasets 

1–4, and Dataset 6. For TCRs in Dataset 4, we downloaded .fastqs from the European 

Nucleotide Archive (ENA). We used cellranger vdj version 5.0.1 to align reads to reference 

GRCh38 5.0.0.

Quality control and normalization—For all single-cell datasets, we removed cells with 

UMIs for less than 500 genes and cells with greater than 10% of UMIs derived from 

mitochondrial genes. We then normalized UMIs for each gene in each cell to log(UMI 

counts per 10,000) and normalized UMIs for each surface protein in each cell via the 

centered-log-ratio (CLR) transformation.

Unimodal dimensionality reduction: To identify clusters A1–A9, we applied a unimodal 

dimensionality reduction pipeline to Dataset 1, using mRNA information alone. After 

normalizing gene expression, we used the variance-stabilizing transformation (VST) to 

select the 200 most variable genes in each sample, excluding TCR genes. The union of 

variable genes across samples totaled 6358 genes. To conduct principal component analysis 

(PCA), we used R package “irlba” (v2.3.3) on normalized expression of these 6358 genes, 

each scaled to mean 0 variance 1. We then used the R package Harmony71 (v1.0) to remove 

batch effects from the per-cell principal component scores. We applied Harmony to three 

batch variables: ‘scRNASeq_sample_ID’, ‘Institute’, and ‘Pool_ID.’ We used θ values 1, 0.5 

and 0.5 for these batch variables, respectively. We used UMAP to visualize the resultant cell 

embedding in two dimensions, computed through the R package Symphony72 (v1.0). We 

built a shared-nearest-neighbor (SNN) graph of cells based on the first 20 batch-corrected 

gene expression PCs, using R package “singlecellmethods” (v0.1.0, parameters: prune_snn 

= 1/25, nn_k = 10, nn_eps = 0.5). To identify transcriptional clusters, we applied Louvain 

clustering to the SNN graph at multiple resolutions, through the RunModularityClustering 
function from the R package Seurat (v3.2.2). Clusters A1–A9 were identified by clustering 

resolution 0.5.

Multimodal dimensionality reduction: To identify clusters B1–B9, we applied a 

multimodal dimensionality reduction pipeline27 to Dataset 1, incorporating both mRNA 

and surface protein information. We used the VST to select the 100 most variable genes in 

each sample, excluding TCR genes. The union of variable genes across samples totaled 

4423 genes. We applied Canonical Correlation Analysis (CCA) to paired mRNA and 
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protein measurements, using the expression of these 4423 genes as input matrix 1 and 

the expression of 10 surface proteins as input matrix 2 (R package “CCA” v1.2.1). To 

emphasize traditional T cell populations, we selected TotalSeq antibodies for 10 surface 

proteins critical to distinguish between CD4, CD8, central memory (CM) and effector 

memory (EM) T cells: CD4, CD8, CD45RO, CD45A, CD197_CCR7, CD62L, CD27, 

CD11a, CX3CR1, and KLRG1. Input gene expression was log10CPK-normalized and 

scaled to mean 0 variance 1; input protein expression was CLR-normalized and scaled to 

mean 0 variance 1. As in our unimodal dimensionality reduction pipeline, we then removed 

batch effects from the per-cell mRNA-based canonical variate (CV) scores, constructed a 

UMAP and SNN graph based on the 10 batch-corrected CVs, and identified cell clusters. 

Clusters B1–B9 were identified through clustering at resolution 4.0, and collapsing clusters 

with similar marker expression (Figures S2Q and S2R).

Standardizing T cell states across datasets: To annotate T cell states in a consistent 

manner across datasets, we conducted reference mapping with Symphony72 (v1.0). Our 

unimodal T cell state reference (Figure S1) and multimodal T cell state reference (Figure 

S2) were constructed from Dataset 1 (T cells in peripheral blood). To annotate T cell 

states in Datasets 2–5, we projected cells into these references. Symphony’s reference 

mapping includes correction for batch variables, which we specified for each dataset. For 

all datasets, we corrected for the individual’s donor ID. For Dataset 2, we additionally 

corrected for batch variables “Sample.type” and “PMID.” For Dataset 3, we additionally 

corrected for batch variable “Site.” For Dataset 4, we additionally corrected for batch 

variable “Chemistry,” and conducted Symphony mapping separately for each tissue.

For each projected cell, we used the R package “class” (v7.3.17) to identify the five nearest 

neighbor cells from Dataset 1. We transferred the majority cell state label among these five 

to the projected cell.

We did not transfer cell state annotations for Dataset 6, because prenatal thymic tissue 

includes progenitor T cell states not observed in peripheral blood. Instead, we used T cell 

state annotations provided by the authors.24

Quality control for TCR sequence data—TCR sequence data deposited for Dataset 2 

included only cells with exactly one TCRα chain and exactly one TCRβ chain, with Vα, 

Jα, Vβ, and Jβ gene names resolved. In keeping with this quality control by Ren et al.,20 

we filtered all other scRNAseq-TCR datasets to include only TCRs with exactly one TCRα 
chain, exactly one TCRβ chain, and Vα, Jα, Vβ, and Jβ gene names resolved. For analyses 

purely focused on cell state, such as dimensionality reduction and clustering, we did not 

apply TCR-based filtering.

Defining TCR clonotypes—To define the TCR clonotype for each cell, we concatenated 

the IMGT Vα, Jα, Vβ, and Jβ gene names with the CDR3ɑ amino acid sequence and 

CDR3β amino acid sequence. To be considered a “TCR-twin,” TCRs from two different 

individuals were required to match exactly for each of these TCR components. To be 

considered part of the same expanded clone, TCRs had to match exactly for each of these 

TCR components, and be sampled from the same individual. We recognize that it is optimal 
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to identify expanded clones by nucleotide rather than amino acid sequence, because different 

ancestral V(D)J nucleotide recombinations can converge to the same amino acid sequence. 

However, only amino acid sequences were made publicly available for the TCRα chain 

for Dataset 1. In practice, because amino acid convergence is rare, TCR clones are often 

identified via amino acid sequence.19

TCR twin analysis: To identify “TCR twins” in Dataset 1, we counted the number 

of individuals observed for each TCR clonotype. The vast majority of TCR clonotypes 

(234131/234265, 99.9%) were observed in only one individual from Dataset 1, and would be 

considered “private TCRs.” 134 TCR clonotypes were observed in more than one individual 

(“public TCRs”), and we analyzed the 115 TCR clonotypes that were observed in exactly 

two individuals.

We next assigned a transcriptional state to each TCR twin member. 115 TCR clonotypes, 

each observed in two individuals, implies 230 twin members. For 163/230 twin members 

(70%), we observed no evidence of clonal expansion (there was only one cell sampled 

from the individual with the TCR clonotype of interest), and we used the cluster identity 

of its single cell. For 37 twin members (16%), we observed clonal expansion within a 

single transcriptional cluster (resolution 0.5, Figure 1A), and we used this cluster to annotate 

the TCR twin member. For 30 twin members (13%), we observed clonal expansion across 

multiple clusters, and we used the transcriptional cluster that contained the greatest number 

of constituent cells.

We then counted how many of the 115 TCR twins were assigned the same transcriptional 

cluster in both individuals. To assess statistical significance, we conducted a binomial 

test with N = 115 trials and Pnull = the probability of concordant transcriptional clusters 

by chance. To calculate Pnull, we summed the probabilities of randomly drawing two 

observations with the same cluster assignment for each of the nine transcriptional clusters 

(A1–A9, Figure 1A). For transcriptional cluster j including nj of the 230 T cells with 

twinned TCRs, this probability can be computed as:

P j =

nj

2
230
2

(Equation 1)

Pnull can then be found by summation:

Pnull = ∑
j = 1

9
P j

(Equation 2)

TCR featurization: Cellranger vdj output provides amino acid sequence for CDR3 regions, 

but IMGT gene names only for other regions of the TCR. To translate IMGT gene names 
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into CDR1 and CDR2 amino acids, we downloaded amino acid sequences for each gene 

from https://www.imgt.org.

We removed all TCR sequences for which the V gene is unresolved. To focus on functional 

TCRs, we removed V genes listed as pseudogenes in IMGT. We used TCR position numbers 

from IMGT to describe the location of each TCR amino acid. To maintain a tractable 

number of TCR positions, we consider only TCR sequences with CDR3a length ranging 

from 10 to 17 amino acids and CDR3b length ranging from 11 to 18 amino acids.

To convert each TCR amino acid into a vector of quantitative features, we translated each 

TCR amino acid into its five Atchley factors.30 This process results in 290 TCR features, 

extracted from the 58 TCR amino acid positions that comprise CDR1a, CDR2a, CDR3α, 

CDR1b, CDR2b, and CDR3b. We also computed the percentage of each CDR loop occupied 

by 19 of the 20 amino acids, excluding Glycine as a reference. We also included six TCR 

features corresponding to the length (in amino acids) of each of the CDR loops. Finally, for 

each pair of adjacent residues within a TCR chain, we multiplied each possible combination 

of the five Atchley factors, resulting in 25 interactive TCR features per pair of adjacent 

residues. The resultant list of 1250 TCR sequence features is listed in Table S2. For all 

analyses, we scaled each TCR feature such that it would have mean 0 and variance 1 in the 

training dataset. Because the number of amino acids in a TCR sequence varies from cell to 

cell, shorter TCR sequences contain gaps at some IMGT positions. We fill these entries with 

the value 0, following the scaling transformation.

Developing TCR scoring functions: For our purposes, a TCR scoring function takes 

an amino acid TCR sequence as input and returns a numeric value proportional to the 

odds of that TCR being observed in the T cell state of interest. This transformation is 

accomplished by a set of TCR sequence feature weights, which can be learned from our 

training observations (70% of clones in Dataset 1 and Dataset 2). After training, the TCR 

sequence feature weights were fixed, and the resultant TCR scoring function can be applied 

to external data (e.g., Datasets 3–6).

We considered three methods to construct TCR scoring functions:

Method 1: Regularized Canonical Correlation Analysis (rCCA)

By identifying axes of covariation between TCR sequence features and T cell state features 

across cells, rCCA produces a series of correlated TCR and T cell state scoring functions. 

rCCA does not require the analyst to pre-specify T cell states of interest. Instead, it 

identifies continuous T cell states, which may not exactly align with preexisting T cell state 

definitions. We applied rCCA via R package “mixOmics” (v6.19.1), tuning ridge penalties 

via 5-fold cross-validation. For ease of interpretation, we reversed the sign of CV1 scores 

and CV3 scores.

Method 2: Logistic Regression with Ridge Penalty

Results from rCCA clearly pointed to four recognizable T cell states. rCCA-based TCR 

scoring functions are optimized to predict the continuous-valued T cell states identified by 
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rCCA, rather than recognizable and reproducible T cell state distinctions. Thus, to enhance 

biological interpretability, we translated the continuous T cell state values identified by 

rCCA into binary contrasts: 1) whether the cell belonged to transcriptional cluster A9 

(innate-like T), 2) whether the cell belonged to transcriptional clusters B1–B3 (CD8T), 3) 

whether the cell belonged to the union of transcriptional cluster A5 or transcriptional cluster 

C15 (CD4+ Treg and CD8+ Treg, respectively, Figure S3K), and 4) whether the cell did not 

belong to transcriptional clusters B3 or B9 (memory T). We fit a logistic regression to each 

of these four binary T cell state contrasts:

logit TCSi = ∑
j = 1

1250
βjTCR featurej, i + β0 + εi

(Equation 3)

Each observation i represents one T cell. Consistent with our input to rCCA, we used one 

cell selected at random to represent each expanded clone. TCSi equals 1 if cell i is observed 

in the T cell state of interest; 0 otherwise.

We used the same 1250 TCR sequence features as predictors, and the same set of training 

observations as in Method 1. To handle collinearity between these TCR sequence features, 

we implemented ridge regularization via R package “glmnet” (v4.0.2), using 5-fold cross-

validation within the training set to select the optimal penalty weight. We removed innate-

like cells (transcriptional cluster A9) from regressions focused on CD8T, Treg, or memory T 

cell fate.

Method 3: Convolutional Neural Network (CNN) Binary Classifier.

Methods 1 and 2 only consider linear effects of TCR sequence features and interactive 

effects limited to adjacent TCR residues. To assess whether nonlinear and/or motif-based 

TCR sequence feature effects would improve T cell state predictions, we implemented a 

Convolutional Neural Network (CNN) binary classifier for each of the four T cell state 

contrasts described above. In the CNN framework, each TCR sequence is represented by 

a 5 × 58 matrix, corresponding to 5 Atchley factors at each of the 58 residues comprising 

CDR1a, CDR2a, CDR3a, CDR1b, CDR2b, and CDR3b. After applying convolution and 

average pooling to this matrix, we concatenate the resultant hidden layer to the TCR 

score learned through logistic regression. This ensures that the CNN does not have 

to re-learn linear effects, and can instead focus on potential nonlinear and motif-based 

effects. We implemented these CNN binary classifiers via python package “torch” (v1.4.0), 

using the same training and testing split (within Dataset 1 and Dataset 2) as in Method 

1 and 2. We used the Adam optimizer and the binary cross-entropy with logits loss 

function (“BCEWithLogitsLoss” from python package torch), and iterated over a grid of 

hyperparameters corresponding to batch size, learning rate, and size of hidden layers. For 

each of these hyperparameter combinations for each of the four cell state contrasts (3 

× 2 × 3 × 4 = 72 models), we trained a CNN on Datasets 1 and 2, and applied the 

resultant classifier to Dataset 3. We observed minimal impact of hyperparameters on AUC, 

and therefore selected the least complex model (10 nodes in hidden layer, learning rate 
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0.0003, and batch size of 256). We used early stopping73 to mitigate overfitting, training 

only until classification performance stopped improving in the held-out testing data (Figures 

S5A–S5D).

Benchmarking: To benchmark these different TCR scoring functions methods, we applied 

them to a dataset external to training (Dataset 3), and scaled each type of TCR score to have 

mean 0 variance 1 prior to association testing via Equation 4.

Applying TCR scoring functions to data outside of the training set: To apply the TCR 

scoring functions to data outside of the training set, we extracted the same 1250 TCR 

sequence features, multiplied each TCR feature value by its respective weight learned in 

from Dataset 1 and 2, and took the sum of these 1250 products. For each TCR feature value, 

we subtracted its mean value in Datasets 1–2 and divided the result by its standard deviation 

in Datasets 1–2. Similarly, for each summation over TCR feature value-weight products, 

we subtracted the Dataset 1–2 mean and divided the result by the Dataset 1–2 standard 

deviation. Thus, one unit of TCR-mem in any dataset corresponds to one standard deviation 

of TCR-mem in Datasets 1–2.

TCR sequence feature dependence analysis: Given the correlation structure of TCR 

sequence features, we iteratively masked out correlated blocks of features using the Partition 

Explainer of the python package “shap”. To estimate the relative contribution of each CDR 

loop, we took the absolute value of Shapley scores and summed over examples in the 

positive class for each TCR scoring function.

Association testing between TCR and T cell state: To test for an association between 

a TCR score and T cell state (TCS) contrast of interest, we used mixed-effects logistic 

regression. Using R package “lme4” (v1.1.23), we fit the following regression:

logit TCSi = βTCR score · TCR scorei + β0 + β0j + εi

(Equation 4)

Each observation i represents one T cell from individual j. Consistent with our input to 

rCCA, we used one cell selected at random to represent each expanded clone. TCSi equals 

1 if cell i is observed in the T cell state of interest; 0 otherwise. β0 is the global intercept; 

β0j is a modification to the global intercept fit for each individual j. TCRscorei represents 

TCR score values, which are standardized to have mean 0 and variance 1 in the training 

observations from Dataset 1 and Dataset 2.

To estimate βTCR-innate, βTCR-CD8, βTCR-reg, and βTCR-mem separately for each individual 

from Dataset 1 and Dataset 2 (Figures S4I–S4L), we followed the same procedure with the 

removal of the β0j term. Removing β0j reduces the mixed-effects logistic regression to a 

logistic regression, requiring R package “stats” (v3.6.3) rather than “lme4” for parameter 

estimation. We included only individuals with at least 100 cells including at least 10 cells 

that matched the cell state of interest and at least 10 cells that did not match the cell state of 

interest in the regression. Then, to estimate the distribution of βTCR-innate across individuals, 

we used to these per-individual estimates as input to R function “rma” (from R package 
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“metafor”, v4.0.0), using the maximum likelihood estimator of heterogeneity (method = 

“ML”).

Analysis of nonproductive TCRs: To test whether our TCR scoring functions explained 

T cell state only when applied to the surface-expressed TCR, we analyzed nonproductive 

TCRs from blood and secondary lymphoid tissue (Dataset 4). We collected all contigs 

annotated as high confidence, full length, and nonproductive by cellranger vdj (v5.0.1). 

Many nonproductive TCRs are short in length due to a stop codon; accordingly, we lifted 

our minimum CDR3 amino acid requirement. Because nonproductive TCRs are lowly 

expressed, it is uncommon for both a nonproductive alpha chain and a nonproductive beta 

chain to be detected in the same cell. Thus, to attain statistical power, we did not require 

cells to have both a nonproductive alpha and a nonproductive beta chain. Instead, for 

each of our TCR scoring functions, we created a version that used only TCR alpha chain 

information and a version that used only TCR beta chain information (4 × 2 = 8 single-chain 

TCR scoring functions). As before, we used productive TCRs from Dataset 1 and Dataset 

2 to train TCR feature weights. We then applied these single-chain TCR scoring functions 

to nonproductive TCRs from Dataset 4. We removed clonal expansion from Dataset 4 as 

before, using productive TCR sequences to define T cell clones and selecting one cell at 

random to represent each expanded clone. We then tested for associations to T cell state as 

outlined by Equation 4. To confirm that lack of association for nonproductive TCRs was not 

due to statistical power or dataset, we down-sampled productive TCRs from Dataset 4 to 

match the sample size of nonproductive TCRs and repeated association testing (Table S4).

TCR-mem within antigen-specific populations: To stringently remove background 

Dextramer counts, we fit a negative binomial regression for each of the 44 Dextramers, 

estimating contributions from technical factors:

log dUMIi = ∑
k = 1

6
βk · ncUMIk, i + βTCRexpTCRexpi + βCD3 expCD3 expi + βCD8 expCD8 expi + ∑

j = 2

4
βjdonorj, i

+ β0 + εi

(Equation 5)

dUMIi denotes the count of UMIs for cell i for the Dextramer of interest. ncUMIk;i denotes 

the count of UMIs for negative control Dextramer k collected for cell i. We include 

βTCRexpTCRexpi and βCD3 expCD3 expi to correct for TCR expression level, as more TCRs 

expressed at the cell surface should render more opportunities to bind Dextramer. TCRexpi 

equals the log(CP10K + 1) normalized expression for CDR3 UMIs (alpha and beta summed) 

for cell i; CD3expi equals the CLR-normalized expression of the CD3 protein for cell i. We 

include CD8 expi (CLR-normalized expression of the CD8 protein for cell i) to adjust for the 

possibility that greater co-receptor expression renders more opportunities to bind Dextramer. 

We used R package “MASS” (v7.3.54) to fit the negative binomial regressions.

To normalize Dextramer staining values, we replaced each cell’s raw Dextramer UMI count 

with an expression of its negative binomial regression residual:

Lagattuta et al. Page 21

Cell Rep. Author manuscript; available in PMC 2025 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Dnormi = log observed UMIi
expected UMIi

+ 1

(Equation 6)

Dnormi equals the normalized Dextramer staining value for cell i. expected UMIi equals the 

negative binomial prediction based on technical factors for cell i. For most Dextramers, we 

observed a bimodal distribution of normalized Dextramer staining values, distinguishing a 

background population from an antigen-binding population with Dextramer UMI counts 

than could be attributed to technical factors. T cells in this putative antigen-specific 

population were less likely to have other Dextramers with non-zero UMI counts (Figures 

S7A and S7B). By careful visual inspection, we set a normalized Dextramer staining 

threshold for each antigen-specific population to distinguish binders from non-binders 

(Figures S7A–S7B).

If T cells assigned to the same antigen specificity based on Dextramer UMI counts really 

do share antigen specifiity, they should have similar TCR sequences. Thus, we turned to 

TCR sequences to validate our inferences about antigen specificity. We observed significant 

TCR sequence conservation within our inferred antigen-specific populations (Figures S7C 

and S7D).

Within each group of T cells assigned the same antigen specificity, we fit the following 

logistic regression (R package stats v3.6.3):

logit memoryi = βTCRmem TCRmemi + βDnormDnormi + ∑
j = 2

4
βjdonorj, i + β0 + εi

(Equation 7)

memoryi takes the value 1 if T cell i is observed in a memory state (clusters B1, B2, B4) 

and value 0 if T cell i is observed in a naive state (cluster B3). As in previous analyses, we 

chose one cell at random to represent each expanded clone. To adjust for affinity between 

the TCR and Dextramer in question, we include Dnormi as a covariate, equal to the extent 

of Dextramer staining following our custom normalization for cell i (see Equation 6). For 

antigen-specific populations that span more than one of the four donors in Dataset 5, we 

include donor covariate terms to adjust for donor-specific effects. We required that the 

antigen-specific population have at least 10 distinct TCR clones. Altogether, this process 

yielded 29 estimates of βTCR – mem for 29 groups of T cells, each specific to a different 

Dextramer.

We next wanted to understand the typical value of βTCR – mem in any antigen-specific T 

cell population. With the 29 antigen-specific βTCR – mem estimates and their standard errors, 

we conducted a random-effects meta-analysis (R package “metafor”, v4.0.0). We used the 

maximum likelihood estimator of heterogeneity (method = “ML”).
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Highlights

• Machine learning with scRNA-seq elucidates links between TCR sequence 

and T cell function

• Four TCR scoring functions quantify T cell fate predispositions encoded in 

the TCR

• A common set of amino acid features enhances activation of TCRs for 

different antigens
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Figure 1. T cells with matching TCR sequences reach similar transcriptional fates in different 
individuals
(A) Uniform manifold approximation and projection (UMAP) of T cells from dataset 1 

based on the first 20 batch-corrected principal components (PCs) of gene expression. Cells 

are colored by transcriptional cluster, named according to expression of marker genes and 

proteins (see Figure S1).

(B and C) T cells from dataset 1, colored yellow (B) if their paired TCR sequence includes 

the canonical genes for MAIT cells (TRAV*1–2 with TRAJ*20, -*33, or -*12 and TRBV*6 
or -*20) or colored red (C) if their paired TCR sequence includes the canonical genes for 

NKT cells (TRAV10 with TRAJ18 and TRBV25–1) or gray otherwise.
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(D) Seven example TCR-twin cell pairs from dataset 1 are highlighted in distinct colors. 

Within a twin pair, TCRs with matching sequences were observed in two different 

individuals.

(E) Number of transcriptional cluster matches for TCR-twin cell pairs in each cluster. Real 

observed counts are compared to expected counts based on random sampling of T cells 

without regard for TCR sequence. p value is computed by binomial exact test with n = 115 

TCR-twin pairs.
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Figure 2. A quantitative approach to uncover TCR sequence features that influence T cell fate
Schematic of a T cell recognizing antigen through the T cell receptor (TCR), an αβ 
heterodimeric surface protein encoded by V, D, and J genes that are stochastically 

rearranged in each T cell. Black regions in between V, D, and J genes represent non-

templated nucleotide insertions. The TCR surface protein contains six complementarity-

determining regions (CDRs) that protrude toward the presented antigen: CDR1α, CDR2α, 

CDR3α, CDR1β, CDR2β, and CDR3β.

(B) Our quantitative representation of TCR sequence data. We extract 1,250 sequence 

features from each TCR sequence, representing hydrophobicity, size, charge, secondary 

structure, and heat capacity of the amino acids in the six CDRs.

(C) Canonical correlations between TCR and T cell state detected in training and held-out 

testing observations. Error bars denote the minimum and maximum canonical correlations 

observed in 1,000 permutations of the data.
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(D) Heatmap depicting Pearson correlation between genes and proteins in dataset 1 and the 

continuous T cell state identified by each canonical variate (CV).

(E–H) UMAP of dataset 1 T cells, colored by T cell state scores for CV1, CV2, CV3, and 

CV4, respectively.

(I–L) Percentage of contribution from each TCR region toward the TCR scoring function.

(M–P) CDR3 amino acid contributions to each TCR scoring function, visualized as marginal 

correlations to the TCR score. Contributions from other TCR regions are displayed in Figure 

S4.

Lagattuta et al. Page 32

Cell Rep. Author manuscript; available in PMC 2025 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. TCR scoring functions generalize across individuals
(A) Forest plot depicting the association between TCR-innate and PLZFhigh T cell state for 

T cells from each subset of individuals. βTCR-innate is computed via mixed-effects logistic 

regression, with TCR-innate scaled to mean 0, variance 1. Error bars denote 95% confidence 

intervals. Meta-analytic βTCR-innate is estimated by fixed-effects inverse-variance-weighted 

meta-analysis.

(B–D) Remaining forest plots depict the same association tests for (B) TCR-CD8 and CD8T 

cell state, (C) TCR-reg and Treg cell state, and (D) TCR-mem and memory T cell state.

(E–H) 95% confidence intervals for βTCR-innate, βTCR-innate, βTCR-innate, and βTCR-innate, 

respectively, in the individuals from dataset 1 and dataset 2 held out from TCR score 

training.

(I–L) Proportion of T cell clones from an external validation dataset (dataset 3) observed in 

each T cell state of interest within each decile of its corresponding TCR score.

(M) Each point represents a decile of the TCR-innate score in dataset 3, with a horizontal 

bar spanning from its minimum to maximum value. We compute the odds ratio (OR; y axis) 

for the PLZFhigh T cell state for T cells in each decile compared to T cells in the fifth decile. 

95% CIs (error bars) and p values were computed via mixed-effects logistic regression.

(N–P) Dataset 3 T cells as in (M) but for CD8T, Treg, and memory T cell states and their 

corresponding TCR scores.
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For (A)–(H), data are represented as log OR ± 95% confidence interval. For (M)–(P), data 

are represented as OR ± 95% confidence interval. p values were computed by the Wald test 

through mixed-effects logistic regression, n = 106,129 T cells.
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Figure 4. TCR sequences that recognize the same antigen can be poised for different fates
(A) Mean TCR-mem scores of four mutually exclusive groups of T cells in dataset 1: 

naive (CCR7highCD45RA+CD45RO−), CD69high (CD69high MK67highCD38+HLA-DR+), 

central memory (CM; CCR7lowCD27highCD45RA−CD45RO+), and effector memory (EM; 

CCR7lowCD27lowCD45RA+ for CD8s and CD45RO+ for CD4s). Data are represented as 

mean ± 95% confidence interval.

(B) Schematic of our experimental validation using either MART-1 or NLV-reactive TCRs: 

TCR-knockout Jurkat cells were transduced with four antigen-reactive TCRs from the 

Dextramer dataset, co-cultured with antigen-presenting cells (APCs) expressing the antigen 

of interest, and stained for CD69 to screen for cellular activation.

(C) For each MART-reactive TCR sequence, we compared its TCR-mem score (x axis) 

to the fold change in the frequency of CD69+ Jurkat cells (y axis) following exposure to 

antigen, compared to background CD69+ frequency in the absence of the MART-1 antigen. 

Measurements are in triplicate.
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(D) For each NLV-reactive TCR sequence, we compared its TCR-mem score (x axis) to 

the fold change in the frequency of CD69+ Jurkat cells (y axis) following exposure to 

antigen, compared to background CD69+ frequency in the absence of the NLV- antigen. 

Each measurement was done in triplicate.

(E) T cells from Dextramer-labeled dataset (dataset 5) projected onto UMAP coordinates 

of a low-dimensional transcriptional space defined by dataset 1, with strong influence from 

Total-seq antibody counts for CD4, CD8, CD45RO, and CD45RA. Four T cells, with 

TCR sequences we refer to as MART-a, MART-b, MART-c, and MART-d, respectively, are 

labeled.

(F) Histogram of 29 βTCR-mem estimates for the 29 Dextramer-specific populations. Data are 

represented as log odds ratio ± 95% confidence interval. p value is computed by random 

effects meta-analysis, n = 29 βTCR-mem estimates for the 29 Dextramer-specific populations.
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Figure 5. Thymic selection pressures on the TCR sequence continue in the periphery
(A) Proportion of SP thymocytes in dataset 6 within each quintile of TCR-mem score. β and 

p are computed by mixed-effects logistic regression predicting SP status based on TCR-mem 

score, n = 7,453 thymocytes.

(B) Each point represents a TCR-mem decile, plotted according to its association with 

positive selection in the thymus (dataset 6, x axis) and its association with transitioning 

from naive to memory in the periphery (dataset 3, y axis). Data are represented as odds 

ratio ± 95% confidence interval. ORs and 95% CIs are estimated via mixed-effects logistic 

regression.

(C) Heatmap of SP proportion for each combination of TCR-mem score decile and number 

of TCR nucleotide insertions in dataset 6.

(D) Dataset 6 (prenatal thymic) T cells with canonical MAIT cell TCRs (colored yellow, 

TRAV1–2 and select TRAJ and TRBV genes; see STAR Methods) or NKT cell TCRs 

(colored red, TRAV10-TRAJ18-TRBV25) projected into our T cell state reference UMAP 

constructed from dataset 1 (colored gray).

(E) Proportion of SP thymocytes in dataset 6 observed in a CD8 T cell state within 

each quintile of TCR-CD8 score. βTCR-CD8 and p are computed via mixed-effects logistic 

regression predicting CD8 T cell state based on TCR-CD8 score, n = 4,313 SP thymocytes.

(F) Proportion of SP thymocytes in dataset 6 observed in a Treg cell state within each 

quintile of TCR-reg score. βTCR-reg and p are computed via mixed-effects logistic regression 

predicting Treg cell state based on TCR-reg score, n = 4,313 SP thymocytes.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

APC anti-mouse CD40, clone 3/23 BioLegend Cat# 124637; RRID:AB_2860658

PE anti-human CD69, clone FN50 BioLegend Cat# 310906; RRID:AB_314841

BV241 anti-human CD3 BioLegend Cat# 300434; RRID:AB_10962690

Chemicals, peptides, and recombinant proteins

MART-1 peptide Genscript N/A

pp65 peptide Genscript N/A

Tax peptide Genscript N/A

APC QuickSwitch Quant HLA-A*02:01 MBL International Cat# TB-7308-K2

PE QuickSwitch Quant HLA-A*02:01 MBL International Cat# TB-7308-K1

Experimental models: Cell lines

HEK-293T American Type Culture Collection CRL-3216

TCRβ-null Jurkat American Type Culture Collection J.RT3-T3.5

Software and algorithms

R package tcrpheno https://github.com/kalaga27/tcrpheno Zenodo: https://doi.org/10.5281/
zenodo.14205113

Manuscript analyses https://github.com/immunogenomics/
tcrpheno_analysis

Zenodo: https://doi.org/10.5281/
zenodo.14213211
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