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Global decline in net primary production
underestimated by climate models

Check for updates

Thomas J. Ryan-Keogh 1 , Alessandro Tagliabue 2 & Sandy J. Thomalla 1,3

Marine net primary production supports critical ecosystem services and the carbon cycle. However,
the lack of consensus in the direction and magnitude of projected change in net primary production
from models undermines efforts to assess climate impacts on marine ecosystems with confidence.
Here we use contemporary remote sensing net primary production trends (1998–2023) from six
remote sensing algorithms to discriminate amongst fifteen divergent model projections. A model
ranking scheme, based on the similarity of linear responses of net primary production to changes in
sea surface temperature, chlorophyll-a and the mixed layer, finds that future declines in net primary
production are more likely than presently predicted. Even the best ranking models still underestimate
the sensitivity of declines in net primary production to ocean warming, suggesting shortcomings
remain. Reproducing this greater temperature sensitivity may lead to even larger declines in future net
primary production than presently considered for impact assessment.

Marine net primary production (NPP) by phytoplankton sustains biodi-
versity and is essential to global ocean ecosystems, but its future is
uncertain1. Despite its importance for the assessment of climate change
impacts on the marine system2, there is currently a lack of consensus
regarding the sign of predicted change in NPP on regional and global scales
under high emissions scenarios of the sixth coupledmodel intercomparison
project (CMIP6)3,4. This leads to divergent global trends over the con-
temporary and future periods when comparing individual models (Fig. 1a)
and a negligible projected change with a large standard deviation
(−0.76 ± 3.44PgC year−1 by 21003; Fig. 1b) when these divergent trends are
averaged for the multi-model ensemble mean. Importantly, this NPP trend
uncertainty has increased by more than 50% since the previous IPCC
assessment cycle3. Furthermore, upper trophic level models that assess
future responses of fisheries typically subsample NPP projections from the
‘high’ and ‘low’ extremes of available projections5,6. This highlights the
urgent need to interrogate Earth system models and discriminate amongst
them in order to deliver increased confidence in projections of NPP in
response to climate change.

Emergent relationships between changes in remote sensing estimates
of NPP and concomitant changes in ocean environmental conditions over
the contemporary period can provide global constraints for Earth system
models. Emergent constraints have been used to refine assessments of NPP
trends in the tropical Pacific7,8 and ocean carbon uptake in the Arctic and
SouthernOcean9,10 basedon single parameter assessments but have yet to be
exploited on a global scale or withmulti-parameter relationships. Trends in

marineNPP estimated from remote sensing however also vary considerably
depending on the time period, algorithm implemented, and data product
being used11–14. Some of the sensitivities to time period and data product are
addressed by the generation of a coherent multi-sensor satellite record
spanning 1998–2023 that merges all available single-sensor satellite mis-
sions with substantially reduced inter-sensor biases15. Nonetheless, intrinsic
differences in remote sensing trends are still apparent in the range of
algorithms available for quantifying NPP rates. Here we focus on six algo-
rithms including: (1) the ‘vertically generalised productionmodel’s (Eppley-
VGPM16 and Behrenfeld-VGPM17), which define phytoplankton growth as
a function of chlorophyll-a, light and temperature, the difference being that
Eppley-VGPMis an exponential functionof temperature,whileBehrenfeld-
VGPM is a 4th order polynomial; (2) the ‘carbon-based production models
(Behrenfeld-CbPM18 and Westberry-CbPM19), which incorporate particu-
late backscatter as a proxy for phytoplankton carbon but differ in that
Westberry-CbPMis bothdepth andwavelength resolvedwhilst Behrenfeld-
CbPM is not; (3) the ‘absorption-based production model’ (Lee-AbPM20),
which defines NPP as a function of phytoplankton absorption rather than
chlorophyll; and (4) the ‘carbon, absorption, and fluorescence euphotic’
resolving model (Silsbe-CAFE21), which integrates the learning from all the
above algorithms to define NPP as a function of energy absorption and
efficiency (for more details please see Methods).

In this work, we rank fifteenCMIP6 Earth systemmodels according to
their ability to capture the emergent contemporary relationships observed
between NPP and environmental variables (sea surface temperature,
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chlorophyll-a and the mixed layer depth) in the 6 remote sensing algo-
rithms. Five of the remote sensing algorithms (Behrenfeld-VGPM, Beh-
renfeld-CbPM, Westberry-CbPM, Lee-AbPM and Silsbe-CAFE) concur
that climate models projecting NPP declines rank higher, whilst the
remaining algorithm (Eppley-VGPM) rank models that project positive
NPP trends higher. These results suggest that future NPP decline is more
likely than not, and this decline is currently underestimated by even the best
ranked CMIP6 models, which predict the most intense NPP declines.

Results and discussion
Contemporary global trends in remote sensing NPP and their
drivers
Remote sensing derived NPP trends are potentially susceptible to extreme
climate events that alignwith either the start or end of the time series, e.g., El
Niño-Southern Oscillation, which could act to increase or decrease esti-
mated rates of change. This is more likely to impact the VGPM algorithms,
which parameterise NPP as a function of temperature. To account for this,
we performed a Monte Carlo jackknife resampling of ~80% of the time
series (i.e., 20of the26years - representing7different assessments) for all the
analyses presented here. NPP trends from remote sensing are pre-
dominantly negative across the algorithms, apart from the two VGPM
approaches which show positive trends, most notably at higher latitudes
(>40°) (Fig. 2a, b). We note however that when globally averaged, the

VGPMtrends have standarddeviations that are larger than themean,which
reduces confidence in the NPP trends that these two algorithms produce
(−0.004 ± 0.10% year−1 & 0.04 ± 0.07% year−1 respectively; Fig. 2a, b). The
remaining four algorithms all produce globally averaged trends of declining
NPP that range from −0.27% year−1 to −1.45% year−1 (Fig. 2c–f). The
predominantly negative global trends from these four algorithms are more
robust than the VGPM algorithms given that the standard deviations are
always lower than the mean (0.14–0.23% year−1). When trends across all
algorithmsare grouped intooceanprovinces (SupplementaryFig. S1a22), the
typical decline in remote sensingderivedNPPacross biomes and algorithms
is emphasised (Supplementary Fig. S1b), apart from some high latitude
regions in the Arctic and the Southern Ocean, where only the VGPM
algorithms suggest an increase in NPP.

Trends in NPP occur in response to concomitant modifications of
the ocean environment that span ‘bottom up’ factors like resource lim-
itation to ‘top down’ controls such as grazing. Contemporary evidence
already exists for climate-driven adjustments in sea surface
temperatures23 and the nutrient and light environment from altered
stratification and mixed layer depths24. Such adjustments will impact
phytoplankton physiology and their photosynthetic capacity, which is
reflected in global trends in chlorophyll-a25. However, we lack insight
into the relative roles played by different factors that shape contemporary
trends in NPP across the different algorithms. To statistically assess what

Fig. 1 | Variability of net primary production trends from CMIP6 Earth system
models. a Area-weighted mean-normalised net primary production (NPP) annual
trends (% year−1) calculated using ordinary least squares for the historical
(1850–2014), contemporary (1998–2023) and future (2015–2100) periods for the

CMIP6 Earth system model ensemble. b Area-weighted ΔNPP (Pg C year−1), cal-
culated as the difference between the end of the historical period (1995–2014) and
the end of the century (2081–2100), for each of the Earth system models in the
CMIP6 ensemble. Both panels are sorted by ΔNPP from low to high values.
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drives local trends in NPP, we use multiple linear regressions (MLR) that
account for unequal variance and autocorrelation. We used MLRs to link
contemporary trends in NPP to a suite of environmental and biological
drivers across all algorithms and jackknife trend assessments (see
Methods). These drivers are trends in annual mean sea surface tem-
perature (SST; where warming increases phytoplankton metabolic rates
and may retard nutrient supply due to greater ocean stratification),
annual mean chlorophyll-a concentration (CHL; which reflects phyto-
plankton biomass and physiology), and annual mean mixed layer depth
(MLD; which impacts adjustments in both light and nutrient supply).
These variables are all available from satellite remote sensing or compiled
data products and importantly are also accessible as standard outputs
from CMIP6 Earth system models. A sensitivity analysis of the entire
time series showed that including all three drivers into the MLR analysis
led to an increase in the global coverage of significant (p < 0.05) regres-
sions and a higher median adjusted R2 across all six remote sensing
algorithms, as opposed to using either SST or CHL alone, or a combi-
nation of SST and CHL as predictors (Supplementary Fig. S2). The MLR
applied to the Eppley-VGPM and Behrenfeld-VGPM NPP trends had
the highest globally averaged mean adjusted R2 values (Supplementary
Fig. S3a, b), decreasing (most notably at high latitudes) for Behrenfeld-
CbPM and Westberry-CbPM (Supplementary Fig. S3c, d), whilst Lee-
AbPM and Silsbe-CAFE had a more even global spread and lower global

averages (Supplementary Fig. S3e, f). The higher global mean R2 values
for the VGPM algorithms is perhaps not surprising as the MLR is con-
structed using two of the three algorithm inputs, SST and CHL, with
photosynthetically active radiation the remaining input variable.

The MLR coefficients associated with each driver show a reduction in
amplitude, roughly halving in strength from SST to CHL and again from
CHL toMLD (Fig. 3a–c). This indicates that trends in SST andCHL are the
most important predictors of trends inNPP,whilstMLDplays only aminor
role. Zonally averaged, the distribution of MLR coefficients for SST reveals
regional coherence at high latitudes across all algorithms (Fig. 3a), whereas
at mid to low latitudes the Eppley-VGPM algorithm behaves anomalously
by displaying a positive relationship between SST and NPP, while all other
algorithms display negative SST coefficients (accentuated at equatorial
latitudes). Negative coefficients are indicative of declining NPP as the sur-
face oceanwarms, potentially reflecting the role of nutrient limitation froma
reduced surface reservoir as stratification intensifies. The atypical positive
coefficients from Eppley-VGPM on the other hand may reflect a metabolic
response that favours increased growth rates under warmer conditions26.
The CHL coefficient is consistently positive across all six remote sensing
NPP algorithms, corresponding to the regulation of NPP by phytoplankton
standing stocks (Fig. 3b). Whilst both the VGPM and Silsbe-CAFE algo-
rithms display minimal latitudinal gradients in the magnitude of the CHL
coefficient, the three other algorithms display higher equatorward

Fig. 2 | Comparing jackknife resampled trends of net primary production from
different remote sensing algorithms. Global distribution of the mean jackknife
resampled trends (1998–2023) of annual mean net primary production (NPP; Gg C
year−1) from a Eppley-VGPM, b Behrenfeld-VGPM, c Behrenfeld-CbPM,

d Westberry-CbPM, e Lee-AbPM and f Silsbe-CAFE. Inset text reports the area
weighted mean ±1σ jackknife resampled (80% of the 26-year time series) NPP trend
(% year−1) as displayed in Supplementary Fig. S1b.
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coefficients that decrease towards the poles. MLD (Fig. 3c) shows a broadly
similar pattern across all algorithms with regression coefficients at low
latitudes that are close to zero, while negative coefficients are more pro-
minent at higher latitudes (exaggerated in the twoCbPMalgorithms relative
to the others). Consistent across all algorithms the spatial standard devia-
tions (Fig. 3a–c) were always substantially greater than the standard
deviations of the jackknife assessments (Supplementary Fig. S4), confirming
that regional variability plays amore significant role in theproposed ranking
scheme.

Assessing Earth systemmodel projections of NPP
Using an ensemble of fifteen Earth systemmodels fromCMIP6we evaluate
modelled trends inNPP (Fig. 1) in relation to the same set of drivers used in

the remote sensing analysis to develop a ‘process based’ model ranking
scheme. MLR analysis between modelled NPP and the three associated
drivers (SST, CHL andMLD) were repeated globally for each Earth system
model over the historical period (1850–2014) but without jackknife
resampling. This approach is similar to previousmodel assessment exercises
that focussedona single driver variable for a specific region (e.g. refs. 7,9,10),
whereas our assessment is global and incorporates three driver variables.
Overall, theMLR analysis applied to the Earth systemmodel data produced
a similar range in skill across models as for the remote sensing algorithms
(Supplementary Fig. S5).

Both the magnitudes and spatial distribution of the MLR coefficients
across SST, CHL and MLD for each Earth system model reveal stark dif-
ferences, relative to the remote sensing assessment (Fig. 3d–f). However, the

Fig. 3 | Comparing the spatial variability of the dominant multiple linear
regression coefficients between remote sensing and Earth system models. Zonal
averages ± standard deviations of the multiple linear regression coefficients for
a, d sea surface temperature (SST), b, e chlorophyll-a concentrations (CHL) and
c, f mixed layer depth (MLD) for the a–c Eppley-VGPM, Behrenfeld-VGPM,

Behrenfeld-CbPM, Westberry-CbPM, Lee-AbPM and Silsbe-CAFE NPP algo-
rithms andd–f the ensemble of CMIP6 Earth systemmodels. Only pixels/grid points
where themultiple linear regression analysis was significant are included in the zonal
averages. The shaded region in panels d–f represents the range of coefficients as
estimated from the remote sensing algorithms zonal averages (panels a–c).

https://doi.org/10.1038/s43247-025-02051-4 Article

Communications Earth & Environment |            (2025) 6:75 4

www.nature.com/commsenv


general decline in their relative contribution to NPP trends from SST to
CHL and lastly MLD largely remains, albeit to a lesser extent than the
remote sensing algorithms.Whilst all CMIP6models appear to place similar
weights on SST at high latitudes, that arewithin the range ofwhatwas found
for the six remote sensing NPP algorithms, at mid to low latitudes they vary
markedly and are generally underestimated relative to remote sensing. This
implies that CMIP6 NPP trends in the tropics and subtropics are not as
sensitive to warming as remote sensing NPP trends to changes in SST
(Fig. 3d). In addition, the CMIP6 models also tend to reflect a stronger
positive influence of CHL on NPP, with coefficients that are almost double
those found in the remote sensing algorithms, which suggests that some
models may be oversensitive to CHL trends, most notably at high latitudes
(Fig. 3e). MLD coefficients show a large discrepancy in their zonal dis-
tribution relative to remote sensing (Fig. 3f) with coefficients that are
broadly positive and more similar to each other at high latitudes but larger
andmore diverse (spanning both positive andnegative coefficients) at lower
latitudes.

To constrain NPP projections we develop a regionally informed
model ranking scheme by comparing the distribution of the MLR coef-
ficients from each model with those from the jackknife analysis of each
remote sensing algorithm. Models with a more similar distribution in
their respective MLR coefficients (relative to a specific remote sensing
algorithm) will rank higher than models with a very different distribution
in their MLR coefficient values. This ranking is based on the dimen-
sionless Earth mover’s distance (EMD) metric27, which quantifies the
effort required to transform the distribution of the Earth system model
MLR coefficients to match those obtained from each of the six remote
sensing NPP algorithms. A low EMD value indicates that the Earth
system model MLR coefficients closely match, i.e. are in good agreement,
to those of the remote sensing algorithms. EMD metrics were calculated
per jackknife assessment and per biome22, with MLR coefficients
restricted using the interquartile range fence test (see Methods) to
remove extreme outliers in each biome. The EMDmetrics, for SST, CHL
and MLD were then weighted according to each biome’s proportion of
the globe and finally globally averaged to generate a single EMD value per
MLR coefficient per model for each of the six remote sensing algorithm
jackknife assessments (Supplementary Fig. S6). EMD metrics were gen-
erally higher for SST, followed by CHL and then MLD. The higher EMD
values for SST imply a large disparity in the weighting of the MLR
coefficients between remote sensing and models, which implies an
inaccurate representation of the relationship between warming and NPP
in the models.

Next, we average the EMD values across all three variables, SST, CHL
andMLD, to generate a single EMDmean and standard deviation for each
Earth systemmodel per remote sensing algorithm jackknife assessment. For
each remote sensing algorithm, we then rank the CMIP6 models using
Z-scores that incorporate both the EMDmean and standard deviation. The
Z-score is definedas thedistanceof a value to the groupmean, such thathigh
Z-scores indicate values that are atypical andmuch larger than themeanand
vice versa. A low Z score thus indicates that the NPP driver relationship in
the Earth system model more closely matched that of the remote sensing
algorithm. We then combine both Z-scores (from the EMD mean and
standard deviation) using equal weighting (i.e. we averaged the Z-scores),
before sorting the combined Z-scores from smallest to largest to rank each
Earth system model’s relative performance (Fig. 4). However, since each
remote sensing algorithm ismade up of 7 jackknife assessments, each of the
15 Earth system models is independently ranked 7 times (for each remote
sensing algorithm) (Supplementary Fig. S7). Model ranking results are
presented with respect to themean ΔNPP (Fig. 4), which is averaged across
the 7model rankings.When the samemodel is ranked in the same position
for all 7 of the jackknife assessments there is no standard deviation inΔNPP,
whereas a standard deviation reflects instances where ΔNPP was averaged
acrossmore than onemodel with the same ranking. Five algorithms concur
that climate models projecting greater NPP declines rank higher, whilst the

remaining algorithm (Eppley-VGPM) ranks models that project slightly
positive NPP trends higher (Fig. 4).

Assessing the merits of the different remote sensing algorithms
The ranking scheme results in a split between five algorithms that rank
models that havenegativeNPPprojections higher andone (Eppley-VGPM)
that favours models with positive NPP projections. Focussing first on the
twoVGPMalgorithms,wefind that trends inNPP fromEppley-VGPMand
Behrenfeld-VGPM are primarily driven by SST and CHL (Supplementary
Fig. S8a, b). The Eppley-VGPM algorithm parameterises phytoplankton
growth using an exponential function of temperature, explaining why it
ranks positive NPP projections higher (Fig. 4a). However, only the
Behrenfeld-VGPM algorithm implements a penalty on growth when
temperatures increase beyond a certain threshold, consistent with its
favouring of models with negative NPP projections (Fig. 4b). The trends in
NPP from the CbPM algorithms are predominantly driven by changes in
CHL (Supplementary Fig. 8c, d), rather than changes in particulate back-
scatter, similar to previous studies28. Differences in the ranking between the
two CbPM algorithms are likely because the Behrenfeld-CbPM algorithm
does not account for changing light properties through the water column
(Fig. 4b), whereas Westberry-CbPM does (Fig. 4c). Finally, NPP trends in
the Lee-AbPM and Silsbe-CAFE algorithms, whichmore consistently rank
negative projections highest (Fig. 4e, f), are driven by trends in phyto-
plankton absorption (Supplementary Fig. S8e, f). In so doing, when deter-
mining phytoplankton productivity, these algorithms respond to the
efficiency of light absorption, rather than the absolute quantity of photo-
synthetic pigments, which makes them better suited to capturing NPP
responses to environmental variability29.

During Primary Production Algorithm Round Robin exercises30–32

no single algorithm has been found to perform best at all times and
locations. However, there is a general reduction in the root mean square
difference between remote sensing NPP estimates and direct field mea-
surements for the Lee-AbPM and Silsbe-CAFE algorithms (relative to the
VGPM and CbPM algorithms), suggesting that they perform best overall
(Supplementary Fig. S921,32–34). Indeed, more recent studies that applied
the Behrenfeld-VGPM, Westberry-CbPM and Lee-AbPM algorithms to
OC-CCI data report similar findings where Lee-AbPM has the lowest
RMSE34. In addition, the jackknife trend analysis we conducted on the
time series (Supplementary Fig. S10) demonstrates that both the Eppley-
VGPM and Behrenfeld-VGPM algorithms are strongly sensitive to the
start or end dates of the time series (Supplementary Fig. S10a–d), with
high coefficients of variation and even a switch in the dominant direction
of NPP trends across the assessments. Although both CbPM algorithms
had similarly high coefficients of variation across the globe (relative to the
VGPM algorithms), they remain dominated by negative trends across all
assessments, with some evidence of an increase in the magnitude of
negative trends and the number of positive trends in response to a change
in the start and end dates (Supplementary Fig. S10e–h). The Lee-AbPM
and Silsbe-CAFE algorithms displayed the most robust response in NPP
trends to the jackknife assessments, with much lower coefficients of
variation and no tangible increase in the number of positive trends (with
only a slight increase in the magnitude of negative trends, Supplementary
Fig. S10i–l). Those areas of the globe that display relatively higher
coefficients of variation (e.g. the Southern Ocean) thus represent regions
with reduced confidence in the magnitude of the predominantly negative
trends, but not in their direction. Overall, this indicates that there are
larger uncertainties for global NPP trends from the VPGM and CbPM
algorithms, relative to the trends estimated from Lee-AbPM and Silsbe-
CAFE. Together these points of consideration around NPP algorithm
validation and trend sensitivity to the jackknife assessments suggest that
the Lee-AbPM and Silsbe-CAFE algorithms are the most robust and
therefore best suited for the implementation of the model ranking
scheme. Consequently, these results support a greater likelihood of global
NPP declines into the future.
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Are future declines in model NPP underestimated?
Using a multivariate model ranking scheme, based on the relationship
between contemporary NPP and its associated drivers, we are able to dis-
criminate amongst the Earth system model ensemble towards models that
project future NPP declines. Despite advancements in model ranking
through the application of our scheme, modelled trends of NPP over the
contemporary period remain almost an order of magnitude too low (max-
imum range of ±0.2%; Fig. 1a) relative to remote sensing estimates (max-
imum range of−1.5%; Supplementary Fig. S1b). This reflects either too little
sensitivity in the response of NPP to driver variability or incorrectlymodelled
trends in the drivers themselves. SST emerged as the most important driver
of NPP, and the magnitude and direction of modelled contemporary trends
in SST match the observational trends reasonably well, with a few model
dependent regional exceptions (Supplementary Fig. S11a). The observed
CHL trend on the other hand, which is the second most important driver of
trends in NPP, is not well matched by Earth system models in magnitude,
particularly at high latitudes, with some models also projecting regional
differences in trend direction (Supplementary Fig. S11b). These differences in
trend magnitude and oftentimes direction will translate into substantial
differences in the weightings placed on SST and CHL for even the best

ranked Earth systemmodels. For MLD, nearly all models project trends that
are opposite in direction to the observations (Supplementary Fig. S11c) and
tend to underestimate the role of MLD (Fig. 3f) on trends in NPP. That said,
MLD plays a relatively small role in governing trends in NPP, such that
inaccuracies in a given model’s ability to capture trends in MLD will not
strongly impact model performance. Accordingly, an improved reproduc-
tion of contemporary trends in NPP from Earth system models suggests
NPP needs to become more sensitive to SST increases and less sensitive to
CHL increases. Such a model would then become more sensitive to future
levels of warming, suggesting that significant NPP declines may occur even
under climate scenarios with strong degrees of mitigation that currently
project stable NPP4, with important ramifications for the ocean carbon cycle,
marine ecosystem change and management.

Remote sensing is a powerful tool for understanding changes in ocean
properties over the contemporary period, with multi-decadal records
commonly used to assess and constrain Earth system models’ ability to
accurately represent spatial and temporal variability in ocean processes. The
model ranking scheme applied here for NPP uses multiple metrics on a
global scale to constrain trends and goes further than previous region-
specific studies based on single driver metrics (e.g. ref. 7). Our model

Fig. 4 | Ranking Earth system models using Z-score assessments of the Earth
mover's distance metric. Bar plots of mean ± standard deviation jackknife resam-
pled ranked Earth system model ΔNPP (Pg C year−1) for a Eppley-VGPM,
b Behrenfeld-VGPM, c Behrenfeld-CbPM, d Westberry-CbPM, e Lee-AbPM and

f Silsbe-CAFENPP algorithms. All bars are coloured by the mean Z-score across the
jackknife resampling exercise. Please note that the absence of an errorbar is indi-
cative of the same model being ranked in the same position for all 7 of the jackknife
assessments.
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ranking suggests a strong likelihood of negative future projections in NPP,
particularlywhenbasedon themost robust remote sensing algorithms (Lee-
AbPM and Silsbe-CAFE). Furthermore, the magnitude of the observed
decline in NPP across those remote sensing algorithms is much larger than
predicted change across even the best ranked Earth system models, sug-
gesting a large underestimation of ongoing change in NPP across the global
ocean. Future assessments should not only consider the uncertainties
inherent to remote sensing algorithms (Supplementary Fig. S8), despite the
complexity in deriving them28 but should also expand on the Round Robin
intercomparison exercises (Supplementary Fig. S9) as more in situ data
becomes available. Furthermore, future model assessments should consider
using additional parameters in combinationwith those proposed here, such
as the resource limitation diagnostics in Earth system models (e.g. iron
limitation, light limitation etc), which could be used to assess ongoing
changes in the Southern Ocean35 and the equatorial Pacific36. Such
approaches would deliver greater confidence in the mechanistic repre-
sentation of NPP in Earth system models necessary to project associated
impacts on marine ecosystems and biogeochemical cycles.

Methods
Remote sensing net primary production calculations
Net primary production (NPP; mg C m−2 d−1) was calculated using the
following algorithms, the ‘vertically generalised production model’s (Eppley-
VGPM16 and Behrenfeld-VGPM17; Eq. (1)), which relies on the relationship
between chlorophyll a and temperature derived growth rates; the ‘carbon-
based production model’s (Behrenfeld-CbPM18; Eq. (2) and Westberry-
CbPM19; Eq. (3)), which uses backscatter derived phytoplankton carbon as a
biomass indicator and physiology derived as variability in the chlorophyll a
to carbon ratio; the ‘absorption-based production model’ (Lee-AbPM20;
Eq. (4)), which does not make any assumptions on either chlorophyll a or
backscatter as biomass proxies but relies on absorption characteristics to infer
phytoplankton photosynthetic efficiency; and the ‘carbon, absorption, and
fluorescence euphotic’ resolving model (Silsbe-CAFE21; Eq. (5)), which
derives NPP as a function of energy absorption and efficiency.

VGPM ¼ Chl × PB
opt ×DL× f ðPARÞ×Zeu ð1Þ

where Chl is chlorophyll-a concentration (mg m−3), PB
opt is a temperature

(°C) based growth function (exponential for Eppley-VGPMand a 4th-order
polynomial for Behrenfeld-VGPM), DL is day length (hours), f(PAR) uses
PAR (mol photon m−2 d−1) the parameterized light term for the ratio of
realised NPP to maximum potential NPP and Zeu is the depth of the
euphotic zone (m).

Behrenfeld � CbPM ¼ Cph bbp λ443ð Þ
n o

× μ μmax;Chl : Cph; Ig
n o

× f PARð Þ ×Zeu

ð2Þ

where Cph is phytoplankton carbon (mg Cm−3) derived from an empirical
relationship with particulate backscatter at 443 nm (bbp (λ443), m−1), μ
(μmax) is the growth rate, Chl:Cph is the chlorophyll-a to phytoplankton
carbon ratio and Ig is the growth irradiance term.

Westberry � CbPM ¼
Z Zeu

0
CphðzÞ bbp λ443ð Þ

n o
× μðzÞ μmax;Chl : Cph; Ig ;ZNO3

n o
× dz

ð3Þ

where ZNO3 is the depth of nitracline (m), defined as the depth at which
nitrate+ nitrite exceed 0.5 μM, and dz is the depth (m).

Lee� AbPM ¼ f aph λ443ð Þ×Kd λ490ð Þ×Zeu × PAR
� �

ð4Þ

where aph(λ443) is phytoplankton specific absorption at 443 nm (m−1),
Kd(λ490) is the light attenuation coefficient at 490 nm (m−1) and PAR is the

daily available photosynthetic radiation (mol photon m−2 d−1).

Silsbe� CAFE ¼ QPAR ×Φ
max
μ × tanhðEk=PARðt; z; λÞÞ ð5Þ

where QPAR is energy absorption, Φmax
μ is the efficiency at which the

absorbed energy is converted into carbon biomass and Ek is the light
saturation parameter. For more details on all equations please refer to their
specific publications.

The algorithmswere applied to ocean colour remote sensing data from
the European Space Agency Ocean Colour Climate Change Initiative (OC-
CCI) data product (8-day, version 6.015) from 1998 to 2023, which was
regridded to 25 km using bilinear interpolation. Photosynthetically active
radiation (PAR; mol photons m−2 d−1) was taken from the merged
GLOBColour product (http://globcolour.info) at 25 km 8-day resolution.
For VGPMsea surface temperature (SST; °C)was taken from theGroup for
High Resolution Sea Surface Temperature (GHRSST; https://www.ghrsst.
org/), which was regridded to 25 km as above. For CbPM and CAFE the
mixed layer depth (MLD; m) was taken from the Hadley EN 4.2.2 gridded
temperature and salinity profiles37, which were first regridded to 25 km as
above and resampled to 8-days, then converted to density using the Gibbs
Seawater TEOS-10 python package and the MLD derived from a density
criterion of 0.03 kgm−3 and reference depth of 10 m38. Full explanation of
the VGPM, CbPMandCAFENPP calculations is provided by Ryan-Keogh
et al.39, with data publicly available40. For AbPM we used the OC-CCI aph
(λ443; m−1) and Kd(λ490) (m

−1), in combination with the GLOBColour
PAR, with data publicly available here41.

Earth systemmodel selection and download
CMIP6 data were obtained from the Earth System Grid Federation data
server for the historical (1850–2014) and the high emission SSP5-8.5
(2015–2100) scenarios of the ACCESS (r1i1p1f1)42, CESM2-WACCM
(r1i1p1f1)43, CESM2 (r4i1p1f1)43, CMCC-ESM2 (r1i1p1f1)44, CNRM-
ESM2-1 (r1i1p1f2)45, CanESM5 (r1i1p2f1)46, EC-Earth3-CC (r1i1p1f1)47,
GFDL-ESM4 (r1i1p1f1)48, IPSL-CM6A-LR (r1i1p1f1)49, MPI-ESM1-2-HR
(r1i1p1f1)50, MPI-ESM1-2-LR (r1i1p1f1)50, MRI-ESM2-0 (r1i2p1f1)51,
NorESM2-LM (r1i1p1f1)52, NorESM2-MM (r1i1p1f1)52 and UK-ESM1-0-
LL (r1i1p1f2)53models.Data variablesdownloaded includedepth integrated
NPP (‘intpp’; mol C m−2 d−1), SST (‘tos’; °C), sea surface chlorophyll-a
concentration (‘chlos’; kg m−3) and MLD (‘mlotst’; m). All data variables
were regridded on a regular 1° × 1° grid using the bilinear interpolation of
ClimateDataOperators54, andwere resampled fromamonthly resolution to
annual means.

Calculating trends
Trends of remote sensing annual mean NPP were calculated by first
excluding anypixelwhose time series had less than50%of the data available.
Before linear regressions were performed, the data were first tested for a
normal distribution using the D’Agostino-Pearson test in the SciPy python
package55. If the datawere normally distributed, then linear regressionswere
performed using the Sci-Kit56 Huber-Regressor, where ε, the parameter to
control the amount of robustness (i.e. the number of outliers), was set to
value of 1.35. This value is to ensure maximum robustness whilst main-
taining 95% statistical efficiency57. If a pixel had less than 50% of the time
series following outlier removal, then no further tests were performed. If the
data were not normally distributed, then linear regressions were performed
using the non-parametric Mann–Kendall Test58. This same method was
applied to calculate trends in annual mean SST, annual mean chlorophyll-a
concentration (CHL) and annual mean MLD (MLD).

For spatially averaged biome annual mean NPP trends, either remote
sensing or Earth system models, an ordinary least squares regression was
applied to area weighted data normalised to the mean. Area weighting was
determined as a function of latitude, such that remote sensing pixels/model
grid points at higher latitudes are smaller than remote sensing pixels/model
grid points at lower latitudes.ΔNPP(PgC) for eachEarth systemmodelwas
calculated as the difference between the global averages from the historical
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reference period (1995–2014) and the SSP5-8.5 scenario reference period
(2081–2100). Please note that the remote sensing annual means of high
latitudes may be potentially underestimated due to the presence of cloud
cover preventing the retrieval of data.

Multiple linear regression and earth mover’s distances analyses
Annual means of NPP, SST, CHL andMLD were first jackknife resampled
to 80% of the time series, representing 7 different possible assessments, and
then mean-normalised, i.e. the resampled time series was divided by its
mean. Multiple linear regressions (MLR) were then performed using the
ordinary least squares function from the Statsmodel package59 using a
Heteroskedasticity and Autocorrelation Consistent covariance estimator,
where the time lags for autocorrelationwere calculated following theNewey
&West60 rule of thumb, defined in Eq. (6):

time lag ¼ 4×
T
100

� �2
9

$ %
ð6Þ

where T is the length of the time series, which in this case is 26 years for
remote sensing and 165 years for the Earth system models. No MLR was
performed for a remote sensing pixel ormodel grid point if any variable was
missing data from any year of the time series or if the variance for any of the
drivers was ~0. MLR coefficients for each prospective driver were excluded
from further analysis if either the remote sensing pixel or model grid point
were not significant (p > 0.05). Comparisons between the observational data
products and model coefficients were performed using the Earth mover’s
distance (EMD) metric27, also known as the Wasserstein distance in
mathematics61 and Mallow’s distance in statistics62, defined here in Eq. (7):

l1ðu; vÞ ¼
Z þ1

�1
U � Vj j ð7Þ

where l1 is the first EMD, u and v are the respective distributions of theMLR
coefficients from remote sensing and Earth systemmodels andU andV are
the respective cumulative distance functions of u andv. TheMLRcoefficient
values for both the remote sensing and models were restricted using the
interquartile range (IQR) fence test, IQR ± IQR×3, to remove any extreme
outlierswithin eachoceanbiome.TheEMDswere calculated on aper biome
basis using the biome classification of Fay & McKinley22, with the EMD
weightedby thebiome’s areal proportion (%)of the global ocean.TheEMDs
for SST, CHL andMLDwere then averaged to generate an EMDmean and
standard deviation per Earth systemmodel. To rank themodels the Z-score
(Eq. (2)), also known as standard score, was calculated using Eq. (8):

z ¼ x þ μ

σ
ð8Þ

where x is either the model’s EMD mean (or standard deviation), μ is the
model ensemblemean of either the EMDmean (or standard deviation) and
σ is the model ensemble standard deviation of either the EMD mean (or
standard deviation). The final Z-scores, determined from both the EMD
mean and the EMD standard deviation, were then generated by combining
with equal weighting (i.e. the Z-scores were averaged together).

Data availability
Remote sensing NPP data for Behrenfeld-VGPM, Westberry-CbPM and
Silsbe-CAFE are available at: https://doi.org/10.5281/zenodo.7849934.
Remote sensingNPP data for Lee-AbPMare available at: https://doi.org/10.
5281/zenodo.10014029. Ocean Colour Climate Change Initiative dataset,
Version [6.0], European Space Agency, available online at http://www.esa-
oceancolour-cci.org/. Ocean colour photosynthetically active radiation data
retrieved from: https://www.globcolour.info/. Hadley EN4.2.2 temperature
and salinity data were retrieved from: https://www.metoffice.gov.uk/
hadobs/en4/download-en4-2-2.html. Sea surface temperatures were

retrieved from: https://www.ghrsst.org/. CMIP6 data were obtained from:
https://esgf.llnl.gov/. All data used in this study are available at https://
zenodo.org/records/14185537.

Code availability
The code for reproducing all figures and data in the manuscript is available
at https://github.com/tjryankeogh/global_npp_trends.
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