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Abstract
Background There is an urgent need to develop bioprocesses independent of fossil resources to address resource 
depletion and mitigate environmental harm. Transitioning to a bio-based economy requires prioritizing chemical 
production processes that utilize renewable resources, ensuring sustainability and environmental responsibility. 
5-Hydroxymethylfurfural (HMF) and its derivatives are promising building blocks, ranked among the top 12 bio-
based molecules derived from biomass. This study investigates the potential of wine residues as substrates for HMF 
production and explores the yeast Saccharomyces cerevisiae, a robust industrial microbial cell factory, as a whole-cell 
biocatalyst for converting HMF into high-value compounds, offering an alternative to chemical synthesis.

Findings Several S. cerevisiae strains were compared for their ability to convert HMF, demonstrating varying 
capacities for oxidation or reduction. For the first time, HMF derivatives with potential industrial applications were 
produced using an HMF-rich hydrolysate obtained from sustainable processing of wine-growing waste, such as 
grape pomace and must surplus. The selected yeast strain was engineered to express the oxidoreductase enzyme of 
HMF/Furfural from Cupriavidua basilensis strain HMF14, resulting in a 15-fold increase in the accumulation of oxidized 
derivatives such as 2,5-furandicarboxylic acid (FDCA).

Conclusions These findings highlight the potential of leveraging wine residues and engineered S. cerevisiae strains to 
develop sustainable bioprocesses for producing valuable HMF derivatives, thereby contributing to the advancement 
of bio-based chemical production.
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Introduction
Developing biobased processes is essential for reducing 
dependence on fossil resources, lowering greenhouse 
gas emissions, and mitigating pollution. Transitioning 
to renewable feedstocks, offers a promising solution, 
enabling the production of high-value chemicals in a 
more sustainable and environmentally friendly manner. 
In this context, 5-hydroxymethylfurfural (HMF) is rec-
ognised as a versatile platform of renewable chemicals 
obtained from the dehydration of hexoses, which are 
present in a variety of renewable resources (Cunha et al. 
2022). The wine industry generates substantial quantities 
of waste streams, including excess grape must and grape 
pomace, which present environmental challenge if not 
properly managed (Jesus et al. 2022; Baptista et al. 2023). 
These residues, rich in hexoses, are well-suited for con-
version into HMF, contributing to their sustainable valo-
rization within a biorefinery framework (Kalli et al. 2018). 
For the catalytic production of HMF from winery wastes, 
emerging heating technologies such as microwaves have 
been increasingly employed due to their advantages, 
including cost-effective pretreatment and reduced reac-
tion times (Pérez-Pérez et al., 2023). These benefits help 
minimize side reactions in aqueous media.

As a bio-based chemical platform, HMF is a pre-
cursor for the synthesis of other chemicals via oxida-
tion or reduction reactions (Cunha et al. 2022). The 
oxidation process follows two pathways, as shown in 
Fig.  1. HMF derivatives have a wide range of industrial 

applications, including the manufacture of polyure-
thane foams (2,5-bis(hydroxymethyl)furan-BHMF). On 
the other hand, oxidative HMF-derived compounds 
have diverse industrial uses. For example, 5-hydroxy-
methyl-furan-2-carboxylic acid (HMFCA) is used in 
polyester production and as an antitumor agent, while 
2,5-diformylfuran (DFF) serves as a precursor for syn-
thesizing fungicides, novel polymeric materials, and 
pharmaceuticals. Additionally, 5-formyl 2-furancarbox-
ylic acid (FFCA) is employed in the production of res-
ins and surfactants. Notably, 2,5-furandicarboxylic acid 
(FDCA) has the potential to replace isophthalic, adipic, 
and terephthalic acids in the manufacture of polyam-
ides, polyesters and polyurethanes (Saikia et al. 2021). In 
fact, FDCA stands out as a versatile starting compound 
and one of the most important biomass-derived chemi-
cals (Bozell and Petersen 2010). FDCA is primarily used 
to produce polyethylene furanoate, a sustainable substi-
tute to petrochemical-derived polyethylene terephthalate 
(PET) plastic. Due to its vast potential, FDCA has been 
labeled a ‘sleeping giant’ in the field of renewable chemi-
cals (Rajesh et al. 2020). Therefore, HMF-based products 
have similarly garnered growing attention for their role 
in advancing sustainable chemical innovations. None-
theless, the synthesis of these compounds has predomi-
nantly relied on chemical processes characterized by 
high-cost catalysts, harsh reaction conditions, and lim-
ited specificity (Hu et al. 2018). In recent years, biological 
catalysts for HMF have emerged as a greener and more 
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promising alternative to chemical synthesis due to their 
mild reaction conditions and environmental friendliness 
(Lia al. 2024; Hu et al. 2018). In addition, microbial cell 
catalysis offers distinct advantages over purified enzyme 
catalysis, including catalyst recycling and co-factor 
regeneration (Lin and Tao 2017). There are documented 
examples of microbial cells that can convert HMF into 
BHMF, HMFCA, or FDCA (Baptista et al. 2021a; Saikia 
et al. 2021), but knowledge is still limited (Prasad et al. 
2023).

Saccharomyces cerevisiae, the most commonly used 
microorganism in second-generation bioethanol pro-
cesses, has been extensively studied for its capacity to 
detoxify HMF and furfural (Cunha et al. 2019, 2020b; Liu 
2021). However, the potential of S. cerevisiae to produce 
high-value HMF derivatives has not been thoroughly 
explored (Baptista et al. 2021b). Notably, under ethanol-
producing conditions, the dominant detoxification path-
way in S. cerevisiae involves the reduction of furans to 
their respective alcohols. Consequently, reduction pro-
cesses have been more comprehensively studied than the 
oxidation of furans (Ishii et al. 2013; Lewis Liu et al. 2008; 
Nilsson et al. 2005).

Taking all of this into consideration, combining micro-
wave-based biomass processing for HMF production 
with subsequent whole-cell biocatalysis to produce HMF 
derivatives represents an integrative approach that has 
yet to be explored. This study aims to investigate the 
potential of the yeast S. cerevisiae for converting HMF 
into valuable derivatives. In line with bioeconomy prin-
ciples and acknowledging the significance of wine resi-
dues, these residues were selected for pretreatment using 
green technologies to produce HMF. The resulting HMF-
rich streams were then used to assess the effectiveness of 
S. cerevisiae as a whole-cell biocatalyst. Additionally, the 
heterologous expression of an HMF oxidase from Cupri-
avidus basilensis HMF14 was evaluated in a selected 
strain to demonstrate its HMF-oxidizing capability.

Materials and methods
Wine byproducts processing for HMF production
Must surplus and grape pomace, kindly provided by the 
Center of Biofuels and Bioproducts, Agrarian Institute 
of Castilla and León (Itacyl), were used in this work as 
substrates to produce HMF. The composition of the must 
surplus was determined by Hijosa-Valsero et al. (2021) 
and it was composed of 125 g/L of glucose and 119 g/L 
of fructose. On the other hand, the composition of grape 
pomace (expressed as g/100  g of oven-dry weight raw 
material) was: 7.36 g of glucan. 4.84 g of hemicelluloses, 
17.43 g of soluble sugars (composed of 8.62 g of glucose 
and 8.81  g of fructose), 30.66  g of lignin and 6.64  g of 
ashes. Both raw materials were processed using a Speed-
wave 4 microwave digester at temperatures of 195, 225, 
250 and 275 ºC for 5  min and 225 ºC for 30  min. For 
grape pomace, liquid-to-solid ratios (LSR) of 8, 10 and 
12  g of water/g of grape pomace were selected and for 
must, three conditions were evaluated: undiluted and 2/3 
and 1/3 dilutions with water to perform microwave treat-
ments. Liquor obtained from microwave treatment of 
undiluted must was employed as substrate for whole-cell 
bioconversion of HMF, as described in Sect. 2.3.

Yeast and bacterial strains, plasmids and genetic 
modification
The strain employed in this work for plasmid construc-
tion, maintenance, and propagation was Escherichia coli 
NZY5α (provided by Nzytech, Portugal). The strains and 
plasmids of S. cerevisiae utilized in this study are detailed 
in Table 1. The assembly of plasmids was conducted using 
the In-Fusion HD Cloning Kit from Clontech, USA. The 
primers utilized for the construction of the plasmid and 
for confirming integration are listed in the Supplemen-
tary material. The expression plasmid pHMFH_cb was 
constructed based on the plasmid pI23-BGL1-kanMX 
(Cunha et al. 2020a). The expression cassette included 
the SED1 promoter, the SAG1 terminator and the coding 

Fig. 1 Routes for the reduction or oxidation of HMF and main applications of HMF-derivatives. BHMF: 2,5-bis(hydroxymethyl)furan. HMF: 5-hydroxymeth-
ylfurfural. HMFCA: 5‐hydroxymethyl‐furan‐2‐carboxylic acid. DFF: 2,5-diformylfuran. FFCA: 5‐formyl‐2‐furancarboxylic acid. FDCA: 2,5‐furandicarboxylic 
acid
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sequence from the enzyme. The gene encoding HmfH 
from C. basilensis HMF14 (ADE20408.1) was synthesized 
by NZYTech (Portugal) and was optimized for expres-
sion in S. cerevisiae. Yeast strains were transformed by 
the lithium acetate method (Chen et al. 1992) with the 
constructed plasmid, linearized with BstZ17I. The trans-
formed cells were selected on YPD plates supplemented 
with G418 (300  mg/L), and the correct integration was 
verified through PCR from colonies. The newly con-
structed yeast was labeled ER-cbHMFH.

HMF-derivatives production by whole-cell bioconversion
The S. cerevisiae cells were cultivated in yeast peptone 
dextrose (YPD) medium for either 24–72 h at a temper-
ature of 30  °C with orbital agitation set at 200 rpm, fol-
lowed by collection through centrifugation at 1000 g for 
5 min. Cells underwent a washing procedure with water 
and were subsequently resuspended in a phosphate buf-
fer (50 mM and at pH 7). The experiment media com-
prised 50 mM of HMF in a phosphate buffer (50 mM and 
at pH 7) (named synthetic medium) or HMH-enriched 
liquor obtained from winery by-products, inoculated 
with 100 g/L of wet yeast. The experiments of bioconver-
sions were conducted in 6-well microplates placed in an 
orbital shaker (30 °C and 200 rpm) and utilizing 4 mL of 
working volume.

Analytical methods
The bioconversion assay samples underwent analysis for 
the HMF determination and their derivatives (HMFCA, 

DFF, FFCA, and FDCA) by HPLC, utilizing an Aminex 
HPX-87 H column (Bio-Rad) at a temperature of 60  °C, 
with a 0.01 M H2SO4 mobile phase and a flow rate of 
0.6 mL/min. On the other hand, the selected wave-
length for the UV detector was 268  nm, yielding reten-
tion times of 18.7 min for FDCA, 22.4 min for HMFCA, 
25.6 min for FFCA, 32.7 min for HMF, and 40.5 min for 
DFF. Samples containing BHMF were analyzed using 
reverse-phase UHPLC with a Zorbax Eclipse XDB-C18 
column (4.6 mm × 250 mm, 5 μm). The analysis was con-
ducted at 25 °C, employing a mixture of acetonitrile/0.4% 
(NH4)2SO4 (10:90, v/v) at pH 3.5, and a flow rate of 0.6 
mL/min. The retention time of BHMF, with a maxi-
mum absorption wavelength of 223  nm, was recorded 
at 11.3 min. The yield (%) is characterized as the ratio of 
the quantity of a particular HMF derivative to the maxi-
mum theoretical quantity of that specific HMF derivative 
that can be obtained from the initial quantity of HMF. 
The conversion of HMF (%) was determined by calculat-
ing the ratio of the converted HMF to the initial quantity 
of HMF. The evaporation rate associated with the use of 
microplates for bioconversion assays was experimentally 
determined to be 0.168 mL/day. This rate was taken into 
account when determining the concentrations of HMF 
and its derivatives. Grape pomace was analyzed for poly-
saccharides and soluble sugars following standard NREL 
procedures (Sluiter et al. 2008).

Results and discussion
HMF production from wine byproducts
Wine residues, must surplus and grape pomace, were 
selected for their high sugar content (as hexoses and/or 
as polysaccharides) to produce HMF from a renewable 
biomass. Initially, preliminary experiments were con-
ducted using microwave treatment at 190 ºC for 5  min, 
with uncatalyzed water as the reaction medium, to assess 
the potential of these biomasses for HMF production. 
As shown in Fig.  2A, the HMF concentration reached 
30 mM from must surplus and remained below 10 mM 
for grape pomace. Due to the insufficient pretreatment 
severity, the temperature was subsequently raised to a 
range of 225 to 275 ºC (Fig. 2B).

Additionally, due to its higher hexose concentration 
compared to the sugars in grape pomace, must was found 
to be more suitable for HMF production, as shown in 
Fig.  2B. Microwave treatment of grape pomace yielded 
a liquor with an HMF concentration of less than 15 mM 
at a liquid-to-solid ratio of 8 g/g. In contrast, undiluted 
must produced up to 70 mM of HMF at 275 ºC for 5 min. 
Consequently, undiluted must was selected as the most 
suitable substrate for further HMF and HMF-derivative 
production using whole-cell S. cerevisiae biocatalyst. 
Although microwave treatment can generate HMF from 
glucose and fructose, the HMF yield from undiluted must 

Table 1 Saccharomyces cerevisiae strains and plasmids used in 
this work

Relevant information Source
Saccharomyces cerevisiae strains
Ethanol Red (ER) Commercial yeast for ethanol 

production
Fermentis, 
S. I. Lesaffre, 
Lille ; Lip 
et al. 2020; 
Pinheiro et 
al. 2020

PE-2 Pedra 2 yeast, Brazil ethanol 
production

Basso et al. 
2008

CAT-1 Catanduva 1 yeast, Brazil ethanol 
production

Basso et al. 
2008

CA11 Isolated from the “cachaça” fer-
mentation process of a distillery 
in Brazil

Schwan et 
al. 2001

ER-cbHMFH ER, pI23-HMFH_cb This work
Plasmids
pI23-BGL1-kanMX SED1p–SED1ss–Aspergillus aculea-

tus BGL1–SAG1a–SAG1t, KanMX 
marker, I23 integration site

Cunha et 
al., 2020

pI23-HMFH_cb SED1p–Cupriavidus basilensis 
HMFH–SAG1t, KanMX marker, I23 
integration site

This work
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was relatively low (< 20%). To improve this, an additional 
microwave treatment was performed at 225 ºC, extend-
ing the reaction time to 30  min. This adjustment led to 
a significant increase, yielding 218 mM of HMF, thereby 
increasing the HMF concentration in the liquor by 
10-fold.

Evaluation of Saccharomyces cerevisiae strains for HMF 
bioconversion
As described in a previous study, strains of S. cerevisiae 
from various backgrounds exhibited unique characteris-
tics, including enhanced robustness and varying abilities 
for the detoxification of furan compounds (considered 
inhibitors of yeast growth) such as furfural and HMF 
(Pereira et al. 2014). Based on this, the following yeast 
strains: (i) the thermotolerant yeast strain Ethanol Red 
(ER) (Lip et al. 2020; Pinheiro et al. 2020) developed for 
the industrial ethanol sector, (ii) the Brazilian first-gen-
eration bioethanol strains Pedra 2 (PE-2) (Secches et al. 
2022; Romaní et al. 2016) and (iii) Catanduva 1 (CAT-1) 

(Secches et al. 2022; Pereira et al. 2010), along with (iv) 
CA11, isolated from a “cachaça” distillery (Costa et al. 
2017), were assessed for their ability to convert 50 mM of 
synthetic HMF medium.

HMF consumption and the main HMF derivatives 
obtained from bioconversion assays using these indus-
trial strains are shown in Fig. 3A and D. It is noteworthy 
that BHMF concentration rises until 48  h of conver-
sion, followed by a slight decline until 120  h (Fig.  3A). 
The primary mechanism of yeast to detoxify HMF is 
the production of BHMF during the early phases of the 
bioconversion assay, with a gradual conversion into 
HMFCA. This behaviour was also previously reported for 
the metabolism of furfural by S. cerevisiae (Taherzadeh et 
al. 1999, 2000).

In relation to other oxidized HMF derivatives, the yeast 
strains yielded minimal quantities of FFCA (≤ 0.8 mM, 
Fig.  3D) and FDCA (≤ 0.5 mM, data not shown). These 
results indicate that the oxidation of HMF by S. cerevisiae 
strains occurs exclusively via the HMFCA intermediate 

Fig. 2 Bioconversion profile of HMF with Saccharomyces cerevisiae wild-type strains: ER – Ethanol Red, commercial yeast for ethanol production; PE-2- 
Pedra 2 yeast, Brazil ethanol production; CAT-1 - Catanduva 1 yeast, Brazil ethanol production; CA11- Isolated from the “cachaça” fermentation process of 
a distillery in Brazil. Data represents mean ± standard deviation of two biological replicates
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(Route A shown in Fig. 1) with no DFF being produced 
during the bioconversion experiment. Considering the 
high accumulation of HMFCA (Fig. 3C) and the low con-
centrations of FFCA achieved (as seen in Fig.  3D), it is 
reasonable to conclude that these yeast strains lack the 
capacity to oxidize the hydroxymethyl group of HMF and 
can only marginally oxidize that group in HMFCA. This 
fact can be supported by the hypothesis that the oxida-
tion of furfural in yeast is mediated by aldehyde dehy-
drogenase (Sárvári Horváth et al. 2003), a process that 
could similarly occur during the oxidation of HMF. It was 
reported that the overexpression of aldehyde dehydroge-
nase 6 in S. cerevisiae allowed the direct oxidation of fur-
fural and HMF to their corresponding acids by utilizing 
NADP + and regenerating NADPH (Park et al. 2011).

The yeast strain S. cerevisiae Ethanol Red demonstrated 
the fastest bioconversion of HMF (Fig. 3B) into HMFCA 
(Fig. 3C) compared to the other three strains. However, 
there remains significant potential for optimizing the 
process conditions. This could include adjustments to 
pH and temperature, as well as the addition of neutral-
izers and/or co-substrates, since HMFCA production is 
still far from the theoretical maximum. To the best of the 
author´s knowledge, no studies have fully clarified the 
potential and required conditions for the complete oxida-
tion of HMF by the yeast S. cerevisiae. Overall, the data 
presented in Fig.  3 provide the first evidence of S. cere-
visiae’s ability to accumulate HMFCA from high HMF 
concentrations (50 mM), underscoring its potential as a 
biocatalyst for HMFCA production and/or as a platform 
for synthesizing additional oxidized HMF derivatives. 
Among the strains tested, Ethanol Red proved to be the 
most efficient in detoxifying such a high concentration of 
HMF.

HMF-derivatives production from HMF-enriched must
The HMF enriched liquor obtained from the microwave 
treatment of undiluted must (225 ºC for 5 min) was used 

as a renewable substrate for biocatalysis conversion into 
HMF-derivatives, using the following catalysts: (i) S. cere-
visiae Ethanol Red (selected based on previous results) 
and (ii) S. cerevisiae CEN.PK113-7D (a laboratory strain 
used for comparison). Evaluation of the must hydroly-
sate (225 ºC for 5 min) using the S. cerevisiae Ethanol Red 
strain showed that HMF was nearly depleted in less than 
2 h (HMF decreased from 13.33 mM of HMF to 0.16 mM 
(data not shown). In contrast, CENPK113-7D required 
4  h to achieve equivalent detoxification, reducing HMF 
from 13.6 mM to 0.15 mM.

When using an HMF-rich stream (218 mM) obtained 
from must surplus treated with environmentally friendly 
technologies such as microwaves (225 ºC for 30  min), 
more significant differences are observed between the 
laboratory strain CENPK113-7D and the industrial strain 
Ethanol Red (Fig.  4). Notably, the Ethanol Red strain 
could completely detoxify 218 mM of HMF in just 12 h, 
whereas the laboratory strain CENPK113-7D, detoxi-
fied 170 mM in 48 h. In both strains, the main product 
is BHMF, but Ethanol Red produces approximately three 
times more of this compound (179 mM). The second 
product, HMFCA, is produced at approximately 30 mM 
by both strains, while the third product, FFCA, is gener-
ated in smaller quantities (~ 10 mM). Under high HMF 
concentrations, the Ethanol Red strain demonstrates 
superior performance and was chosen as the host chassis 
for genetic modification to expand the product portfolio 
to include the key bio-based platform chemical FDCA, 
which was hardly detected in the current setup.

Expression of HMF14 (CbHMFH) enzyme to improve FDCA 
production
In light of these findings that underscore Ethanol Red 
as a potential biocatalyst for HMF oxidation, this strain 
was modified to express a heterologous enzyme aimed at 
FDCA production. FDCA is recognised as one of the 12 
top chemicals derived from biomass due to its industrial 

Fig. 3 HMF production from grape must and pomace after microwave treatment (MW): (A) at 190ºC for 5 min and (B) at 225–275 ºC for 5 min at different 
LSR: Liquid-to-solid ratio
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relevance. The enzyme chosen, HMF/Furfural oxidore-
ductase from Cupriavidus basilensis HMF14 (CbHMFH) 
is a FAD-dependent oxidoreductase that utilizes oxy-
gen as a co-substrate in oxidation reactions, result-
ing in the production of H2O2 (Koopman et al. 2010b; 
Dijkman and Fraaije 2014). The selection of CbHMFH 
was based on prior studies demonstrating its successful 
heterologous expression in the bacteria Pseudomonas 
putida (Koopman et al. 2010a) and Raoultella ornithi-
nolytica BF60 (Yuan et al. 2018), where it enabled the 

conversion of HMF to FDCA under aerobic conditions. 
Thus, CbHMFH was a logical candidate to test in the 
aerobic host S. cerevisiae. This study marks the first time 
this enzyme has been expressed in this yeast. The engi-
neered strain, ER-cbHMFH, and the Ethanol Red wild 
type (as the control) were employed in a bioconversion 
assay to catalyze the transformation of 50 mM of HMF 
(Fig.  5). As anticipated, employing ER-cbHMFH led to 
accelerated oxidation of HMF (Koopman et al. 2010b), 
resulting in quicker production of HMFCA. However, it 

Fig. 5 HMF and HMF-derivatives production from HMF enriched medium (55 mM) with Saccharomyces cerevisiae Ethanol Red and engineered strain 
expressing the heterologous HMF oxidoreductase from Cupriavidus basilensis HMF14 (ER-cbHMFH) (A) at 24 h of bioconversion and (B) at 120 h of bio-
conversion. HMF medium refers to the control where no yeast strain was added

 

Fig. 4 Bioconversion of HMF from microwave treated must (218 mM) into HMF-derivatives: (A) at 12 h of whole-cell biocatalysis and (B) at 48 h of whole-
cell biocatalysis with two selected Saccharomyces cerevisiae strains, Ethanol Red and CENPK113-7D. HMF must liquour refers to the control where no yeast 
strain was added
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also led to an unexpected increase in the production and 
accumulation of BHMF (Fig. 5). Despite these challenges, 
ER-cbHMFH significantly enhanced FDCA production, 
achieving quantities 15 times greater than those pro-
duced by the control strain ER. The final pH of the bio-
conversion medium was lower for the engineered strain, 
ER-cbHMFH (pH 3.65), compared to the wild-type strain 
(pH 4.35). This pH drop is likely due to FDCA accumu-
lation, which acidifies the medium and could hinder the 
extent of the bioconversion. pH-related challenges in 
whole-cell biocatalysis are well-documented, as meta-
bolic product accumulation can lead to acidification. 
Strategies such as the addition of pH neutralizers, like 
calcium carbonate, could mitigate this issue and enhance 
conversion efficiency (Sheng et al. 2020; Xu et al. 2020). 
Literature collects several strategies for the genetic engi-
neering of S. cerevisiae to obtain HMF derivatives. For 
instance, the heterologous expression of alcohol dehy-
drogenases from Meyerozyma guilliermondii in S. cerevi-
siae for the production of BHMF from HMF was recently 
investigated by Xia and co-workers (2020). The recombi-
nant S. cerevisiae strain exhibited greater productivity (15 
mM/h over 23 h in a fed-batch strategy) compared to the 
bioconversion using whole cells of M. guilliermondii (Li 
et al. 2017). On the other hand, the only report utilizing 
S. cerevisiae as a biocatalyst for producing oxidized HMF 
derivatives is a patent evaluating several fungal species 
as hosts for FDCA production (De Bont 2018). In this 
study, a laboratory strain of S. cerevisiae was engineered 
to express HMF/Furfural oxidoreductase and HMF/
FFCA dehydrogenase derived from C. basilensis HMF14, 
or alternatively, to produce alcohol dehydrogenase and 
aldehyde dehydrogenase sourced from Penicillium brasil-
ianum. These strategies resulted in the generation of 0.21 
and 3.02 mM FDCA from approximately 4 mM of HMF, 
respectively, which are lower substrate concentrations 
and FDCA titers compared to the results achieved in this 
study.

Conclusions
This work establishes S. cerevisiae as a biocatalyst for 
converting HMF into its oxidized derivatives, highlight-
ing notable variations among strains. Green technolo-
gies were employed to obtain HMF-enriched liquor from 
wine residues, which served as the substrate. The selected 
Ethanol Red yeast strain was engineered to express a 
heterologous HMF/Furfural oxidoreductase to enhance 
HMF oxidation. While the engineered strain accumu-
lated BHMF and HMFCA at levels comparable to the 
wild-type strain, it achieved a 15-fold increase in FDCA 
titers. This work represents the first demonstration of S. 
cerevisiae producing HMF derivatives at relevant titers 
using wine residues as a feedstock.

E-supplementary data of this word can be found in 
online version of the paper.
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