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ABSTRACT
In the search for novel treatment strategies for alcohol use disorder (AUD), glucagon-like peptide-1 (GLP-1) receptor agonists 
(GLP-1RAs) approved for treating Type 2 diabetes and obesity have caught much attention. GLP-1 is a naturally occurring pep-
tide produced in the small intestines and the brain, regulating plasma glucose levels and satiety. This focused review will report 
on the preclinical studies, case stories, register-based cohort studies, brain-imaging data and secondary analysis of clinical data 
supporting the role of GLP-1RAs as a novel treatment of AUD. Several clinical trials are ongoing, examining the potential effects 
of the GLP-1RA semaglutide in AUD.

1   |   Alcohol Use Disorder (AUD)

AUD is a chronic relapsing brain disorder characterised by loss 
of control of alcohol intake, compulsive alcohol behaviour lead-
ing to relapse and a negative affective state when not consuming 
alcohol [1]. Up to 50% of AUD patients experience alcohol with-
drawal symptoms such as nausea, tremors, and anxiety, and 
some need medical assistance for detoxification [2]. Globally, 
AUD is a tremendous burden, with an estimated 280 million 
people suffering from this disorder [3]. The treatment gap is 
wide compared to other mental health disorders [4], and a recent 
Danish register study reports that the all-cause 10-year cumu-
lative mortality rate after a first-time hospital contact due to an 
alcohol-related problem is as high as 29% [5]. In this perspec-
tive, AUD is a severe condition with enormous consequences for 
the individual, relatives, and society [2, 3], and regarded as the 
most harmful addictive drug when taking harm to both users 
and others into consideration [6]. Several behavioural and psy-
chological treatments are available in the clinic against AUD 
and have demonstrated efficacy in clinical trials [2]. Cognitive 

behavioural therapy (CBT) is among the AUD treatments with 
the highest level of empirical support [7]. According to the 
National Institute for Health and Care Excellence (NICE) clini-
cal guidelines, a combination of psychological intervention and 
pharmacological treatment is recommended in patients with 
moderate to severe AUD [8]. Four medical treatments have 
been approved by the European Medicines Agency (EMA), 
that is, disulfiram, acamprosate, naltrexone and nalmefene, 
and three medical treatments, that is, disulfiram, acampro-
sate and naltrexone, are approved by the U.S. Food and Drug 
Administration (FDA) [9]. According to the NICE guidelines, 
naltrexone and acamprosate, which have shown anticraving 
efficacy, are first-line treatments, whereas disulfiram is listed 
as a second-line treatment [8]. The opioid receptor antagonist 
naltrexone is approved as an oral formulation once daily and as 
a long-acting injection formulation [9], whereas acamprosate re-
quires dosing thrice daily [9]. Its chemical structure resembles 
the structure of gamma-aminobutyric acid (GABA), and preclin-
ical evidence suggests that the effects of acamprosate in AUD 
are due to interactions with the neurotransmitters GABA and 
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glutamate, restoring the imbalance of neuronal excitation and 
inhibition caused by chronic alcohol exposure [10]. Disulfiram 
inhibits the enzyme aldehyde dehydrogenase, which catalyses 
alcohol conversion to the toxic metabolite acetaldehyde. The 
enzymatic inhibition causes the ‘disulfiram-ethanol’ reaction, 
that is, nausea, vomiting, headache, facial flushing, hypoten-
sion, sweating, palpitations, restlessness, exhaustion, confusion 
and rarely cardiovascular relapse [9, 11]. This means that the 
therapeutic effect is mediated through the anticipation of get-
ting a disulfiram-ethanol reaction [9]. Nalmefene is a mu- and 
delta-opioid receptor antagonist and a kappa-opioid receptor 
partial agonist to be administered when the risk of alcohol con-
sumption is present. Nalmefene is not used in the clinic to any 
considerable extent and is—to the best of our knowledge—not 
recommended in clinical guidelines [9]. Other medications have 
been used off-label to treat AUD, for example, ondansetron, topi-
ramate, prazosin, gabapentin, varenicline and baclofen [2]. If as-
sisted withdrawal treatment is needed, benzodiazepines should 
be provided, either as an inpatient or outpatient treatment, de-
pending on the severity of symptoms and previous medical his-
tory [8]. It is estimated that 45%–90% of patients receiving AUD 
treatment relapse within the first 3 years of treatment [12, 13]. 
Relapse risk factors are age, health, the severity of AUD, absti-
nence duration, comorbid substance use disorder (SUD), smok-
ing, unpleasant life events, stress, living alone, having no ‘life 
purpose’ and psychological factors, for example, insight, readi-
ness to seek help, drinking goals and motivation [14]. The sparse 
treatment options with divergent results have led to a search for 
novel treatment strategies against AUD, and one of the molecu-
lar targets has been the glucagon-like peptide-1 (GLP-1) receptor 
(GLP-1R) [15].

2   |   The Addicted Brain

In 1954, Olds and Milner reported that rats voluntarily and re-
peatedly self-stimulate specific brain areas electrically, that is, 
positive reinforcement [16]. In 1972, it was proposed that self-
stimulation activates dopamine-containing neurons [17], and in 
1993, the ‘incentive-sensitisation theory of addiction’ was pre-
sented [18]. The theory differentiates between ‘wanting’ a drug, 
triggered by reward cues in addicted individuals and ‘liking’ a 
drug. The ‘wanting’ is believed to be generated in the dopami-
nergic mesolimbic system projecting from the ventral tegmental 
area (VTA) to the nucleus accumbens (NAc), and the ‘liking’ is 
generated in more discrete hedonic hotspots in the brain, not 
dependent on dopamine [19]. The consequence of chronic and 
heavy intake of alcohol and other drugs of abuse changes the 
brain reward system, and with continued use, impairment of 

function in brain areas associated with executive functions, mo-
tivated behaviour, stress control and emotionality, for example, 
the midbrain, prefrontal cortex and amygdala [20].

3   |   The Dopamine System

Dopamine is a catecholamine neurotransmitter synthesised 
from the amino acid tyrosine [21]. It is released into the synaptic 
cleft upon stimulation, binding to presynaptic and postsynaptic 
dopamine receptors. If dopamine doesn't bind to a receptor, it 
is broken down or transported back into the presynaptic neu-
ron by the dopamine transporter (DAT) and then repacked into 
vesicles by the vesicular monoamine transporter 2 (VMAT2) for 
recycling or degradation (Figure 1) [22]. The plasma membrane 
protein DAT plays a pivotal role in brain dopamine homeostasis 
and is a target for many addictive drugs and therapeutics [23]. 
The central dopaminergic system contains dopaminergic neu-
rons localised in the VTA and the substantia nigra, projecting to 
the NAc, amygdala, hippocampus, prefrontal cortex and dorsal 
striatum [24]. Disinhibition or stimulation of dopaminergic VTA 
neurons plays a critical role in the reinforcing effects of alcohol 
and other drugs of abuse [24]. Radioligand imaging studies in 
patients with AUD [25] have reported decreased dopamine re-
ceptor availability, indicating reduced brain dopamine function 
[26]. Whether this is caused by a primary dopaminergic mech-
anism of action or indirectly by changes in other neurotrans-
mitter systems, for example, glutamate or GABA, has not been 
ruled out [27]. Post-mortem brain studies [28, 29] and a single-
photon emission tomography (SPECT) study [30] have reported 

Plain English Summary

This review presents the existing data from animal stud-
ies in rodents and non-human primates, clinical trials, 
register studies and social media investigations, all inves-
tigating the potential of a class of diabetes and weight-loss 
medications—glucagon-like peptide-1 (GLP-1) receptor 
agonists—as a novel and very much-needed treatment for 
alcohol use disorder.

FIGURE 1    |    The dopamine synapse. Note: The dopamine synapse 
with its presynaptic and postsynaptic terminal of a dopamine neuron. 
Dopamine is synthesised in the presynaptic terminal. After the release 
into the synaptic cleft, it binds to postsynaptic or presynaptic receptors. 
The free synaptic dopamine, which does not bind to the dopamine re-
ceptor, is then broken down or recycled into the presynaptic neuron by 
the dopamine transporter (DAT), where it is repacked into vesicles by 
the vesicular monoamine transporter 2 (VMAT2) or catabolised.
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a significant reduction in striatal DAT availability in patients 
with AUD compared to healthy controls.

4   |   GLP-1

GLP-1 is an endogenous 30-amino acid peptide hormone pro-
duced by cleavage of the prohormone proglucagon. GLP-1 is 
produced in the L-cells in the small intestines and released in 
response to food intake. It is hastily inactivated (with a half-
life of 3–5 min) by the enzyme dipeptidyl peptidase-4 (DPP-4) 
[31]. GLP-1 potentiates insulin secretion and suppresses glu-
cagon secretion, regulating overall glycaemic control. It slows 
down gastric emptying and regulates appetite and food intake 
via appetite- and reward-related areas of the brain [32, 33]. 
Importantly, rodent data show that GLP-1 is also produced in 
the nucleus tractus solitarius (NTS) of the brain stem and re-
leased as a neurotransmitter in the VTA and NAc [34]. This is 
in concordance with preclinical data in rodents and non-human 
primates showing expression of GLP-1Rs in brain regions in-
volved in reward and addiction, for example, VTA, NAc, septal 
nucleus, hypothalamus and amygdala [35–40]. Human GLP-1R 
mRNA positive cells are localised in the hypothalamus, hippo-
campus, thalamus, caudate–putamen, globus pallidum and ce-
rebral cortex [41], and human post-mortem brain studies have 
revealed the presence of GLP-1R in the brainstem, hypothala-
mus, thalamus, amygdala, hippocampus and cerebral cortex 
[41–43]. In addition, GLP-1 mRNA is significantly elevated in 
the hippocampus in individuals with AUD compared to healthy 
controls [43]. GLP-1 protein expression is reported in most corti-
cal areas and in the diencephalon and the brainstem [42].

5   |   GLP-1 Receptor Agonists (GLP-1RAs)

In 2006, the FDA approved the first GLP-1RA, exenatide twice 
daily, to treat Type 2 diabetes. In 2011, exenatide once weekly 
was approved [44]. Since then, several GLP-1RAs have been 
approved for the treatment of Type 2 diabetes, and in 2014, the 
first GLP-1RA was approved for the treatment of obesity (body 
mass index [BMI] ≥ 30 kg/m2 or a BMI ≥ 27 kg/m2 and at least 
one weight-related comorbid condition) [45]. In 2019, the first 
oral GLP-1RA was approved to treat patients with Type 2 dia-
betes [46]. In line with the conception of a centrally mediated 
effect on appetite regulation, several preclinical studies report 
on the blood–brain barrier penetrance of GLP-1 and GLP-1RAs 
[47–50], for example, the GLP-1RA liraglutide was following flu-
orescently labelling detected in the arcuate nucleus and other 
hypothalamic areas in mice [50].

6   |   GLP-1 and GLP-1RAs—Preclinical Studies

6.1   |   Alcohol

Several GLP-1RAs have been evaluated in preclinical addic-
tion models regarding their effects on alcohol consumption in 
rodents and non-human primates. In a conditioned place pref-
erence (CPP) model, preclinical trials report decreased or abol-
ished alcohol place preference when animals are pretreated 
with systemically administered exenatide [51, 52], or exenatide 

is injected centrally into the NTS [53] or NAc [54]. The same 
results are reported for the GLP-1RA liraglutide [55]. In a ro-
dent two-bottle-choice paradigm, pretreatment with exenatide 
administered systemically [51, 52, 56], or injected centrally into 
the VTA [52, 57], NTS [53], NAc, dorsal hippocampus, lateral 
hypothalamus [57], NAc shell [54, 57] or laterodorsal tegmental 
area [54], is reported to reduce alcohol intake. It has also been 
reported that exenatide decreased alcohol consumption in a ro-
dent operant self-administration paradigm when administered 
systemically [51] or injected centrally into the VTA [58]. The ef-
fects of GLP-1RAs on alcohol intake have also been tested in 
non-human primates with long-term access to alcohol, where al-
cohol consumption was significantly reduced when treated with 
the GLP-1RAs exenatide or liraglutide compared to placebo [59]. 
Recently, the newer and more potent GLP-1RA semaglutide was 
reported to reduce alcohol consumption in rats [60, 61] and non-
human primates as well [62].

6.2   |   Dopamine Homeostasis

GLP-1-producing neurons projecting from the NTS to the VTA 
and the core and shell regions of the NAc have been identified 
[34], and GLP-1R stimulation in the NTS increases expression 
of dopamine-related genes, e.g. mRNA encoding tyrosine hy-
droxylase, which is required for the synthesis of dopamine [21]. 
However, exenatide does not seem to alter the expression of do-
pamine receptors or DAT in the NAc [63]. Several preclinical 
studies have investigated how GLP-1 modulates dopamine sig-
nalling. Microdialysis and fast-scan cyclic voltammetry studies 
indicate attenuated alcohol-induced dopamine release in the 
NAc following systemic injections of liraglutide [55], or exen-
atide [51], and after local injection of exenatide into NTS [53]. 
Exenatide also attenuates cocaine-, amphetamine- and nicotine-
induced increases in NAc or lateral septal dopamine levels in 
rats [64–68]. However, GLP-1RAs do not seem to suppress base-
line dopamine levels, as opposed to their lowering effects on 
elevated dopamine levels induced by drugs of abuse, including 
alcohol [64, 67]. The mechanism by which GLP-1R stimulation 
affects dopamine homeostasis is less clear. In rat brain slices 
from the lateral septum and striatum, GLP-1R stimulation in-
creases DAT expression [65, 69]. In the lateral septum, GLP-1R 
stimulation reduces septal expression of the retrograde messen-
ger 2-arachidonylglycerol (2-AG), as well as its metabolite, ara-
chidonic acid [65]. Interestingly, arachidonic acid reduces septal 
DAT function, suggesting that arachidonic acid may be a novel 
regulator of central DA homeostasis [65]. However, other pre-
clinical studies report unaffected striatal DAT availability after 
GLP-1R stimulation in wild-type and knock-out mice [69], as 
well as in rat NAc [64].

7   |   GLP-1 and GLP-1RAs - Human Studies

7.1   |   Alcohol

Clinical trials investigating the effects of alcohol on gastroin-
testinal (GI) hormones in healthy controls report no changes 
in plasma GLP-1 levels after consumption of alcohol [70–73] or 
after intravenous alcohol [70]. However, one study in patients 
diagnosed with Type 2 diabetes and consuming alcohol and 
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a fat-rich meal reported decreased postprandial GLP-1 levels 
[74]. It is thus uncertain whether the result can be attributed 
to the consumption of alcohol or other nutrients. It has been 
reported that there is an increased prevalence of AUD among 
patients having bariatric surgery performed [75, 76], and post-
surgery changes of several gut peptides, including GLP-1, have 
been described [77, 78]. In a newly published review, it has been 
reported that postprandial GLP-1 plasma levels increase after 
surgery and are associated with a more extensive weight loss, 
but fasting GLP-1 levels do remain low [77]. However, due to the 
very short half-life of peripherally released endogenous GLP-1, it 
is unlikely, that it could reach GLP-1Rs in reward-related brain 
areas. Therefore, the effect of GLP-1RAs on appetite regulation, 
and possible effect on alcohol consumption, is most likely due to 
a direct effect of GLP-1RAs on GLP-1R in reward-related brain 
areas and not via peripherally released endogenous GLP-1. The 
first report on GLP-1RA-related reduction in alcohol intake in 
humans was a conference abstract from 2011 [79]. The author 
performed a cross-sectional study (only published in abstract for-
mat) conducted on individuals diagnosed with Type 2 diabetes 
and treated with liraglutide for 3 months, showing a reduction 
in alcohol consumption [79]. Recently, human data from several 
register studies have been published, and data is in concordance 
with the results from Kalra [79]. Both a Danish and an American 
nationwide register-based studies have reported a lower risk of 
an alcohol-related event or AUD diagnosis when individuals di-
agnosed with diabetes or obesity were treated with a GLP-1RA 
[80, 81]. A case series of six individuals receiving semaglutide 
for obesity have reported a reduction in AUD symptomatology 
based on the Alcohol Use Disorders Identification Test (AUDIT) 
score [82]. Also, secondary analysis from an RCT investigating 
the GLP-1RA dulaglutide as a treatment for nicotine dependence 
found that the dulaglutide group had a 29% reduction in alco-
hol consumption after 12 weeks of treatment with dulaglutide, 
compared to the placebo group, and this was not correlated with 
smoking status. The results showed no significant change in 
alcohol consumption in the group of participants being heavy 
drinkers. No data on calories or fluids consumed were reported 
[83]. Lastly, a social media study on posts related to GLP-1 or 
GLP-1/GIP receptor agonists has reported reductions in craving 
and desire to drink [84]. Recently, we published on the effects of 
the GLP-1RA exenatide in patients receiving psychotherapy for 
AUD in a randomised, placebo-controlled clinical trial [85]. No 
significant difference in the reduction of heavy drinking days 
was found. However, a subgroup of participants had a brain 

fMRI scan performed at baseline and Week 26. In a predefined 
region of interest (ROI) analysis, alcohol cue-induced activation 
was significantly reduced in the ventral striatum, dorsal stria-
tum and putamen in the exenatide group compared to the pla-
cebo group [85]. In the fMRI whole-brain analyses, a significant 
reduction in alcohol cue-induced activation in the left caudate 
and septal area was observed in the exenatide group compared 
to the placebo group [85]. In an exploratory analysis of BMI sub-
groups, a reduction in heavy drinking days and total alcohol 
intake was found in individuals with a baseline BMI ≥ 30 kg/
m2 treated with exenatide, compared to the BMI-matched pla-
cebo group (total n = 30). In the exenatide-treated patients 
with a BMI ≥ 25 kg/m2, a significant reduction in total alcohol 
intake compared to the matched BMI placebo group was also 
found (total n = 75). In contrast, in patients with a normal BMI 
(18.5–24.9 kg/m2), the placebo group had a significantly larger 
reduction in heavy drinking days than the exenatide-treated 
group (total n = 52) [85]. Table 1 gives an overview of all ongoing 
clinical trials investigating the effects of a GLP-1RA in AUD. 
Table 2 gives an overview of all the clinical studies mentioned 
above, investigating the effects of a GLP-1RA in AUD.

7.2   |   Dopamine Homeostasis

Three clinical trials have investigated the effects of GLP-1RAs on 
DAT availability in humans; a randomised placebo-controlled 
clinical trial in Parkinson's disease patients treated with ex-
enatide once weekly reported no changes in DAT availability 
measured with a SPECT-DAT-scan after 48 weeks of treatment 
[86]. A smaller clinical SPECT study performed by our research 
group investigated DAT availability in 10 healthy volunteers 
with no record of AUD or SUDs. All participants received pla-
cebo and exenatide infusions while placed in the SPECT scanner 
for 100 min (40 min with saline infusion followed by 60 min of 
exenatide infusion) [69]. No acute changes in DAT availability 
were observed [69]. In the published exenatide AUD trial [85], 
a subgroup of the AUD patients had a SPECT-DAT scan per-
formed at baseline and at Week 26. At the Week 26 rescan, a sig-
nificant reduction in DAT availability in the striatum, caudate 
and putamen was found in the exenatide group, compared to the 
placebo group [85]. When baseline values for the AUD patients 
were compared to a sample of healthy controls, no significant 
difference in baseline DAT availability between AUD patients 
and healthy controls was found [85].

TABLE 1    |    All unpublished or ongoing clinical trials investigating a GLP-1 receptor agonist in alcohol use disorder registered until December 12, 
2024.

NCT Identifier Drug Administration n = Primary outcome Expected end date

NCT05895643 Semaglutide sc, 2.4 mg once weekly 108 Change in heavy drinking days December 2025

NCT05520775 Semaglutide sc, 1.0 mg once weekly 48 Change in alcohol consumption 
in four laboratory sessions

Completed

NCT05891587 Semaglutide sc, 1.0 mg once weekly 80 Change in alcohol drinking 
measured per week

July 2025

NCT05892432 Semaglutide po, 7.0 mg once daily 135 Change in alcohol craving June 2025

NCT06015893 Semaglutide sc, 2.4 mg once weekly 52 Change in alcohol consumption December 2030

Abbreviation: NCT, ClinicalTrials.gov.

http://ClinicalTrials.gov
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8   |   Adverse Events and Safety

GLP-1RAs are widely used, with an exposure of over 20 million 
patient-years, equivalent to 20 million patients medicated with a 
GLP-1RA for 1 year [87]. A common mild to moderate, transient 
side effect of most GLP-1RAs is GI-related. The GI side effects 
reported in the GLP-1 exenatide AUD trial [85] were more pro-
nounced than those previously reported in diabetes and obesity 
trials [88, 89], suggesting that AUD patients are more prone to 
GI adverse events [90]. Depressive disorders [91] and suicidal ide-
ation [92] are often co-occurring with AUD. During the last year, 
the scientific and regulatory society and the media have focused 
on a potentially increased suicide/suicidal ideation rate among 
patients receiving a GLP-1RA [93]. Analyses from the FDA 
Adverse Event Reporting System (FAERS) have concluded that 
there is no causal link between GLP-1RAs and suicidality [94], 
and a very recent retrospective cohort study of electronic health 
records among individuals without a diagnosis of AUD does not 
support a higher risk of suicidal ideation when treated with the 
GLP-1RA semaglutide compared to other antidiabetes or obesity 
medications [95]. Patients with AUD have an increased risk for 
hepatic damage [1], and a rodent study has recently shown that 
the GLP-1RA exenatide improves alcohol-associated hepatic ste-
atosis [96]. In individuals with nonalcoholic fatty liver disease 
(NAFLD) and nonalcoholic steatohepatitis (NASH), it is reported 
that the GLP-1RA semaglutide causes a reduction in liver enzyme 
levels, reduces liver stiffness and improves metabolic parame-
ters [97]. To the best of our knowledge, the role of GLP-1RAs in 
alcohol-related liver disease (ALD) has not yet been reported, but 
one clinical trial investigating this has been initiated [98]. The 
renal elimination of GLP-1RAs [32] is also advantageous in AUD 
patients, and results from a post hoc analysis have indicated that 
semaglutide does reduce albuminuria and the risk of new-onset 
macroalbuminuria [99]. Semaglutide has also been shown to re-
duce the incidence of death due to cardiovascular disease, non-
fatal stroke and nonfatal myocardial infarction in nondiabetic 
patients with pre-existing cardiovascular disease and a BMI of 
27 or higher [100]. Heavy alcohol consumption is associated with 
reduced bone mass density and increased risk of bone fractures 
[101]. Several rodent studies have shown that GLP-1RAs increase 
bone mass and enhance bone strength [102]. In humans, treat-
ment with a GLP-1RA does not seem to impact bone health [103]. 
In the exenatide AUD trial, no significant difference in bone 
marker levels between the two groups was observed, indicating 
that treatment with the GLP-1RA exenatide did not increase the 
risk of bone fractures in this specific group of patients—at least 
not in a 6-month treatment period [85]. Earlier studies [104] and 
case reports [105] have reported that GLP-1RAs were associated 
with an increased risk of pancreatitis or pancreatic cancer in pa-
tients with Type 2 diabetes. This increased risk may have limited 
the enthusiasm for testing GLP-1RAs against AUD, as patients 
with AUD are already at higher risk for pancreatitis and pancre-
atic cancer [92]. However, a systematic review and meta-analysis 
including three high-quality, randomised clinical trials and 18 700 
patients diagnosed with diabetes and treated with GLP-1RAs or 
placebo found no significant association [106]. These findings are 
supported by a recent meta-analysis including more than 55,000 
patients [107], as well as a study comparing the risk of pancre-
atitis [108] or pancreatic cancer [109] in patients treated with 
GLP-1RAs and patients treated with other antidiabetic therapies. 
In the exenatide AUD trial [85], no elevated pancreatic plasma 

enzyme levels above the upper limit were observed, nor were any 
incidences of pancreatitis recorded [85]. In the two clinical nic-
otine trials, there were no registered incidences of pancreatitis 
[110, 111] nor in the cocaine trial [112]. Because only one pub-
lished clinical trial in AUD patients has investigated the effects 
of GLP-1RAs, recent safety concerns regarding treatment with 
GLP-1RAs in AUD patients related to alcoholic ketoacidosis or 
hypoglycaemia are still to be explored. In individuals receiving 
therapy with a GLP-1RA for the treatment of diabetes or obesity, 
the risk of hypoglycaemic episodes or ketoacidosis is dependent 
on comedication with a sulfonylurea [113]. Also, severe compli-
cations such as malnutrition, cirrhosis, and sarcopenia are still to 
be investigated, even though—to the best of our knowledge—no 
data support these concerns [114].

9   |   Discussion

Promising treatment effects of GLP-1RAs on alcohol intake have 
been reported in preclinical trials [115], case stories [82], in register-
based cohort studies [80, 81], secondary analyses of data [83] and 
social media comments [84]. Still, the exenatide AUD trial—the 
only published RCT including patients with primarily AUD—
showed that exenatide was not superior to placebo on the primary 
alcohol outcomes, except in a post hoc analysis of the subgroup of 
patients with comorbid obesity (BMI ≥ 30 kg/m2). However, in the 
subgroup of patients with BMI ≤ 25 kg/m2, the exenatide subgroup 
significantly increased the number of heavy drinking days com-
pared to the placebo group. A possible explanation of the increased 
heavy drinking days in the lean exenatide subgroup could be that 
they experienced a more considerable exenatide-induced decrease 
in blood sugar [116], leading to more alcohol cravings [117], caus-
ing more heavy drinking days [85]. In preclinical studies, high 
alcohol-consuming animals are reported to decrease their alcohol 
intake more than low alcohol-consuming animals when treated 
with GLP-1RAs [52, 55]. The lack of effect of exenatide on the 
primary endpoints could be related to the severity profile of the 
study participants whose baseline alcohol intake was lower than 
what is reported in other clinical pharmacotherapy alcohol trials 
[118, 119].

Recently, papers have described that individuals treated with 
a GLP-1RA for obesity have reduced their alcohol intake or 
alcohol-related behaviour [80, 82–84, 120]. A plausible expla-
nation could be that overlapping brain circuits are involved in 
obesity and in addiction [121]. The antiobesity effects of GLP-
1RAs may be due to a change in food preference [122], sati-
ety signal [32] or that individuals with obesity have deranged 
GLP-1 signalling [123], which might be due to changes in gene 
expression [124]. An fMRI study in obese individuals also re-
ported a normalised brain response to food cues when treated 
with the GLP-1RA exenatide [125].

The NAc, which is part of the ventral striatum, plays a pivotal 
role in addiction and relapse [126–128]. Repeated use of drugs 
can cause a permanently hypersensitive state to drug-associated 
stimuli—‘incentive salience’ [21], causing addictive behaviour 
[18]. In the exenatide AUD trial, we found significantly reduced 
fMRI alcohol cue reactivity in the ventral striatum (and other 
brain areas), implying that exenatide-treated patients with AUD 
experience less incentive salience of alcohol-associated cues [85]. 
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This has also been reported previously in an RCT investigating 
the effects of cue-exposure training in patients with AUD [129].

In 1954, Olds and Milner reported that rodents with electrodes 
implanted in the septal area were conveying the highest re-
ward response [16], and it has been reported that the lateral 
septum receives dopaminergic input [130]. A rodent study has 
also shown that GLP-1Rs are highly expressed in the septum 
and that GLP-1R stimulation might regulate addiction-related 
effects by reducing dopamine levels via increased DAT ex-
pression [65]. The GLP-1RA exenatide is reported to attenu-
ate alcohol-, cocaine-, amphetamine- and nicotine-induced 
increases in accumbal or lateral septal dopamine levels in rats 
[51, 64–68]. In accordance with these preclinical data, whole-
brain fMRI results from the exenatide AUD trial showed a sig-
nificant reduction in alcohol cue reactivity in the septal area 
[85], indicating that the septal area may play a role in the ef-
fects of GLP-1RAs on addictive behaviour.

In humans, data on dopamine and DAT availability, measured 
with different brain-imaging modalities or in post-mortem 
brains, are divergent [25, 26, 28, 30, 131, 132], and so are 
the results of GLP-1RA-induced DAT availability [69]. In in-
dividuals without AUD, no acute changes in DAT levels are 
reported following infusion of the GLP-1RA exenatide [69]. 
The same was reported in Parkinson's disease patients treated 
with exenatide for 48 weeks [86]. In the human exenatide AUD 
trial, no significant baseline difference in DAT availability 
was observed between AUD patients and individuals with-
out AUD [85]. After 26 weeks of treatment with exenatide, re-
duced DAT availability was observed in the striatum, caudate 
and putamen [85]. This GLP-1RA-induced reduction in DAT 
availability may counteract the decreased dopamine activity 
previously reported in patients with AUD [127]. Nevertheless, 
the divergent findings on DAT availability in preclinical and 
human studies add to the assumption that GLP-1 regulation of 
DAT might be species-dependent and that the precise mech-
anisms in different species are still to be elucidated [69, 115]. 
The effects of GLP-1RAs might also be caused by changes 
in other neurotransmitter systems, for example, GABA [27], 
as indicated by a preclinical study, where treatment with 
the GLP-1RA semaglutide enhanced GABA release in the 
central nucleus of amygdala and infralimbic cortex neurons 
in alcohol-naïve rats. In alcohol-dependent rats, a more het-
erogeneous response was observed with increased network-
dependent GABA release in some neurons and decreased 
GABA release in the remaining cells [60]. In conclusion, the 
central mechanisms of action involved in the potential effects 
of GLP-1RAs in AUD are not fully elucidated. Newer and 
more potent GLP-1RAs are now available for clinical use, and 
several randomised clinical trials involving different treat-
ment durations and different GLP-1RA doses have been initi-
ated, which may pave the road for further investigation of the 
potential role of GLP-1RAs in the medical treatment of AUD 
and other addictive disorders. However, the somewhat high 
prize of GLP-1RAs poses barriers to treatment access, which 
may be an even greater challenge for patients with AUD com-
pared to patients with diabetes and/or obesity.
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