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Abstract
With the incorporation of immune checkpoint inhibitors into the treatment of endometrial cancer (EC), a deeper under-
standing of the tumor immune microenvironment is critical. Tertiary lymphoid structures (TLSs) are considered favorable 
prognostic factors for EC, but the significance of their spatial distribution remains unclear. B cell receptor repertoire analysis 
performed using six TLS samples located at various distances from the tumor showed that TLSs in distal areas had more 
shared B cell clones with tumor-infiltrating lymphocytes. To comprehensively investigate the distribution of TLSs, we 
developed an artificial intelligence model to detect TLSs and determine their spatial locations in whole-slide images. Our 
model effectively quantified TLSs, and TLSs were detected in 69% of the patients with EC. We identified them as proximal 
or distal to the tumor margin and demonstrated that patients with distal TLSs (dTLSs) had significantly prolonged overall 
survival and progression-free survival (PFS) across multiple cohorts [hazard ratio (HR), 0.56; 95% confidence interval (CI), 
0.36–0.88; p = 0.01 for overall survival; HR, 0.58; 95% CI, 0.40–0.84; p = 0.004 for PFS]. When analyzed by molecular sub-
type, patients with dTLSs in the copy-number-high EC subtype had significantly longer PFS (HR, 0.51; 95% CI, 0.29–0.91; 
p = 0.02). Moreover, patients with dTLSs had a higher response rate to immune checkpoint inhibitors (87.5 vs. 41.7%) and 
a trend toward improved PFS. Our findings indicate that the functions and prognostic implications of TLSs may vary with 
their locations, and dTLSs may serve as prognostic factors and predictors of treatment efficacy. This may facilitate personal-
ized therapy for patients with EC.
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OS	� Overall survival
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TPMs	� Transcripts per million
VAF	� Variant allele frequencies

Introduction

Endometrial cancer (EC) is among the most common 
gynecologic malignancies globally [1]. The long-standing 
standard treatment for EC has been primary surgery followed 
by chemotherapy or radiotherapy. With genetic evaluations 
becoming more widespread for EC [2], immunotherapy—
particularly with immune checkpoint inhibitors (ICIs)—has 
been integrated with standard treatment regimens [3–7]. 
Consequently, a more comprehensive understanding of the 
tumor immune microenvironment (TiME) is necessary, and 
developing biomarkers predictive of ICI response is highly 
desired.

Tertiary lymphoid structures (TLSs) have been widely 
studied recently. They are B cell-rich formations present in 
chronic inflammatory conditions such as autoimmune dis-
eases, chronic infections, chronic graft rejection, and various 
solid tumors [8, 9]. TLSs serve as pivotal sites for tumor 
immune engagement, initiating inflammatory responses 
via tumor-infiltrating lymphocytes (TILs). The presence of 
TLSs has been demonstrated to be associated with favorable 
outcomes of malignancies such as breast cancer [10], ovar-
ian cancer [11], and melanoma [12]. In the context of EC, 
our previous study demonstrated that the presence of TLS is 
associated with a higher number of TILs and better clinical 
outcomes [13].

Despite extensive research, considerable variability 
remains in the evaluation of TLSs in the current literature. 
The definitions of TLS, maturation stages, evaluation meth-
odologies, locations within the TiME (intratumoral, peri-
tumoral, or stromal regions) [14], quantification methods, 
and the selection of markers (such as CD19, CD20, CD21, 
and CD23) are different. In 2023, a standardized proto-
col for assessing TLSs on pathology slides was proposed 
[15]. However, performing such high-resolution evalua-
tions reproducibly on whole H&E slides is nearly impos-
sible. Additionally, assessing TLSs often requires immu-
nohistochemistry (IHC), which is not routinely included in 
clinical practice. While recent clinical trials have preserved 
digitized pathology slides (whole-slide images, WSIs), they 
typically provide only one representative hematoxylin and 

eosin (H&E) WSI per case. Therefore, efficient methods are 
needed for this labor-intensive evaluation of TLSs on H&E 
slides.

With the rapid progress of digital pathology, convolu-
tional neural networks (CNNs) have been increasingly 
employed for various tasks, especially in spatial analyses of 
TiME. We previously established an artificial intelligence 
(AI)-based spatial assessment pipeline to objectively quan-
tify intraepithelial and stromal TILs [16]. However, few 
attempts have been made to quantify the spatial distribution 
of TLSs using only H&E slides [17, 18].

In this study, we aimed to automatically extract TLSs 
from EC using AI applied solely to H&E slides. By combin-
ing the AI-identified TLSs and tumor regions, we achieved 
precise assessment of the spatial distribution of TLSs. We 
also aimed to explore the association between these TLS 
locations and clinical outcomes, such as patient prognosis 
and the response to ICIs.

Materials and methods

Study cohort and datasets

This study included three cohorts: the Kyoto cohort, the ICI 
cohort, and the TCGA cohort. The Kyoto cohort consisted 
of 96 patients with EC who were treated at our hospital from 
2006 to 2011; this is the same cohort as in our previous 
report [13]. Tumor tissues were obtained during primary 
surgery and before any chemotherapy. One representative 
H&E slide per patient was selected. The slides were digi-
tally scanned with a NanoZoomer Digital Pathology System 
(Hamamatsu Photonics, Hamamatsu, Japan) at 20× magni-
fication (resolution of 0.5 micron per pixel).

Twenty patients who had undergone primary surgery for 
EC and uterine carcinosarcoma and were treated with ICIs 
at Kyoto University Hospital and Kindai University Hospi-
tal for recurrence between 2019 and 2023 were included in 
the ICI cohort. Regarding the patient background, lenvatinib 
plus pembrolizumab (LEN/PEM) was approved in Japan in 
December 2021. For cases prior to this date, all patients 
received PEM-monotherapy, and they were MSI-H (n = 4). 
Post-2022, most cases (unless contraindicated) were treated 
with LEN/PEM (PEM: n = 2, LEN/PEM: n = 14). Tumor tis-
sues were obtained during primary surgery and before any 
chemotherapy. One representative H&E slide per patient was 
selected.

The dataset from the TCGA-UCEC archive consisted 
of 505 cases with 566 WSIs available. Of these, prognos-
tic information was available for 463 cases, which were 
included in the TCGA cohort. Further details of these 
cohorts are presented in Table 1.
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Immunohistochemistry

CD21 IHC was performed using a standard protocol. Briefly, 
paraffin-embedded tumor blocks were sectioned at 4 µm 
thickness and stained with a mouse monoclonal anti-CD21 
antibody (Novus Biologicals. CO, USA). Detailed informa-
tion is provided in Supplementary Method. Evaluation of 
IHC staining was performed by a gynecological pathologist 
and two gynecological oncologists, as previously described 
[13].

Tissue patch generation from WSIs and training data 
generation

For supervised machine learning applied to pathology tis-
sue slides, WSIs were divided into small patches (tiles) 
with assigned labels for each tile. The tile size was set to 
500 × 500 pixels (500 × 500 µm) at 10× magnification based 
on the input data size of the CNN model and the optimal 
magnification for labeling the training data. Normaliza-
tion of staining was performed using a previously reported 
method (https://​github.​com/​schau​gf/​HEnorm_​python).

From the 24 WSIs in the Kyoto cohort, we generated 
image patches containing TLS regions, guided by CD21 
IHC staining of adjacent tissue sections. We also created 
tile images containing tumor and stromal regions from both 
the Kyoto (24 WSIs) and TCGA (82 WSIs) cohorts. For each 
tile, we manually assigned three classes of labels, including 

the tumor, stroma, and TLS. The labeling was conducted 
by two gynecological oncologists using Labelme software 
(https://​www.​label​me.​io/) and verified by a gynecological 
pathologist. A total of 966 image patches, each measur-
ing 500 × 500 pixels, were generated at 10× magnification. 
Among these, 54 patches contained TLSs, 502 were tumor-
dominant patches, and 410 were stroma-dominant patches. 
These patches were evenly distributed during training.

Model Parameters and evaluation

For the development of the TLS detection model (TLS 
model), we employed a DeepLabV3_resnet101 model pre-
trained on ImageNet [19]. The CNN architecture remained 
the standard DeepLabV3 framework with a ResNet101 back-
bone, as commonly implemented in PyTorch. Training was 
performed over 100 epochs with a learning rate of 0.0001. 
The performance of the model was evaluated using the Dice 
coefficient. We had established a TIL detection model using 
a pan-cancer dataset in our previous study, and we utilized 
the same model in this study (TIL model) [16].

Quantitative assessment of TILs/TLSs

Following previous studies [10, 20, 21], we assessed TLSs 
located up to 5000 µm from the tumor margin. The distance 
from the tumor invasive margin to the center of each TLS 
was calculated. For the initial preparation of TLS samples 
used in BCR repertoire analysis and RNA sequencing, we 
measured distances visually under a microscope. For the 
distributional evaluations and survival analyses, we calcu-
lated the distance based on AI predictions. We categorized 
TLSs adjacent to the tumor invasive margin (< 500 µm) as 
proximal TLSs (pTLSs) and those situated between 500 
and 5000 µm as distal TLSs (dTLSs). TLSs smaller than 
1000 µm2 were excluded from the analysis. As detailed in 
our previous reports [16], we defined intratumoral TILs 
(iTILs) as TIL-positive tiles present within the tumor epi-
thelium. The iTIL score was calculated by dividing the area 
of TIL-positive tiles by the total tumor area.

B cell receptor repertoire analysis

We investigated the clonal diversity of the immunoglobulin 
G (IgG) repertoire of B cell receptors (BCRs) in both TLSs 
and TILs from tumor samples of six patients. Utilizing a 
next-generation sequencing-based immune repertoire analy-
sis with a proprietary adaptor-ligation PCR technique by 
Repertoire Genesis Inc. (Osaka, Japan), we microdissected 
two TLSs per patient. These TLSs were assessed for BCR 
clones that were common with those found in the TILs in 
the tumor samples. For each sample, the top 30 BCR clones 
based on read count were included in the analysis.

Table 1   Clinical characteristics of the patients

TCGA​ The Cancer Genome Atlas, ICI immune checkpoint inhibi-
tor, POLE polymerase epsilon, MSI-H microsatellite instability-high, 
CNV-H copy-number variant-high, CNV-L copy-number variant-low, 
NA not available

Cohort Kyoto TCGA​ ICI

Age, median (range) 57 (36–89) 64 (13.8) 62 (43–78)
Stage, n (%)
I 60 (62.5) 295 (63.7) 4 (25)
II 3 (3.1) 43 (9.3) 1 (5)
III 26 (27.1) 102 (22.0) 12 (60)
IV 3 (3.1) 23 (5.0) 3 (15)
Histology, n (%)
Endometrioid 69 (71.9) 354 (76.5) 10 (50)
Serous 26 (27.1) 109 (23.5) 1 (5)
Other 1 (1.0) 0 (0.0) 9 (45)
Molecular subtype, n (%)
POLE 22 (22.9) 42 (9.1) 0 (0.0)
MSI-H 20 (20.8) 130 (28.1) 7 (35)
CNV-H 21 (21.9) 134 (28.9) 2 (10)
CNV-L 26 (27.1) 136 (29.4) 1 (5)
NA 7 (72.9) 21 (4.5) 10 (50)
Total, n (%) 96 (100) 463 (100) 20 (100)

https://github.com/schaugf/HEnorm_python
https://www.labelme.io/
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RNA sequencing of TLS samples

Total RNA was extracted from formalin-fixed, paraffin-
embedded (FFPE) tumor samples using the DNA/RNA 
FFPE Kit (Qiagen, Valencia, CA, USA). RNA sequencing 
of TLS samples from five patients was performed on the 
Illumina NovaSeq 6000 platform. Detailed information is 
provided in Supplementary Method.

Gene expression analysis

RNA sequencing data were available for 461 cases in the 
TCGA cohort and obtained from the TCGA-UCEC archive. 
We obtained gene sets of TLS-related signatures from previ-
ous reports. These included 12 chemokines [22], CXCL13 
[23], plasma cells [24], T follicular helper (Tfh) cells [25], T 
helper 1 (Th1) cells [25], Th1/B cells [26], and TLS imprint 
signatures [27], and single-sample Gene Set Enrichment 
Analysis (ssGSEA) was performed. The cytolytic (CYT) 
score was calculated as the geometric mean of GZMA and 
PRF1 expression, as previously described [28]. The T cell-
inflamed gene expression profile (GEP) score was calculated 
as a weighted sum of normalized expression values for 18 
genes, as previously described [29]. The genes mentioned 
above are listed in Supplementary Table S1.

Targeted‑capture sequencing of cancer‑associated 
genes

Ninety-six cases of FFPE or fresh frozen surgical specimens 
from the Kyoto cohort were analyzed using targeted-capture 
sequencing. The xGen Custom Hybridization Panel (Inte-
grated DNA Technologies, Inc. IA, USA), designed for 140 
genes associated with gynecologic cancers (Supplementary 
Table S2), and the xGen Copy-Number Variation (CNV) 
Backbone Hybridization Panel were used, as previously 
described [30]. Molecular subtypes were determined in the 
following order based on preliminary assessment using the 
TCGA dataset: (1) polymerase epsilon (POLE) subtype if 
missense mutation exists at POLE exonuclease domain (resi-
dues 268–471); (2) microsatellite instability-high (MSI-H) 
subtype if two or more frameshift indels were identified in 
repetitive sequences consisting of more than three consecu-
tive repeats among the remaining tumors; (3) copy-number 
variant-high (CNV-H) for those with CNAs affecting more 
than 20% of the genome; and (4) CNV-low (CNV-L) for 
the others.

Statistical analysis

Statistical analyses were performed using Python 3.10. Cor-
relations of continuous variables were assessed using Spear-
man's rank correlation coefficients. Medians of continuous 

variables were compared using the Mann‒Whitney U test 
or the Wilcoxon signed-rank test. Cumulative survival prob-
abilities were calculated using the Kaplan–Meier method, 
with survival data right-censored at 10 years. Univariate and 
multivariate Cox proportional hazards regression analyses 
were conducted to calculate p-values, hazard ratios (HRs), 
and 95% confidence intervals (CIs). Detailed information is 
provided in Supplementary Method.

Results

Spatial distribution of TLS and immunological 
difference

We performed CD21 immunostaining for the Kyoto cohort 
(Fig. 1A). Sixty cases (69%) were positive for TLSs. Upon 
detailed examination, we found that some cases had TLSs 
located only in the immediate vicinity of the tumor margin 
(< 500 µm), while others had TLSs extending beyond this 
region (Fig. 1B). We defined the former as proximal TLSs 
(pTLSs) and the latter as distal TLSs (dTLSs). We selected 
three cases with multiple pTLSs and three cases with mul-
tiple dTLSs, and we microdissected two TLSs from a single 
slide for each case and conducted BCR repertoire analysis 
paired with intratumoral TIL regions. Almost no common 
clones with intratumoral TILs were detected in all three 
cases with proximal TLSs (pTLSs). However, the amplifi-
cation of shared clones was observed for all three cases with 
dTLSs (Fig. 1C, Table 2).

To further investigate potential functional differences 
between TLSs based on their distance from the tumor inva-
sive margin, we performed RNA sequencing on the remain-
ing specimens used in the BCR repertoire analysis. The dif-
ferentially expressed gene (DEG) analysis identified nine 
genes, including NTRK3 and CTSG, which are known to be 
involved in TiME in several cancer types (Fig. 1D). CIBER-
SORTx was also used to estimate immune cell composition, 
but no specific trends distinguishing pTLS from dTLS were 
observed. Individual cases demonstrated more pronounced 
variation (Supplementary Figure S1A).

Establishment of AI model to quantify spatial 
distribution of TLS

Based on the above results, we hypothesized that the dis-
tance from the tumor margin to the TLSs is important. To 
investigate TLSs comprehensively, we established an AI 
model (TLS model) that can distinguish between the tumor 
and stroma and identify TLSs using our training data-
set (Fig. 2A, B). We performed fivefold cross-validation, 
and the TLS model demonstrated an average Dice coeffi-
cient of 0.945 (Supplementary Table S3). By applying the 
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predictions of the model, we delineated the tumor and TLS 
regions (Fig. 2B, C). Overall, TLSs were positive in 384 
cases (69%). We calculated the distance from the tumor mar-
gin to each TLS, classifying them into pTLSs and dTLSs. 
We examined the distribution of TLSs in relation to the 
distance from the tumor margin. As expected, more TLSs 
were observed in regions closer to the tumor margin, and 
some TLSs were still detected in areas up to 5000 µm away 
from the margin although the number decreased with dis-
tance (Fig. 3A). Analysis of the number of TLSs per case 
revealed that most cases had none or had only a few pTLSs 
and dTLSs; a large number of TLSs were rarely detected 
(Fig. 3B).

When analyzed by molecular subtype, the positivity rate 
of TLSs was relatively lower for the CNV-L (53.1%) than for 
the POLE, MSI-H, and CNV-H (82.1%, 76.0%, and 74.2%, 
respectively) subtypes. Regarding dTLSs, the positivity rates 

were higher for the POLE and MSI-H (65.6% and 56.7%, 
respectively) than for the CNV-H and CNV-L (47.1% and 
35.2%) subtypes (Fig. 3C). However, the number of TLSs 
did not differ across the molecular subtypes for the TLS-
positive cases (Supplementary Figure S2A). We previously 
reported that TLSs in EC are associated with intratumoral 
TILs and contribute to favorable clinical outcomes [14]. In 
another study, we established an AI analysis pipeline that 
can quantify the density of intratumoral TILs (TIL model) 
[17]. Therefore, we used this AI-based TIL model to calcu-
late the intratumoral TIL (iTIL) score for each case (Fig. 2C) 
and found that the cases with TLS had significantly higher 
iTIL scores (p < 0.001) (Fig. 2E, Supplementary Figure 
S2B). This finding was consistent even when analyzing 
dTLSs and pTLSs separately, suggesting that TLSs are asso-
ciated with increased intratumoral TILs (p < 0.001 for both 
dTLSs and pTLSs) (Supplementary Figure S2B).

Fig. 1   Spatial distribution of TLS and immunological difference. A 
Representative images of H&E slides and CD21 IHC slides. Scale 
bars at 200 µm. B Representative images of H&E slides containing 
TLSs in the peritumoral area. Tumor invasive margin is indicated 
by black line. Red and green dotted lines indicate distal and proxi-
mal TLSs. Scale bars at 1 mm. C B cell receptor repertoire analysis 
separating TLS and TIL regions. The horizontal axis represents the 
J gene, the depth represents the V gene, and the vertical axis repre-
sents the frequency of usage. Clones indicated by red arrows confirm 
the same amino acid sequence of the CDR3. IGH VJ Repertoire 3D 
graph of the representative case with shared clones between the TLS 

and TIL samples is shown (Case 4). The results of all cases are sum-
marized in Table 2. D Differentially expressed genes (DEGs) in the 
distal tertiary lymphoid structures (dTLS) and proximal TLS (pTLS) 
samples. Eight genes (in red) were significantly upregulated, and one 
gene (in green) was significantly downregulated in the dTLSs rela-
tive to the pTLSs. H&E, hematoxylin and eosin; IHC, immunohisto-
chemistry; TLS, tertiary lymphoid structure; TIL, tumor-infiltrating 
lymphocyte; CDR3, complementarity-determining region 3; IGH VJ 
Repertoire 3D graph, 3-dimension graph of B cell repertoire of VJ 
lesions in heavy chain of IgG; IGHV, V lesion in heavy chain of IgG; 
IGHJ, J lesion in heavy chain of IgG
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Survival analysis based on spatial distribution 
of TLS and TIL

The survival analyses involved 559 patients in the TCGA 
(n = 463) and Kyoto (n = 96) cohorts with available prog-
nostic information. We investigated the prognostic impact of 
TLSs based on their distance from the tumor invasive mar-
gin. Previous reports have considered TLSs to be favorable 
prognostic factors for EC [13, 31]. However, pTLSs, which 
were located very close to the tumor margin (< 500 µm), 
showed a trend toward worse prognosis in this study. In con-
trast, dTLSs, which were located within 500 and 5000 µm 
from the tumor margin, showed an almost consistent trend 
toward better prognosis, although these trends were not sta-
tistically significant (Supplementary Figure S3A). There-
fore, we focused our survival analysis on the dTLSs. Patients 
with dTLSs had better prognoses than those without them 
(HR, 0.67; 95% CI, 0.43–1.04; p = 0.07 for OS; HR, 0.66; 
95% CI, 0.46–0.95; p = 0.03 for PFS) (Fig. 4A, B). Multi-
variable analysis showed that the presence of dTLSs was a 
significant factor for both OS and PFS (HR, 0.56; 95% CI, 
0.36–0.88; p = 0.01 for OS; HR, 0.58; 95% CI, 0.40–0.84; 
p = 0.004 for PFS) (Table 3). Subgroup analysis revealed a 
consistent trend toward better prognosis in the dTLS-posi-
tive group across each cohort (Fig. 4C). When analyzed by 
molecular subtype, patients with dTLSs in the CNV-H group 
had significantly longer PFS (HR, 0.51; 95% CI, 0.29–0.91; 
p = 0.02) (Supplementary Figures S3B-E). To validate the 
significance of dTLSs, we calculated the ssGSEA scores for 
the TLS-related signatures using RNA sequencing data from 
the TCGA cohort. These signatures are widely used to detect 
TLSs and serve as a surrogate for clinical significance. Cases 
predicted to have dTLSs scored significantly higher across 
all signatures, as expected (Fig. 4D). In contrast, among 
cases without dTLSs, the ssGSEA scores did not differ sig-
nificantly between no-TLS- and pTLS-positive groups across 
all signatures (Supplementary Figure S3F). Additionally, 
the patients were further divided based on the median iTIL 
score. Patients with dTLSs and high iTIL scores had favora-
ble prognoses, while those with dTLSs but low iTIL scores 
had prognoses similar to those of the patients without dTLSs 
(Supplementary Figure S3G).

ICI response associated with the presence of dTLS

Lastly, the association between the presence of dTLS and 
ICI treatment response was investigated in the ICI cohort 
with 20 patients (treatment regimens included lenvatinib 
plus pembrolizumab in 14 cases and pembrolizumab 
monotherapy in 6 cases). The response rate was higher for 
the dTLS-positive group (87.5% vs. 41.7%, respectively; 
Fig. 5A). In MSI-H cases (n = 7), four patients achieved a 
partial response or better and showed a durable response, Ta
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all of whom were positive for dTLS. In contrast, the other 
three MSI-H patients, who were negative for dTLS, exhib-
ited progressive disease.

There was a trend toward improved PFS in the dTLS-pos-
itive group (HR, 0.29; 95% CI, 0.08–1.07; p = 0.06; Fig. 5B). 

The CYT score, a measure of immune cytolytic activity, 
and the T cell-inflamed GEP score, an indicator of T cell-
activated TiME, have been reported to be associated with 
ICI response in several cancer types [28, 29]. In the TCGA 
cohort, gene expression analysis revealed that patients with 

Fig. 2   Establishment of AI model to quantify the spatial distribu-
tion of TLS. A Representative image of patches in the training data-
set. Segmented masks are colored red for tumor regions, green for 
TLS regions, and black for the stroma and background. Scale bars 
at 200  µm. B Concept diagram of the established TLS detection 
model. Scale bars at 1 mm. C Representative images of H&E-stained 
slides annotated with model predictions. Original H&E-stained slide 

images, images annotated with predictions from the TLS model 
(colored green for TLS regions and red for tumor regions), and 
images annotated with predictions from the TIL model (intratumoral 
TIL-positive tiles are cyan colored and stromal TIL-positive tiles are 
blue colored) are shown (upper: low magnification; lower: high mag-
nification). CNN, convolutional neural network
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dTLSs had significantly higher CYT and T cell-inflamed 
GEP scores (p = 0.003 and 0.007, respectively; Fig. 5C).

Discussion

From the results of our BCR repertoire analysis, we rec-
ognized the need to quantitatively evaluate the distance 
from the tumor invasive margin to TLSs. To address this, 
we established an AI analysis pipeline that automatically 
extracts information about TLSs in EC from H&E slides, 
along with their distance from the tumor margin. Utiliz-
ing this approach, we demonstrated consistent prognostic 
stratification across multiple datasets. We also indicated a 
potential association with the efficacy of ICIs.

Previous studies have reported that the prognostic impact 
of TLSs varies depending on their distance from the tumor 
margin. TLSs can be classified according to their location: 

tumor nests (T-TLS), peritumoral (P-TLS), and stromal 
(S-TLS) [14]. The prognostic impact of these TLSs has 
been inconsistent across different cancers and reports. A 
favorable prognostic effect of T-TLS has been observed for 
cholangiocarcinoma, hepatocellular carcinoma (HCC), and 
metastatic colorectal cancer. However, no significant cor-
relation was found for non-metastatic colorectal cancer [20, 
32–34]. P-TLS has been reported to be associated with worse 
outcomes in cholangiocarcinoma, breast cancer, and meta-
static colorectal cancer [10, 20, 32], while with better out-
comes for HCC [21]. Notably, in breast cancer, a classifica-
tion similar to ours—distinguishing between adjacent TLSs 
(aTLSs) and dTLSs—showed that patients with a higher 
number of aTLSs had worse prognosis [10]. In EC, S-TLS is 
relatively rare [13], and P-TLS is predominantly associated 
with favorable outcomes [13, 31]. Our results indicate that 
there may be a difference in function and prognostic impact 
between pTLSs and dTLSs. While we can only speculate, 

Fig. 3   AI-predicted spatial distribution of TLS among molecular sub-
types. A AI-predicted TLS count stratified by distance from tumor 
margin. All samples from the TCGA and Kyoto cohort were merged 
(n = 559). B AI-predicted dTLS and pTLS counts per case. C The 
association among molecular subtypes, the presence of dTLSs and 

pTLSs, and the iTIL score. TLS-positive cases are shown in black. 
Cases with higher iTIL scores are shown in red. POLE, polymerase 
epsilon-mutated; MSI-H, microsatellite instability-high; CNV-H, 
copy-number variant-high; CNV-L, copy-number variant-low; iTIL, 
intratumoral tumor-infiltrating lymphocyte
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one possibility is that TLSs located too close to the tumor, 
similar to cancer-metastatic lymph nodes, may be immu-
nologically weakened or exhausted. However, definitive 

conclusions could not be drawn from our repertoire analysis 
due to the limited number of cases.

Following the results of the BCR repertoire analysis, 
we conducted RNA sequencing to compare the pTLSs and 

Fig. 4   Prognostic impact of dTLSs in patients with endometrial can-
cer. A, B Kaplan–Meier curves comparing the (A) overall survival 
(OS) and (B) progression-free survival (PFS). C)Forest plot show-
ing the treatment effect on OS in the subgroup analysis. The verti-
cal line represents the point of no effect. D The association between 
the presence of dTLSs and the ssGSEA scores of TLS-related signa-
tures. The ssGSEA scores were scaled from 0 to 1 using min–max 

normalization. Boxes in the box plot represent interquartile ranges, 
and horizontal lines represent the 5–95th percentile ranges, with a 
notch for the median. P-values were calculated using the Mann‒
Whitney U test. HR, hazard ratio; CI, confidence interval; ssGSEA, 
single-sample Gene Set Enrichment Analysis; *p < 0.05, **p < 0.01, 
***p < 0.001
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dTLSs and identified several notable DEGs. SCGB1D4, 
which was significantly upregulated in pTLSs, is highly 
expressed in lymph nodes and has immunological functions, 
including the regulation of chemotactic migration and inva-
sion [35]. On the other hand, among the genes significantly 
upregulated in the dTLSs, NTRK3 encodes the tropomyosin 
receptor kinase C (TRKC) receptor, which, upon binding 

with neurotrophin-3 (NT-3), can activate MAPK and PI3K/
AKT pathways to promote cell growth and differentiation. 
NTRK3 has been associated with tumor mutation burden 
and immune infiltration in bladder cancer [36] and with 
TLSs and TILs in gastrointestinal stromal tumors (GISTs) 
[37]. Likewise, CTSG encodes Cathepsin G, an immune-
related regulatory molecule, which acts as a chemotactic 

Table 3   Multivariable Cox 
proportional hazards regression 
survival analysis

OS overall survival, PFS progression-free survival, HR hazard ratio, CI confidence interval, dTLS distal 
tertiary lymphoid structure

Variables Multivariable (OS) Multivariable (PFS)

HR 95% CI P value HR 95% CI P value

Stage
1 1 (reference) 1 (reference)
2 1.22 0.47–3.15 0.68 0.99 0.45–2.19 0.98
3 2.54 1.49–4.34 0.006 2.62 1.71–4.01  < 0.001
4 9.63 5.12–18.1  < 0.001 8.37 4.81–14.6  < 0.001
Age
 < 65 1 (reference) 1 (reference)
 >  = 65 1.74 1.10–2.75 0.02 1.18 0.81–1.72 0.39
Histology
Endometrioid 1 (reference) 1 (reference)
Others 1.89 1.17–3.06 0.01 1.51 1.01–2.27 0.05
dTLS
Absent 1 (reference) 1 (reference)
Present 0.56 0.36–0.88 0.01 0.58 0.40–0.84 0.004

Fig. 5   Association between dTLSs and response to immune check-
point inhibitors (ICIs). A Swimmer plot depicting the treatment out-
comes of the ICI cohort. The time from the initiation of ICI therapy 
to disease progression or last follow-up is shown. B Kaplan–Meier 
curves comparing PFS in the ICI cohort. C Cytolytic activity (CYT) 
and T cell-inflamed gene expression profile (GEP) scores of the 
dTLS-positive and negative groups. Boxes in the box plot represent 

interquartile ranges, and horizontal lines represent the 5th–95th per-
centile ranges, with a notch indicating the median. P-values were cal-
culated using the Mann–Whitney U test. **p < 0.01. CR, complete 
response; PR, partial response; and PD, progressive disease; MMR, 
mismatch repair; PEM, pembrolizumab; LEN/PEM, pembrolizumab 
and lenvatinib; MSS, microsatellite stable; MSI, microsatellite insta-
ble
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agent for monocytes and stimulates lymphocyte prolifera-
tion. Notably, CTSG has been associated with CD4 T cell 
activation in lung cancer [38]. However, definitive conclu-
sions could not be drawn from our repertoire analysis and 
RNA sequencing due to the limited number of cases. Since 
TLS samples were obtained from very small areas, the dif-
ferences may not be fully detectable by bulk RNA sequenc-
ing. Therefore, more detailed analyses involving single-cell 
RNA sequencing with a larger sample size are warranted.

Given that TLSs are often undetectable in biopsy speci-
mens [9, 17], comprehensive assessment of pathological 
slides of surgical specimens is required, but this is labor-
intensive. To address this issue, several transcriptome-based 
signatures have been proposed for TLS detection. However, 
a quantitative relationship between these methods and path-
ological evaluation has been questioned [22–27]. Further-
more, it is important to develop evaluation techniques that 
rely solely on H&E staining without IHC to enable larger-
scale studies since publicly available datasets typically 
include only one diagnostic H&E slide. In this study, we 
elucidated the distribution of TLSs in EC using large-scale 
data from TCGA after establishing a method to detect TLSs 
from H&E slides. The higher positivity rates of TLSs in the 
POLE and MSI-H subgroups were consistent with previous 
reports [31]. Conversely, the lower TLS positivity rate in the 
CNV-L subtype aligns with previous reports indicating low 
TLS-related gene expression in this subtype [39], suggesting 
that CNV-L represents a more immunologically “cold” envi-
ronment. Additionally, demonstrating the association with 
TLS-related signatures further validates the robustness of 
our method. Given the various attempts to induce TLSs as 
therapeutic targets [11], the need for quantitative TLS evalu-
ation will persist in the future.

In this study, we demonstrated that dTLSs are consist-
ently associated with favorable prognosis not only in our 
institutional cohort but also in the TCGA cohort. Moreover, 
our findings suggest that the prognostic impact of dTLSs 
may vary among molecular subtypes. For molecular subtyp-
ing, a simplified ProMisE classification relying mainly on 
IHC has been proposed [40]. Horeweg et al. indicated that 
the prognostic impact of TLSs may vary according to the 
ProMisE classification of EC [31], highlighting a significant 
impact in the mismatch repair deficiency (MMRd) group. In 
contrast, our results did not show a prognostic difference in 
the MSI-H group, but a significant difference was observed 
in the CNV-H group. Given the substantial differences in 
TLS evaluation methods, molecular subtype determination, 
and patient characteristics, careful interpretation of these 
results is necessary. The CNV-H group has been reported 
to be heterogeneous and have immune-hot and immune-
cold subclusters, which may partly explain our results [41]. 
Since the 2023 FIGO staging system for EC incorporates 
molecular subtypes into the clinical staging [42–44], further 

investigations guided by the subtypes are needed. Addition-
ally, our sample size was limited, but we presented data on 
ICI response. Among MSI-H cases that responded to treat-
ment, all were dTLS-positive, suggesting that the presence 
of dTLS could serve as a more precise predictor of ICI 
response. While some reports have explored the relationship 
between TLSs and ICI response for certain cancer types [12, 
23, 45], this relationship is not yet well understood. As ICIs 
are increasingly used as standard treatment for EC[3–7], 
larger-scale studies are needed in the future.

Our study had several limitations. We demonstrated the 
consistent prognostic impact of dTLSs, but the functional 
and biological differences between dTLSs and pTLSs were 
not thoroughly investigated. Our established AI-based 
assessment pipeline for TLSs lacked sufficient external 
validation, as IHC data were not available in public data-
sets. Additionally, our results indicated an association 
between TLSs and the response to ICIs, but this finding 
was inconclusive due to the limited number of cases. Fur-
ther investigation and well-designed clinical trials with 
larger number of cases are warranted.

Our AI-based analysis allowed us to reproducibly evalu-
ate the spatial distribution of TLSs on the entire H&E 
slides. We demonstrated the favorable prognostic value of 
TLSs by objective quantification and showed the differ-
ences according to their spatial distribution. Our findings 
suggest that TLSs may serve as biomarkers, potentially 
leading to personalized treatment for patients with EC.
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