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Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) cause significant neuronal loss and severely impair daily living. 
Despite different clinical manifestations, these disorders share common pathological molecular hallmarks, including mito-
chondrial dysfunction and synaptic degeneration. A detailed comparison of molecular changes at single-cell resolution in 
the cortex, as one of the main brain regions affected in both disorders, may reveal common susceptibility factors and disease 
mechanisms. We performed single-cell transcriptomic analyses of post-mortem cortical tissue from AD and PD subjects 
and controls to identify common and distinct disease-associated changes in individual genes, cellular pathways, molecular 
networks, and cell-cell communication events, and to investigate common mechanisms. The results revealed significant 
disease-specific, shared, and opposing gene expression changes, including cell type-specific signatures for both diseases. 
Hypoxia signaling and lipid metabolism emerged as significantly modulated cellular processes in both AD and PD, with 
contrasting expression alterations between the two diseases. Furthermore, both pathway and cell-cell communication analy-
ses highlighted shared significant alterations involving the JAK-STAT signaling pathway, which has been implicated in the 
inflammatory response in several neurodegenerative disorders. Overall, the analyses revealed common and distinct alterations 
in gene signatures, pathway activities, and gene regulatory subnetworks in AD and PD. The results provide insights into 
coordinated changes in pathway activity and cell-cell communication that may guide future diagnostics and therapeutics.

Keywords  Alzheimer’s disease · Parkinson’s disease · Cross-disease comparison · Single-cell analysis · Cell-cell 
communication · RNA-sequencing · Pathway analysis · Network analysis

Introduction

Alzheimer's Disease (AD) and Parkinson's Disease (PD) 
are the two most common neurodegenerative disorders, and 
their prevalence continues to increase in the aging popula-
tion [1]. AD is characterized by the aggregation of the pro-
tein tau and the accumulation of amyloid beta (Aβ) plaques, 
leading to progressive cognitive impairment and eventually 
dementia [2]. By contrast, PD is characterized by a patho-
logical accumulation of the protein α-synuclein and dopa-
mine depletion in vulnerable brain regions, associated with 

the cardinal motor symptoms of bradykinesia, rigidity, and 
resting tremor. While AD has a higher age-adjusted inci-
dence rate in women compared to men [3], PD predomi-
nantly affects men [4].

Despite their distinct molecular and clinical profiles, AD 
and PD share many similarities. Central to these similarities 
are biological processes related to oxidative stress, neuro-
inflammation, iron homeostasis, and neuronal loss [5, 6].

In addition, the disorders manifest similar comorbidi-
ties, including memory changes, sleep disturbances, com-
munication difficulties, behavioral changes, and cognitive 
decline [7, 8]. Investigating the convergence and diver-
gence of cellular pathways involved in these disorders may 
help to better understand the underlying biological mech-
anisms and advance therapeutic development. Emerging 
evidence highlights the presence of shared molecular sus-
ceptibility factors and pathways, providing the basis for a 
mechanistic interpretation of the molecular commonalities 
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between AD and PD. This exploration promises to provide 
new insights into potential common therapeutic targets and 
avenues for intervention.

Many previous studies have already conducted com-
parative analyses of neurodegenerative disorders, includ-
ing AD and PD, mostly focusing on existing therapeutic 
modalities [1] or exploring their associations with the 
aging process [9]. These studies have revealed disease 
commonalities that contribute to our understanding of 
neurodegeneration. However, cross-disease comparisons 
of molecular data have mostly relied on bulk level meas-
urements from different tissues and body fluids, precluding 
an in-depth analysis of single-cell differences.

To date, a comprehensive comparison of molecular pro-
files in PD and AD at single-cell resolution in commonly 
affected brain regions is still lacking. To help fill this gap, 
we collected single-cell RNA-seq (scRNA-seq) data from 
AD and PD subjects and controls, focusing on the cortex 
as a key brain region implicated in both diseases. Using 
these data, our study characterizes the common and dis-
tinctive features between AD, PD, and controls in single 
cells at multiple levels, from individual genes to pathways 
and subnetworks. By using a single-cell based multi-level 
approach, we aim to provide both coarse and fine scale 
comparisons, capturing detailed changes in individual 
genes and overarching changes in pathways/subnetworks 
to gain a more comprehensive understanding of the under-
lying processes in each cell type.

Overall, our comparative single-cell transcriptome 
analysis revealed unique and shared gene signatures and 
pathway changes between AD and PD. Focusing on five 
major cell types common to both datasets (astrocytes, oli-
godendrocytes, microglial cells, excitatory neurons, and 
inhibitory neurons), we identified significant contrast-
ing alterations, particularly in pathways associated with 
synaptic dysfunction and lipid metabolism. In addition, 
hypoxia-related and inflammation-related pathways, such 
as the JAK-STAT signaling pathway, were highlighted as 
significant in multiple analyses. Furthermore, network 
analyses revealed key regulatory genes whose modulation 
has the potential to reverse downstream AD- and PD-asso-
ciated expression changes in the networks. These include 
the transcription factor CREB1, which regulates neuronal 
plasticity via the CREB signaling pathway, and central 
regulatory genes involved in stress response pathways such 
as JUNB, FOS, and HIF1A.

In summary, our study provides insights into the molecu-
lar commonalities and differences between AD and PD at 
single-cell resolution across multiple levels of biological 
organization, encompassing the hierarchy of genes, path-
ways, and molecular networks. The findings may facilitate 
the development of improved disease-specific diagnos-
tics, while also revealing shared susceptibility factors and 

pathways, including pharmaceutically tractable target pro-
teins with favorable druggability characteristics.

Methods

Alzheimer’s and Parkinson’s Disease Single‑Cell 
Datasets

We used two distinct scRNA-seq datasets, one from an AD 
cohort and one from a PD cohort.

The AD dataset was obtained from post-mortem dor-
solateral prefrontal cortex (DLPFC) samples from 71 AD 
subjects and 9 healthy controls (HC) [10]. Nuclei were iso-
lated using a previously described standard procedure from 
Allen Institute [11]. The nuclei were then concentrated by 
centrifugation and sequenced on a 10X Chromium plat-
form (10X Genomics, see [10] for the detailed experimen-
tal procedures). We obtained the pre-processed and anno-
tated single-cell data from https://​regis​try.​opend​ata.​aws/​
allen-​sea-​ad-​atlas.

The PD dataset was derived from post-mortem prefrontal 
cortex samples from 6 idiopathic PD subjects and 6 matched 
HC [12] (GEO: GSE202210). Brain nuclei were isolated 
by sucrose gradient ultracentrifugation, and single nucleus 
libraries were constructed using the 10X Chromium system 
and sequenced on an Illumina NovaSeq 6000 system, yield-
ing approximately 80,000 nuclei (see [12] for experimental 
details).

An overview of the main characteristics of the two data-
sets, including information on the represented conditions, 
Braak progression stages, ages, sexes, and post-mortem 
intervals is provided in Table 1. The overall workflow for 
the pre-processing and analysis of scRNA-seq data in AD 
and PD is illustrated in Fig. 1.

Pre‑Processing, Quality Control and Filtering

Single-cell data pre-processing was performed using the 
R software package Seurat for the PD cohort (version 5, 
RRID:SCR 016341) [13]. Following standard Seurat guide-
lines, we applied dedicated quality control (QC) checks to 
remove outlier cells (gene counts below 200 or above 10000) 
and cells with mitochondrial contamination (percentage of 
cells with > 5% mitochondrial counts), as well as empty 
droplets or doublets (droplets containing two cells; see also 
the Data Availability section for the source code).

As a result, we obtained 35555 PD cells and 29865 
HC cells for the PD dataset. Finally, we applied nor-
malization, scaling and variance stabilization using the 
function scTransform in the Seurat package, using regu-
larized negative binomial regression. This initial pre-pro-
cessing also involved an unsupervised feature selection, 
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reducing the number of features to the top 3000 most 
variable genes. All data pre-processing and analysis steps 
were performed in the R programming language (version 
4.4.0, RRID:SCR 001905) [14]. All computations were 
performed using an RStudio Server with 1 TB of memory 
to handle the large cell counts in the data.

For the AD cohort, we classified participants as AD or 
HC according to the ADNC score (0 for HC, greater than 
0 for AD), as used in Gabitto et al. (2023). We included 
all cells from the 80 donors which met the QC criteria 
defined in Gabitto et al. (2023) and we verified that the 
mitochondrial count for these cells was less than 5%.

Clustering and Cell Type Annotation

To identify and annotate the cell populations in the PD 
single-cell dataset, we first applied a dimension reduction 
using Principal Component analysis (PCA) and the Uniform 
Manifold Approximation and Projection (UMAP) for data 
visualization. Specifically, the first 17 principal components 
(PCs) were selected using the Elbow method in the Seurat 
package for further downstream analysis. Next, a Shared 
Nearest Neighbor (SNN) graph was constructed using the 
selected PCs and the FindNeighbors function in Seurat. Cell 
type clusters were then identified in the SNN graph using 

Table 1   Overview of the AD and PD single-cell datasets (Cohort = 
disease condition studied in the cohort, Groups = number of samples 
per condition (HC = healthy controls), Sex = number of samples per 

biological sex (F = female, M = male), Age = age in years, Braak 
= Braak progression stage ranging from 1 (low) to 6 (high), PMI = 
post-mortem interval in hours)

Cohort Groups Donors (n) Sex M / F (%) Age (mean ± sd) Braak (mean ± sd) PMI (mean ± sd) Total num-
ber of nuclei 
(n)

AD AD 71 40% M / 60% F 88.6 ± 8.0 4.6 ± 1.13 6.9 ± 2.15 1300229
HC 9 52% M / 48% F 89.3 ± 5.74 3.0 ± 1.68 6.3 ± 2.15

PD PD 6 50% M / 50% F 81.8 ± 8.32 1.5 ± 0.83 7.6 ± 2.80 77384
HC 6 50% M / 50% F 71.5 ± 6.32 1.2 ± 0.75 10.0 ± 4.90

Fig. 1   Workflow for the com-
parative analysis of scRNA-seq 
data in Alzheimer’s (AD) and 
Parkinson’s Disease (PD). For 
the AD dataset, cluster annota-
tions were derived from the 
original source data by Gabitto 
et al. (2023) and validated using 
the CellMarker database; for the 
PD dataset, clustering and cell 
type annotation were performed 
as described in the Methods



2658	 Molecular Neurobiology (2025) 62:2655–2673

the FindClusters function in Seurat and the Louvain algo-
rithm [15]. To determine the optimal number of clusters, we 
computed the Silhouette width cluster validity score [16], 
using the R packages cluster [17] (version 2.1.6, RRID:SCR 
013505) and clustree (version 0.5.0, RRID:SCR 016293) 
[18]. The Silhouette width assesses both cluster separation 
and compactness, while the clustree package was used to 
analyze and visualize cluster stability and distribution char-
acteristics. Finally, the resulting cell type clusters were anno-
tated using the ScType software [19] and markers from the 
CellMarker database. For further confirmation, the identified 
cell types were cross-referenced against the previous refer-
ence publication [12].

Gene‑Level Analysis of Disease‑Associated Changes

We performed gene-level differential analyses for the main 
cell types thought to play important roles in AD and PD, 
including excitatory and inhibitory neurons, oligodendro-
cytes, microglial cells, and astrocytes. For this purpose, 
we used the non-parametric Wilcoxon rank sum statistic, 
as implemented in the FindMarkers function of the Seurat 
package, to identify differentially expressed genes (DEGs) 
between patients and controls in the respective cohorts (PD 
vs. HC / AD vs. HC). All p-value significance scores were 
adjusted for multiple hypothesis testing using the Benja-
mini-Hochberg procedure. If the resulting false discovery 
rate (FDR) for a gene was less than 0.05 and a minimum 
effect size was observed (absolute log fold change ≥ 0.10), 
the corresponding gene was considered as significantly dif-
ferentially expressed. Using this procedure, we determined 
significant DEGs for both cohorts and grouped them into 
three main categories:

•	 Shared DEGs: Genes with shared significant differential 
expression and the same direction of the change in both 
diseases (FDR < 0.05, min. absolute log fold change > 
0.10 for both diseases and identical signs of the log fold 
change)

•	 Disease-specific DEGs: Genes that are significantly dif-
ferentially expressed in one of the diseases (FDR < 0.05, 
min. absolute log fold change > 0.10) and not close to 
significance in the other disease (nominal p-value > 0.5) 
- this conservative threshold for non-significance was 
chosen to ensure that a disease-specific significance is 
not assigned due to stochastic variation of FDR values 
around the standard significance threshold of 0.05)

•	 Contrasting DEGs: Genes with significant differen-
tial expression in both diseases, but changes in differ-
ent directions (FDR < 0.05 and min. absolute log fold 
change > 0.10 for both diseases and different signs of the 
log fold change)

The relative proportions of these three categories of 
DEGs across the main cell types of interest were visual-
ized using Venn diagrams (R package nVennR, version 
0.2.3).

Pathway Analysis

To characterize disease-associated changes at the scale of 
cellular pathway and process activities, we evaluated the 
overrepresentation of DEGs in biological processes (BP) 
and molecular functions (MF) from the Gene Ontology 
(GO) database and in pathways from the KEGG database 
(KEGG). The common pathway alterations between AD 
and PD were investigated by performing the analysis sepa-
rately for two categories of identified DEGs: shared and 
contrasting DEGs (see definition in the section on "Gene-
level analysis of disease-associated changes"). Overrepre-
sentation analysis was performed using the enrichGO and 
enrichKEGG functions from the R package clusterprofiler 
(version 4.2.2, RRID:SCR 016884) [20] and human gene 
annotations from the R package org.Hs.eg.db (version 
3.10.0) and the KEGG database. Results were considered 
significant if the adjusted p-value was less than 0.05 and 
the number of DEGs in the enriched pathway was above 
5. All analyses were carried out for all main cells consid-
ered also in the gene-level analysis of disease-associated 
changes. Finally, we examined the directionality of the 
changes in the DEGs mapped to the GO and KEGG gene 
sets to assess global trends of increasing or decreasing 
gene expression in the two diseases for each gene set 
analyzed.

Subnetwork Analysis

Next, we conducted gene regulatory network perturbation 
analysis as previously described [21], to identify key regula-
tory genes/proteins (here called perturbagens), whose phar-
macological modulation has the potential to reverse down-
stream pathologic changes in the gene regulatory networks 
(GRNs). Because this method requires input networks of suf-
ficient size and connectivity to identify essential circuits for 
maintaining network stability, it was only applicable to the 
larger networks obtained in the GRN construction analysis, 
and we therefore used it specifically to identify perturbagens 
for the astrocyte, oligodendrocyte, excitatory neuron, and 
microglial cell types. For all GRNs, we also used an alterna-
tive approach to identify key regulatory genes, by perform-
ing network topological analysis to determine genes with a 
high network centrality, as measured by the degree score. 
The corresponding analysis and visualizations were imple-
mented using the Cytoscape software [22].
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Cell‑Cell Communication Analysis

To improve our understanding of cell-cell communica-
tion changes in the studied neurodegenerative diseases, 
we have adopted a new statistical approach to identify and 
score changes in cell-cell communication, implemented 
in the R package scSeqComm (version 1.0.0) [23]. Using 
this software, we integrated the annotated single-cell data 
with transcriptional regulatory network data and receptor-
transcription factor association data using information from 
the databases KEGG, TRRUST v2, HTRIdb, GO and Reg-
Network, and a Ligand-Receptor interaction collection from 
NicheNet [24]. This allowed us to assess both intra- and 
inter-cellular communication in our datasets, facilitating 
the understanding of cellular pathways affected by altered 
communication events in AD and PD. We focused specifi-
cally on astrocytes and microglial cells, which play central 
roles in neurodegenerative diseases and displayed significant 
pathway alterations in our data. Cell-cell communication is 
quantified through inter- and intracellular signaling scores, 
named Sinter and Sintra, respectively, which range from 0 to 1, 
where higher values indicate stronger evidence for commu-
nication. We chose a minimum threshold of Sinter and Sintra 
signaling scores of 0.8 for both gene expression datasets 
to consider only the most specific ligand-receptor pairs. In 
addition, we focus on discussing the most significant find-
ings, particularly on the cellular processes in the GO data-
base with a p-value below 0.05 that are shared across both 
diseases in the cell types displaying large numbers of spe-
cific LR pairs, i.e. microglial cells and astrocytes.

Results and Discussion

Cell Type Clustering and Annotation

The clustering results for the pre-processed scRNA-seq 
datasets for AD and PD and the annotations for the cor-
responding cell type clusters are shown in Fig. 2. For the 
PD dataset, we confirmed the obtained annotations by vis-
ualizing cell type-specific marker genes derived from the 
CellMarker database and manually inspecting the literature 
on the marker genes for all cell type clusters visible in the 
UMAP representation (see Supplementary Fig. 1). These 
markers exhibit significant overexpression in the respective 
clusters, as confirmed by assessing differential gene expres-
sion between the clusters. For the AD dataset, we validated 
the annotations from the original source publication [10] 
by performing a differential expression analysis comparing 
each cell type cluster against all others and comparing the 
resulting cell cluster-specific DEGs against known marker 
genes in the CellMarker database.

In the PD dataset, 10 clusters were identified as the opti-
mal number of clusters using the Silhouette width evalua-
tion. High-confidence cell type annotations were obtained 
for each of these clusters when applying the ScType algo-
rithmic annotation approach using data from the CellMarker 
database. Overall, 8 main distinct cell types were detected 
for both the AD and PD datasets (see Fig. 2), including cell 
type annotations mapping to multiple point clusters, indi-
cating the potential to investigate finer subdivisions of cell 
populations in future follow-up studies. To focus on the most 
robust data patterns with statistical support from large cell 
counts, we merged cell types for smaller clusters with over-
lapping differential gene markers and similar annotations 
for both the AD and PD datasets. Specifically, the clusters 
labeled as different subcategories of excitatory or inhibitory 
neurons were merged under the generic terms "Excitatory 
neuron" and "Inhibitory neuron". Overall, we identified sev-
eral relevant cell types in the data from both cohorts that 
have been reported previously to display molecular altera-
tions in neurodegenerative diseases, including neurons, 
astrocytes, oligodendrocytes, and microglial cells [25], 
among others. Therefore, the statistical analysis and cellu-
lar pathway and network analysis described below focus on 
these common cell types with confirmed disease relevance 
and enough cells for robust analysis.

Gene‑Level Comparative Analysis

The statistical analysis of gene-level differential expression 
between AD vs. HC and PD vs. HC revealed numerous sig-
nificantly differentially expressed genes (DEGs) for both 
diseases. The DEGs are categorized into three groups as 
defined in the Methods section: Shared DEGs (highlighted in 
red for increased expression and blue for decreased expres-
sion), disease-specific DEGs (shown in yellow for AD and 
purple for PD) and contrasting DEGs (highlighted in green). 
The numbers and overlaps of DEGs are indicated for the 
five main cell types of interest: excitatory and inhibitory 
neurons, astrocytes, oligodendrocytes, and microglia. Sev-
eral significant DEGs were identified for each category (see 
Fig. 3). In general, more AD-specific than PD-specific DEGs 
were detected, which may be explained by the disparity in 
the cell counts between the two datasets (≈ 1.3M nuclei 
for AD vs. 80k nuclei for PD), although other factors may 
also contribute to the overall difference in DEG counts, 
such as differences between the disease stages covered and 
disease-specific variations in the extent of cortical molecular 
changes. Additionally, technical differences such as different 
methods for nuclei isolation between the AD and PD data-
sets (see Methods) can impact the yield and quality of iso-
lated nuclei. Despite the potential noise introduced by these 
methodological differences, their impact on the variability 
in the integrity and yield of isolated nuclei is considered 
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manageable, allowing for meaningful downstream analyses 
and comparisons of scRNA-seq results.

As a general observation, the analysis reveals numerous 
overlapping DEGs between the diseases, with an inter-
section set size larger than expected by chance according 
to Fisher’s exact test (p < 0.05 for all cell type-specific 
analyses). While most of these shared significant DEGs 
display alterations in the same direction, interestingly, a 
subset shows changes in opposite directions (illustrated 
in green). These contrasting DEGs (see definition in the 
Methods section on "Gene-level analysis of disease-asso-
ciated changes"), along with the identified disease-specific 
DEGs, may serve as candidate markers to discriminate 

between the different neurodegenerative conditions, and 
provide starting points to investigate disease-specific 
molecular and cellular mechanisms (see also the follow-
ing pathway and network analysis). To highlight the main 
shared and distinct DEGs identified, Table 2 lists the top 
5 most significant DEGs for each category, indicating the 
direction of the change (blue for decreased expression and 
red for increased expression; log fold changes, p-values 
and detailed annotations for these genes are provided in 
the Supplementary Tab. 1). For the contrasting DEGs, 
arrows indicate whether their expression increases (↗) or 
decreases (↘) in PD (left arrow) or AD (right arrow). All 
DEGs for all shared cell types are reported by category, 

Fig. 2   Two-dimensional cluster 
visualization of the scRNA-seq 
datasets for (a) AD, showing 
the cell type assignments from 
the original SEA-AD study 
(validated against the Cell-
Marker database), and for (b) 
PD, generated using the UMAP 
dimension reduction approach 
and highlighting the added cell 
type annotations (see Methods)

(a) Annotation and cell type clustering for the AD dataset as derived from Gabitto et al. [10] 

(validated against the CellMarker database) 

(b) Annotation and cell type clustering for the PD dataset
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with detailed statistics on the accompanying GitLab web-
site (https://​gitlab.​com/​unilu​xembo​urg/​lcsb/​biome​dical-​
data-​scien​ce/​bds/​compa​rison_​ad_​pd_​single-​cell.​git).

Gene Function Analysis  Among the most significant DEGs 
listed in Table 2, we note several key functional groups:

	 1.	 Cell Adhesion and Cell-Cell Communication: Genes 
such as CDH19, CAV1, ITGA2, BCAS1, CCDC9B, 
ARHGAP42, CCDC80, and SELL play important roles 
in cell adhesion and cell-cell communication. Disrup-
tions in these processes can lead to impaired neuronal 
connections and signaling, which are central to the 
progression of both AD and PD [26–28].

	 2.	 Transcriptional Regulation: This group includes 
genes such as JUNB, NR4A1, ETS1, FOSB, and 
FOSL2. Abnormal transcriptional regulation can 
affect numerous cellular functions and is a common 
feature in the pathology of neurodegenerative diseases, 
contributing to the dysregulation of gene expression 
[29–32].

	 3.	 Neurotransmitter Transport and Signaling: Key 
genes include SLC1A3, SVOP, GABRA3, and GLT1D1. 
Dysfunctions in neurotransmitter transport and signal-
ing are hallmark features of both AD and PD, result-
ing in impaired synaptic communication and neuronal 
death [33].

	 4.	 Cellular Stress Response and Apoptosis: Genes such 
as PPP1R14A, SERPINB1, BAG3, TBC1D3L, JUNB, 
DDIT4, and HSPA5 are important for managing cel-
lular stress and apoptosis. Increased cellular stress and 

improper apoptosis contribute to neuronal loss and the 
progression of neurodegeneration [6, 34].

	 5.	 Developmental Processes and Growth: This group 
includes FGF10, CRH, SEMA3E, and IGFBP5. Aber-
rations in developmental processes and growth factors 
can impact neuronal development and regeneration, 
which are affected in AD and PD [35–38].

	 6.	 Immune Response and Inflammation: Genes such 
as CTSZ, GAS1, and IL6R are involved in the immune 
response and inflammation. Chronic inflammation is 
considered a significant factor in the pathogenesis of 
both diseases, driving further neuronal damage [39].

	 7.	 Vesicle Trafficking and Intracellular Transport: 
ST18, LRP2, PROS1, and TMPRSS9 are involved in 
vesicle trafficking and intracellular transport. Disrup-
tions of these processes can lead to impaired protein 
and organelle transport, contributing to the cellular 
dysfunction observed in neurodegenerative diseases 
[40].

	 8.	 Cellular Signaling and Regulation of Cellular Pro-
cesses: Genes such as RFTN2, DUSP5, GNB3, PLCB3, 
CASS4, and SH3RF3-AS1 are involved in cellular sign-
aling and regulation. Alterations in these pathways 
can disrupt normal cell functions and contribute to the 
pathophysiology of AD and PD [41, 42].

	 9.	 Regulation of Neuroplasticity / Fos Family Genes: 
FOSB and FOSL2, members of the Fos family, are 
involved in transcriptional regulation linked to neu-
roplasticity. These genes are associated with cogni-
tive dysfunction, as they influence processes such as 
memory formation and synaptic plasticity [43].

Fig. 3   Venn diagram visualizing the intersections between differen-
tially expressed genes (DEGs) in Parkinson’s disease (PD) and Alz-
heimer’s disease (AD): Disease-specific DEGs are shown in yellow 
(AD) and purple (PD), shared DEGs with joint increased expression 
in red, joint decreased expression in blue, and shared significance but 

opposite direction of the change in green. Intersections are shown for 
the combination for the five specific cell types of interest (excitatory 
and inhibitory neurons, astrocytes, oligodendrocytes, and microglial 
cells)

https://gitlab.com/uniluxembourg/lcsb/biomedical-data-science/bds/comparison_ad_pd_single-cell.git
https://gitlab.com/uniluxembourg/lcsb/biomedical-data-science/bds/comparison_ad_pd_single-cell.git
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Table 2   Overview of the most significant differentially expressed 
genes (DEGs), categorized by disease-specificity (AD-specific, PD-
specific, shared DEGs, and contrasting DEGs that share only signifi-
cance but not the direction of the change) and the cell types consid-
ered (excitatory and inhibitory neurons, astrocytes, oligodendrocytes, 
and microglia). DEGs are highlighted in blue for decreased expres-
sion and in red for increased expression. For the contrasting DEGs 

with opposite directionality in PD and AD, arrows indicate whether 
their expression increases (↗) or decreases (↘) in PD (left arrow) 
and in AD (right arrow). An asterisk indicates that the DEG is anno-
tated as a marker gene for the cell type in question in the CellMarker 
database, and its differential expression may therefore reflect a differ-
ent representation of the cell type subpopulation between conditions

Type of 

DEGs
Astrocyte

Oligodendro

cyte

Excitatory 

neuron

Inhibitory 

neuron

Microglial 

cell

AD-specific

FOLH1 

LINC01608

CDH19

SHROOM4

PPP1R14A

OR3A2

LINC02301

CAV1

SVOP

CTSZ

ST18

SLC1A3*

FGF10

RFTN2

CRH*

ASPA

OPALIN

CDH19

ITGA2

DUSP5

LINC00609

LRP2

C15orf39

BCAS1

TNS1

PD-specific

ANXA8

APOL4

NR4A3

SERPINB1

HK2

LINC02197

UCP3

GNB3

BAG3

GAS1

PLCB3

JUNB

TBC1D3L

JUNB

NR4A1

HORMAD2

LINC00393

LINC01934

LINC00996

NR4A1

CCDC9B

ARHGAP42

ETS1

Shared genes

CCDC80

DEPP1

KLHDC8A

SULF1

PROS1

ATP6V0D2

CASS4

CYP4F11

USH1C

KCNIP3*

SH3RF3-AS1

ENDOU

ASTL

TNC

LINC00880

FOSB

LINC01471

ARC

DUOXA1

TMPRSS9

LINC02057

LINC01266

GABRA3

GLT1D1*

FOSL2

Contrasting 

genes

FAS 

SEMA3E

IGFBP5 

MT1F

MT1G

LINC01515 

TRPM1 

PSCA 

TRAPPC5

IL6R 

LINC00324

LINC01983 

ADAM18 

BTG2

MFSD2A 

LINC01515 

ADAM18 

BTG2 

LINC00498 

SRGN 

ABCC3 

SELL 

DDIT4 

CLEC5A 

HSPA5 
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	10.	 Maintenance of Neuronal Excitability / Excitotoxic-
ity-Related Genes: The genes SLC1A3 and GABRA3 
are both associated with the regulation and mainte-
nance of neuronal excitability. SLC1A3 gene encodes 
a glutamate transporter, which is important for regulat-
ing glutamate levels in synaptic regions. Its dysfunc-
tion can lead to excitotoxicity and has been reported 
to contribute to neuronal damage in AD and PD [44]. 
GABRA3 encodes a subunit of the GABA-A receptor, 
playing important roles in GABAergic signaling and 
in the general maintenance of neuronal excitability and 
prevention of excitotoxicity. Alterations in GABAer-
gic signaling are implicated in various brain diseases, 
including PD, where disrupted inhibitory signaling can 
contribute to motor and cognitive symptoms [45].

These diverse groups of the top significant DEGs illus-
trate the complex and multifaceted nature of the molecular 
changes involved in AD and PD. Overall, they highlight rel-
evant cellular processes, regulatory factors, and mechanisms 
that have previously been implicated in the pathogenesis of 
AD, PD, or other neurodegenerative disorders.

Neuroprotective and Neurotrophic Genes  In addition to 
potential shared disease susceptibility genes, we also inves-
tigated the occurrence of genes with neurotrophic or neu-
roprotective functions among the DEGs. A corresponding 
curated collection of neurotrophic/neuroprotective genes 
associated with in vitro and in vivo evidence from biomedi-
cal literature has been assembled in the public database 
NeuroProDB (neuro​prodb.​net). The identified neurotrophic/
protective DEGs are listed in Supplementary Table 2.

A protective DEG of interest with a contrasting change 
between AD and PD in astrocytes and inhibitory neurons is 
MT3 (metallothionein 3), which encodes a metal-binding 
protein induced under hypoxic conditions. MT3 has been 
reported to protect against oxidative stress by contributing to 
the removal of reactive oxygen species [46] and its diverging 
expression alterations in AD (under-expressed in both cell 
types) and PD (over-expressed in both cell types) indicate 
that it may be involved in the two diseases through different 
mechanisms. However, according to the CellMarker data-
base, MT3 is also a marker gene for astrocytes and astrocyte 
sub-populations [47]. Thus, diverging alterations in MT3 
expression may also reflect differential representations of 
subpopulations of cells and need to be interpreted with 
caution.

An example of a shared DEG with neuroprotective func-
tions detected across multiple cell types is VEGFA (Vascu-
lar Endothelial Growth Factor A), a growth factor involved 
in the regulation of vascularization and angiogenesis [48]. 
VEGFA shows significantly increased expression in both 
neurodegenerative diseases in astrocytes, inhibitory neurons, 

and oligodendrocytes and may therefore represent a protec-
tive mechanism with broad relevance across different degen-
erative disorders. VEGFA's neuroprotective role is under-
scored by its involvement in promoting angiogenesis and 
mitigating neuronal damage in the context of AD and PD, 
and previous studies have suggested potential therapeutic 
applications aimed at enhancing its expression or function 
[49, 50].

Comparative Pathway Analysis

Pathway enrichment analysis was performed for the main 
cell types of interest (see Methods), and comprehensive 
ranking tables for all pathways and DEG categories are pro-
vided on a dedicated GitLab webpage (https://​gitlab.​com/​
unilu​xembo​urg/​lcsb/​biome​dical-​data-​scien​ce/​bds/​compa​
rison_​ad_​pd_​single-​cell.​git). Since a detailed coverage of 
the pathway analysis results for all cell types and all catego-
ries of DEGs would extend beyond the scope of this study, 
we present here as a representative example the enriched 
pathways for shared and contrasting DEGs for the five main 
cell types of interest, which displayed the largest numbers of 
DEGs. For each of these cell types, an overview of the top 
3 most significant molecular functions and biological pro-
cesses in the Gene Ontology database, and pathways in the 
KEGG database enriched for shared and contrasting DEGs 
is provided in Table 3.

These results indicate that several cellular processes and 
pathways display significant alterations in both AD and 
PD, including both cell type-specific changes and changes 
shared across multiple relevant cell types. Six categories of 
significantly altered processes stand out in terms of prior 
evidence for their relevance in the context of neurodegenera-
tive disorders:

Synaptic Dysfunction  We observe multiple pathways and 
molecular functions related to synaptic processes that dis-
play a significant overrepresentation in the contrasting 
DEGs in both astrocytes and excitatory neurons. The dys-
regulation of synapse organization is a well-documented 
hallmark of both PD and AD [51]. Notably, the biological 
process "Synapse organization" (GO:0050808) is enriched 
in contrasting DEGs for both astrocytes and excitatory neu-
rons, and the pathway "Glutamatergic synapse" (KEGG, 
hsa04724) in contrasting DEGs for astrocytes. In astrocytes, 
the same contrasting pattern is also observed for other bio-
logical processes pertinent to the regulation and transmis-
sion of synaptic signaling, such as "Modulation of chemi-
cal synaptic transmission" (GO:0050804) and "Regulation 
of trans-synaptic signaling" (GO:0099177), as well as for 
molecular functions essential for synaptic activity, includ-
ing "Calmodulin binding" (GO:0005516), "Monoatomic ion 

http://neuroprodb.net
https://gitlab.com/uniluxembourg/lcsb/biomedical-data-science/bds/comparison_ad_pd_single-cell.git
https://gitlab.com/uniluxembourg/lcsb/biomedical-data-science/bds/comparison_ad_pd_single-cell.git
https://gitlab.com/uniluxembourg/lcsb/biomedical-data-science/bds/comparison_ad_pd_single-cell.git
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gated channel activity" (GO:0022839), and "Gated channel 
activity" (GO:0022836). Most of these pathways exhibit 
increased gene expression activity in PD while showing 
decreased activity in AD, potentially reflecting differential 
pathologic mechanisms underlying these neurodegenerative 
disorders.

Lipid Metabolism Dysregulation  The contrasting DEGs in 
oligodendrocytes display significant overrepresentation in 
biological processes associated with cholesterol metabo-
lism (GO:0008203) and sterol metabolism (GO:0016125). 
Additionally, this alteration pattern is also observed in the 
KEGG pathways "Steroid biosynthesis" (KEGG, hsa00100) 

and "Protein processing in endoplasmic reticulum" (KEGG, 
hsa04141). This matches with the fact that the endoplas-
mic reticulum (ER) is critically involved in the synthesis of 
nearly all lipids, including cholesterol and phospholipids, 
which are essential for maintaining cellular membrane integ-
rity and function. Furthermore, the results are in line with 
the previously documented dysregulation of lipid metabo-
lism in multiple neurodegenerative disorders [52] indicating 
its broad relevance in these conditions. All pathways associ-
ated with lipid metabolism alterations display a decreased 
global expression activity in PD and an increased activity 
in AD, which could indicate distinct molecular and cellular 
mechanisms driving pathology in these disorders. In PD, the 

Table 3   Overview of the top 3 most significant biological processes 
(BP) and molecular functions (MF) from the Gene Ontology database 
and pathways from the KEGG database with an overrepresentation 
of DEGs. Two categories of common significant DEGs between AD 
and PD were considered as input, those with shared (identical sign of 
the log fold change) and those contrasting expression changes (oppo-
site sign of the log fold change). The labels "Up" and "Down" in the 
last column indicate the direction of the change when the majority of 

shared expression changes between AD and PD within a pathway/
process display the same direction across different pathway members. 
The label "Equal" in the last column indicates that the same number 
of DEGs with increased or decreased expression was present in the 
corresponding pathway/process. For the contrasting DEGs with oppo-
site directionality between PD and AD, arrows indicate whether their 
expression increases (↗) or decreases (↘) in PD (left arrow) and in 
AD (right arrow)
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decreased activity may reflect neuronal loss and mitochon-
drial dysfunction leading to impaired lipid synthesis and 
processing capabilities. Conversely, in AD, the increased 
activity could be a compensatory response to amyloid-beta 
plaque accumulation, which disrupts membrane integrity 
and stimulates the need for enhanced lipid synthesis and 
repair processes [53].

Inflammation and Immune Response  Among the con-
trasting DEGs in microglial cells, we observed a signifi-
cant enrichment of biological processes associated with 
immune responses, including "Myeloid cell differentiation" 
(GO:0030099), "Regulation of hemopoiesis" (GO:1903706), 
and "Regulation of leukocyte differentiation" (GO:1902105). 
Additionally, pathways related to inflammation, such as the 
"JAK-STAT signaling pathway" (KEGG, hsa04630) and 
the "PI3K-Akt signaling pathway" (KEGG, hsa04151), are 
also represented in this category. In both AD and PD, neu-
roinflammation and aberrant immune responses have been 
implicated in disease progression and pathology [54].

Cell Adhesion  The most significant pathways enriched in 
shared DEGs in astrocytes are associated with the processes 
"cell-substrate adhesion" (GO:0031589) and "cell-matrix 
adhesion" (GO:0007160). There is growing evidence that 
cell adhesion molecules (CAMs) play important roles in 
neurological disorders, influencing cell plasticity, neuroin-
flammation, vascular changes, and amyloid-beta (Aβ) metab-
olism [55–57]. In addition, alterations in CAM levels have 

been associated with AD in numerous studies by genetic 
association studies [58–61].

Ion Channel Activity Dysfunction  Across different cell types, 
we observed significant alterations in ion channel activity 
related processes. Specifically, the gene sets for "mono-
atomic ion gated channel activity" (GO:0022839) and "gated 
channel activity" (GO:0022836) display an overrepresenta-
tion of contrasting DEGs in astrocytes, and the processes 
"monoatomic ion channel activity" (GO:0005216) and "ATP 
hydrolysis activity" (GO:0016887) are enriched in shared 
DEGs in oligodendrocytes. Previous studies indicate that ion 
channel dysfunction in astrocytes is strongly associated with 
oxidative stress, neuroinflammation, and changes in patho-
logical proteins associated with neurological disorders [62].

Network Analysis

To better understand gene regulatory mechanisms inter-
linking the identified DEGs and to determine important 
upstream regulators controlling these genes, we performed 
a gene regulatory network (GRN) analysis for the shared 
and contrasting DEGs (see Methods). This analysis was 
applied to astrocytes, oligodendrocytes, microglial cells, 
and excitatory neurons as the cell types with the largest 
number of DEGs. We built GRNs for each cell type, using 
the contrasting and shared DEGs. Table 4 shows each GRN 
top-ranked candidate regulator genes (see Methods). These 
candidate genes are also called perturbagens, and their 

Table 4   Overview of the top 
perturbagens and top hub genes 
in networks derived from DEGs 
with shared or contrasting 
alteration patterns between AD 
and PD. These networks were 
built for 5 different cell types: 
astrocytes, oligodendrocytes, 
microglia cells, and excitatory 
neurons (degree: represents the 
total number of connections for 
a node; score: represents the 
number of downstream targets 
DEGs whose expression can 
be altered by modulating the 
activity of the top perturbagens)

Cell types Category of DEGs Top Perturbagens Hub genes which are not 
found as top perturbator

Astrocyte Shared (52 nodes, 49 edges) CEBPD (score 23)
CIITA (score 22)

MAF (degree 7)
HSF1 (degree 17)

Contrasting (401 nodes, 674 edges ) TFCP2L1 (score 81)
RUNX1 (score 35)
NRF1 (score 23)

LMO2 (degree 51)
NRG1 (degree 23)

Oligodendrocyte Shared (448 nodes, 800 edges) JUNB (score 238)
ZBTB7A (score 181)
YY1 (score 121)
RELA (score 52)

EZH2 (degree 246)
FOS (degree 13)

Contrasting (146 nodes, 167 edges ) CREB1 (score 100) NFEDL2 (degree 13)
Microglia cell Shared (46 nodes, 84 edges) IRF1 (score 7)

RUNX1 (score 6)
HIF1A (score 4)

MES1 (degree 18)

Contrasting (168 nodes, 320 edges) MAF (score 97)
CREB1 (score 97)

JUNB (degree 66)
BCL6 (degree 25)

Excitatory Neuron Shared (61 nodes, 65 edges) ZEB1 (score 13) BEND3 (degree 9)
ZGLP1 (degree 7)
FOS (degree 7)

Contrasting (212 nodes, 431 edges) HMGB1 (score 182)
ZBTB7A (score 182)
BRD4 (score 182)
FGFR1 (score 182)

POU3F1 (degree 24)
PURB (degree 12)
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activity modulation has the potential to reverse downstream 
pathologic gene expression changes in this network for both 
AD and PD (see Methods). We also identified multiple hub 
genes reported in Table 4 with a high network centrality 
(measured by the degree score) using a network topologi-
cal analysis. All identified perturbagens and hub genes are 
listed with a brief description in Supplementary Tab 3. In 
addition, we searched for perturbagens overlapping across 
multiple cell types, to identify key regulators shared between 
distinct cell types. Among the perturbagens and hub genes 
shown in Table 4, the gene HIF1A stands out as a top-ranked 
perturbagen in the network for shared DEGs in microglial 
cells. HIF1A has a perturbation score of 4, representing the 
number of downstream targets DEGs whose expression can 
be reversed by modulating HIF1A activity. Moreover, HIF1A 

also displays high connectivity in multiple regulatory net-
works, including the network for shared DEGs in microglial 
cells (degree = 17, see Fig. 4) and the network for contrast-
ing DEGs in astrocytes (degree = 23), further corroborating 
the relevance of HIF1A as a key regulator. HIF1A encodes a 
central transcriptional regulator in the HIF-1 signaling path-
way, which is responsible for cellular and tissue adaptation 
to hypoxia. HIF1A also regulates genes involved in several 
other pathways with potential relevance in neurodegenera-
tive disorders, such as apoptotic processes, iron and glucose 
metabolism, cell survival, and proliferation [63].

Apart from HIF1A, two additional top-scoring perturba-
gens identified include JUNB and FOS. They are both part 
of the AP-1 transcription factor family, which is involved in 
the regulation of cell proliferation and differentiation and, 

Fig. 4   Visualization of the gene 
regulatory network for the top 
DEGs with shared patterns 
between AD and PD identified 
in microglial cells. Activating 
interactions are highlighted in 
green, inhibiting interactions in 
red. The colored bar plots in the 
nodes represent the condition-
specific gene expression 
changes, left in PD and right 
in AD; increases are shown in 
orange and decreases in blue
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more specifically, in the regulation of inflammatory pro-
cesses and T-cell signaling [64]. JUNB was identified as 
a key regulatory gene in the network of shared DEGs for 
oligodendrocytes (perturbation score: 238). Moreover, it was 
also identified as a highly connected node (degree = 66) in 
the regulatory network for contrasting DEGs in microglial 
cells, confirming its role as an important regulator of AD- 
and PD-associated DEGs across multiple cell types.

The gene FOS displayed high connectivity both in the 
regulatory networks for the shared DEGs in oligodendro-
cytes and in excitatory neurons. Furthermore, FOS was iden-
tified among the perturbagens in both networks for contrast-
ing DEGs for astrocytes and microglial cells. In terms of 
known functional roles, FOS has been implicated both in 
neuronal survival pathways and in neuroprotective mecha-
nisms by modulating cellular processes that enhance neuron 
resilience against stress [65].

Finally, one of the highest scoring regulators was the gene 
CREB1, the top-ranked perturbagen in both the network for 
contrasting DEGs in oligodendrocyte and in microglial cells 
(see Supplementary Fig. 2; perturbation scores: 100 for oli-
godendrocytes and 97 for microglial cells). CREB1 is the key 
transcription factor in the CREB signaling pathway, which 
regulates neuronal plasticity by facilitating gene expression 
necessary for long-term potentiation, memory formation, 
and synaptic strength. Activation of CREB1 through vari-
ous signaling pathways, including cAMP/PKA and others, 
leads to the transcription of genes that are important for the 
structural and functional changes in neurons associated with 
learning and memory processes [66].

Cell‑Cell Communication Analysis

We performed a cell-cell communication analysis to inves-
tigate shared patterns of altered communication events in 
AD and PD (see Methods). As a comprehensive analysis of 
all pairs of cell types is not feasible within the scope of the 
manuscript, we focus on the shared affected pathway results 
for astrocytes and microglial cells because they displayed 
profound and significant alterations and are of key interest 
in both diseases.

Astrocytes  When assessing disease-associated changes in 
cell-cell communication in astrocytes, we identified two 
biological processes that are commonly altered in both AD 
and PD, "response to hypoxia" (GO:0001666) and "posi-
tive regulation of miRNA transcription" (GO:1902893). 
Both displayed an overrepresentation in the target genes for 
the significant ligand-receptor (LR) pairs in astrocytes for 
both neurodegenerative diseases. Specifically, for this cell 
type we identified 36 significant LR pairs in the PD dataset 
and 45 LR pairs in the AD dataset. Notably, the process 
"response to hypoxia" contains the key hypoxia-associated 

regulatory gene HIF1A, which was already identified as 
significant in both the differential expression analysis and 
network analysis for astrocytes and microglia. Hypoxia has 
been increasingly recognized as a key factor in the pathogen-
esis of both AD and PD. It has been reported to accelerate 
the formation and accumulation of amyloid beta (Aβ) pep-
tides, a hallmark of AD, through hypoxia-induced alterations 
in expression of the Aβ precursor protein (APP) and the 
secretase enzymes responsible for Aβ production [67–69]. 
Moreover, it has been described as increasing the expres-
sion and aggregation of alpha-synuclein, the key protein 
involved in the pathologic formation of Lewy bodies and 
whose aggregation contributes to the degeneration of dopa-
minergic neurons in PD [70].

Microglial Cells  In microglia, 26 biological processes 
were identified as significantly altered by cell-cell com-
munication events (see complete list in Suppl. Tab. 4). 
Underlying these changes, 70 LR pairs were significant 
in the PD dataset, whereas the AD dataset contained 291 
significant LR pairs. Among the biological processes 
enriched in the corresponding target genes, we identified 
a cluster of six processes jointly associated with inflamma-
tion/neuroinflammation, immune response, and apoptosis, 
that may reflect the contribution of immune dysregula-
tion and cell death in the pathogenesis of AD and PD. 
They include the GO terms "microglial cell activation" 
(GO:0001774), "interleukin-6-mediated signaling path-
way" (GO:0070102), "positive regulation of canonical 
NF-kappaB signal transduction" (GO:0043123), "positive 
regulation of superoxide anion generation" (GO:0032930), 
"extrinsic apoptotic signaling pathway" (GO:0097192) and 
"positive regulation of NF-kappaB transcription factor 
activity" (GO:0051092). In addition, a notable overlap-
ping significant cellular process alteration between AD 
and PD was "growth hormone receptor signaling pathway 
via JAK-STAT" (GO:0060397). The JAK-STAT pathway 
is known to promote neuroinflammation in neurodegenera-
tive diseases and has been proposed both as a target for 
pharmacological interventions in AD and as a potential 
predictive biomarker for AD [71]. This pathway was also 
highlighted as significant in the gene set enrichment analy-
sis (see above), underscoring its relevance in the context 
of neurodegenerative pathology.

Overall, the cell-cell communication analysis identified 
shared affected cellular processes in AD and PD in astro-
cytes and microglia that align with the known molecular 
hallmarks of these diseases. Notably, the analysis also high-
lighted druggable pathways that have previously been pro-
posed as potential therapeutic targets for AD or PD, and 
which may warrant further investigation for their applicabil-
ity in broad-spectrum intervention strategies across multiple 
neurodegenerative conditions.
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Study limitations

While this study provides initial insights into the common and 
distinct molecular changes in the cortex of AD and PD, impor-
tant limitations should be acknowledged.

Firstly, the use of post-mortem cortical tissue cannot fully 
reflect the in vivo conditions of the diseases. The post-mortem 
interval and the process of tissue degradation may affect the 
quality and integrity of RNA, potentially affecting the results 
of the scRNA-seq analyses. Although stringent quality control 
measures were applied, the potential for degradation remains 
a limitation.

Secondly, the available sample sizes and cell counts are still 
limited, especially for underrepresented cell types. We have 
therefore mainly focused on the analysis of the largest cell clus-
ters. However, a larger sample size would provide more robust 
statistical power to detect subtle changes, also for smaller cell 
type clusters, and confirm the observed differences and similari-
ties between AD and PD. In addition, the cohort demographics, 
including age and sex distribution, were not perfectly matched 
between the AD and PD groups, which could introduce con-
founding variables that could affect the results.

Thirdly, while the study focused on the cortex as a key 
affected brain region, neurodegenerative diseases such as AD 
and PD affect multiple brain regions. Focusing on the cortex 
may miss critical changes in other regions, such as the hip-
pocampus in AD or the substantia nigra in PD, that are critical 
to understanding the full extent of these diseases.

Another limitation is the reliance on previously annotated 
ligand-receptor interactions to analyze cell-cell communica-
tion. Although these databases are valuable resources, they 
may not capture all relevant interactions or novel signaling 
pathways involved in AD and PD. The integration of multi-
omic data, including proteomic and metabolomic profiles, 
could provide a more comprehensive understanding of cellular 
communication networks and disease mechanisms.

Finally, despite the growth of public annotation databases, 
the interpretation of differentially expressed genes and pathways 
is still inherently complex. Biological pathways are intercon-
nected and changes in gene expression may result from com-
pensatory mechanisms or secondary effects rather than primary 
disease drivers. Therefore, while this study identifies putative 
therapeutic targets and key regulatory pathways, further experi-
mental validation and functional studies are essential to confirm 
these findings and their relevance to disease pathology.

Conclusions

The results of the scRNA-seq analysis revealed numer-
ous significant alterations across all considered cell types, 
enabling a detailed comparison of transcriptomic changes 

between AD and PD at single cell resolution in cortical 
tissue. Statistical and bioinformatic analysis highlighted 
both disease-specific and shared molecular signatures in 
AD and PD at multiple levels, including individual genes, 
pathways, and gene regulatory networks. Interestingly, in 
addition to the cellular processes that showed modulated 
activity in only one disease or a similar alteration trend in 
both diseases, we also identified a small set of contrast-
ing pathway changes, i.e. coordinated alterations with an 
opposite direction between the diseases, that may reflect 
the same susceptible cellular processes affected by differ-
ent disease mechanisms or at different stages of disease 
progression.

Gene‑Level Findings  We identified several significant 
DEGs that were either specific to AD or PD, shared 
between both diseases, or displayed changes with oppo-
site directionality (contrasting DEGs). The analysis high-
lighted several key functional groups among these genes 
that may help to understand the shared and distinct cellular 
processes involved in these neurodegenerative disorders. 
Notably, genes involved in cell adhesion and cell-cell com-
munication, such as the DEGs CDH19, CAV1, ITGA2, and 
SELL, play significant roles in maintaining neuronal con-
nections and signaling. Disruptions in these processes are 
central to the progression of AD and PD as they lead to 
impaired neuronal connectivity and communication [28, 
58]. Transcriptional regulation genes, including JUNB, 
NR4A1, and FOSB, are also prominently featured among 
the DEGs. Abnormal transcriptional regulation can lead to 
widespread alteration of gene expression, contributing to 
various pathologic features of neurodegenerative diseases. 
For instance, the identified significant Fos family genes are 
involved in neuroplasticity and cognitive functions, which 
are often impaired in AD and PD [30, 43, 65]. Similarly, 
genes related to neurotransmitter transport and signaling, 
such as the DEGs SLC1A3 and GABRA3, are important for 
synaptic function. Dysfunctions in these genes are asso-
ciated with hallmark features of AD and PD, resulting in 
impaired synaptic communication and neuronal death [33, 
44]. Further, genes involved in cellular stress response and 
apoptosis, such as SERPINB1 and HSPA5, are essential 
for managing cellular stress and preventing inappropri-
ate cell death. The increased cellular stress and apoptosis 
observed in AD and PD support the potential relevance of 
these genes in neurodegeneration. Additionally, immune 
response and inflammation genes, including the DEGs 
CTSZ and IL6R, underscore the role of chronic inflamma-
tion in driving neuronal damage in both diseases [39, 72]. 
In summary, the gene-level findings emphasize the diverse 
molecular and cellular characteristics of AD and PD. The 
identified DEGs point to key relevant cellular processes, 
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molecular hallmarks and regulatory mechanisms involved 
in the pathogenesis of these neurodegenerative conditions.

Pathway‑Level Findings  The pathway enrichment analyses 
revealed significant alterations in cellular processes for AD 
and PD, highlighting both distinct and overlapping changes. 
Contrasting alterations were particularly evident in synapse 
organization and signaling pathways, with PD showing a 
trend of increased expression and AD showing decreased 
expression. This may be due to differences in the neuro-
transmitter systems affected in each disease. PD is primar-
ily characterized by deficits in dopamine-producing neu-
rons in the substantia nigra midbrain region [4], leading to 
decreased dopamine levels in the basal ganglia. Activation 
of compensatory mechanisms in PD synaptic dysfunction 
has previously been described, which may result in increased 
activity of associated pathways [73]. Conversely, there is 
a more widespread disruption of multiple neurotransmitter 
systems in AD, including acetylcholine, serotonin, and nor-
epinephrine. This has the potential to directly affect synaptic 
function and lead to a decrease in overall synaptic activity.

Lipid metabolism dysregulation also showed contrasting 
patterns, with decreased activity in PD and increased activity 
in AD. In PD, the decreased activity likely reflects impaired 
lipid synthesis and processing due to neuronal loss and mito-
chondrial dysfunction. In contrast, the increased activity in 
AD may be a compensatory response to amyloid-beta plaque 
accumulation, which disrupts membrane integrity and neces-
sitates enhanced lipid synthesis and repair processes.

Finally, inflammation and immune response pathways, 
such as the JAK-STAT and PI3K-Akt signaling pathways, 
stood out as differentially altered between AD and PD, 
underscoring the important role of chronic inflammation in 
both diseases.

In summary, these analyses highlight essential cellular 
processes and pathways involved in the molecular land-
scape of AD and PD, indicating common and distinct dis-
ease mechanisms and potential therapeutic targets. Further 
validation in independent studies is recommended to confirm 
these results and explore their therapeutic potential.

Network‑Level Findings  The gene regulatory network 
analysis provided insights into shared and disease-specific, 
coordinated cellular process changes and key upstream regu-
latory genes that modulate them. Specifically, the network 
perturbation analysis identified JUNB, FOS and HIF1A as 
potential upstream regulators of numerous DEGs in AD and 
PD. These genes play central roles in transcriptional pro-
cesses with previously confirmed relevance to neurodegen-
eration. For example, JUNB and FOS regulate inflammatory 
pathways that are known to display significant alterations 
contributing to chronic inflammation in AD and PD [30], 
and HIF1A modulates apoptotic and survival processes in 

response to hypoxic conditions, impacting cell death and 
survival mechanisms in degenerative disorders [67]. In addi-
tion, the transcription factor CREB1 was identified as a key 
regulator among the contrasting DEGs for both oligoden-
drocytes and microglial cells, with the potential to reverse 
the expression changes for many DEGs in both cell types. 
In general, CREB1 can alter the expression of genes related 
to neuronal growth, survival, and plasticity, and has been 
proposed as a drug target to ameliorate cognitive decline in 
aging and cognitive disorders [66].

Overall, given their central role in the GRNs, the iden-
tified key regulators—JUNB, FOS, HIF1A, and CREB1— 
may warrant further investigation as important mediators of 
pathologic processes and putative targets for the preclinical 
study of disease-modifying interventions.

Cell‑Cell Communication Analysis Findings  To improve our 
understanding of cell-cell communication disruptions in AD 
and PD, we applied a novel statistical approach to analyze 
and score changes in inter- and intra-cellular communication 
patterns, integrating single-cell data with known transcrip-
tional regulatory network data and receptor-transcription 
factor associations from public databases. Focusing on astro-
cytes and microglial cells as key affected cell types with 
pronounced cellular process alterations in both diseases, 
we identified multiple pathways as commonly affected by 
changes in cell-cell communication events.

In astrocytes, we identified two significant pathways that 
are modulated by cell-cell communication events. Among 
these, the "response to hypoxia" pathway is not only in line 
with hypoxia-induced neuroinflammation as a previously 
proposed mechanism in degenerative disorders [74], but 
also matching with the results from the network analyses, 
highlighting the hypoxia-inducible factor HIF1A as a key 
regulator of downstream gene network expression changes 
in AD and PD (see above).

In contrast, for microglial cells, a larger number of signifi-
cant pathways that are influenced by cell-cell communica-
tion events were identified. The majority of these pathways 
are associated with inflammatory and immune responses. Of 
particular note is the JAK-STAT signaling pathway, which 
was also identified as significant in the pathway enrichment 
analyses.

Overall, as a key finding of our study, we have identi-
fied pathways that are significantly altered in both AD and 
PD and that show strongly divergent patterns in the direc-
tion of expression changes. Pronounced opposite changes 
were observed in particular in the JAK-STAT pathway, 
which mediates cytokine signaling and regulates inflamma-
tory responses in the brain (see summary of key pathway 
findings across multiple analyses in Fig. 5). While previ-
ous preclinical studies have shown that JAK-STAT inhibi-
tors can reduce inflammation and provide neuroprotection 
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in models of neurodegenerative disease [75, 76], our results 
are novel in demonstrating the divergent alteration of JAK-
STAT signaling in AD and PD across both pathway enrich-
ment and cell-cell communication analyses. These findings 
suggest that although this pathway is implicated in both 
disorders, disease-specific therapeutic targeting approaches 
may be required to address the diverse alterations in this 
process. Interestingly, within the JAK-STAT pathway, reduc-
ing STAT3 activation has shown beneficial effects in a rat 
model of PD-like pathology [76]. Conversely, in a mouse 
model of tauopathy expressing the human P301L mutant tau 
(P301L-hTau), overexpression of STAT3 was beneficial in 
rescuing P301L-hTau-induced synaptic and cognitive defi-
cits [77]. These previous results are consistent with our data, 

suggesting that disease-specific alterations in the JAK-STAT 
pathway may also require tailored therapeutic interventions 
specific to each disease.

Further pathways with pronounced opposing expression 
patterns between the diseases include lipid metabolism path-
ways (increased activity in AD, decreased activity in PD) 
and synaptic function pathways (decreased activity in AD, 
increased activity in PD; see Fig. 5, right size). While these 
pathways have previously already been proposed as poten-
tial therapeutic targets in neurodegenerative diseases [51, 
52], the contrasting patterns of change between AD and PD 
observed in our study represent a new and unexpected dis-
covery. Complementary mechanistic studies are required to 
confirm these contrasting patterns and to fully elucidate the 
underlying signaling pathways, but similar to the JAK-STAT 
pathway, the significant divergent changes identified here 
suggest that disease-specific strategies may be required to 
effectively address pathological changes in these particular 
processes. For example, the use of lipid-lowering agents has 
been proposed to be associated with slower cognitive decline 
in AD [78] and reduced risk of dementia [79], whereas 
protective effects of lipid supplementation strategies have 
been reported in PD [78, 80, 81]. In addition, recent studies 
have highlighted that targeting synaptic dysfunction in AD 
and PD may require different strategies due to their distinct 
underlying mechanisms. In AD, synaptic dysfunction is pri-
marily associated with the accumulation of Aβ plaques and 
tau protein tangles, and therapeutic strategies for AD have 
therefore focused on targeting these proteinopathies [82, 
83]. Approaches aimed at modulating neuroplasticity and 
synaptic maintenance are emerging as complementary to 
traditional therapies targeting Aβ and tau [84]. In contrast, 
PD is associated with synaptic dysfunction primarily due to 
disruption of synaptic vesicle recycling [85]. Therefore, tar-
geting synaptic dysfunction in PD is more commonly associ-
ated with strategies that enhance synaptic vesicle recycling 
[86, 87].

Taken together, these findings from the literature and sin-
gle cell data analysis underscore the importance of tailored 
therapeutic strategies to effectively target the distinct and 
shared molecular mechanisms in AD and PD.
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