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In experiments to detect heart disease on cardiac magnetic resonance imaging (MRI) medical images, 
existing object detection models face several challenges including low accuracy and unreliable 
detection results. To tackle these issues, this article proposes an innovative method for Object 
Detection in cardiac MRI medical images called SA-YOLO. This method is based on the YOLOv8 model 
but introduces several key modifications. Firstly, the standard Spatial Pyramid Pooling Fast module 
is replaced with a Multi-Channel Spatial Pyramid Pooling module. Secondly, an attention mechanism 
combining the ideas of Squeeze-Excitation and Coordinate Attention designed, and integrated into the 
Neck part of the baseline model. Subsequently, the bounding box regression loss function CIoU loss 
of the model was replaced with the iSD-IoU loss that combines shape loss and distance loss. Finally, 
comparative experiments were conducted on the Automated Cardiac Diagnosis Challenge cardiac 
MRI image dataset where it was found that SA-YOLOv8 achieved better results in detecting cardiac 
pathologies, and improvement of 7.4% in mAP0.5 value and 5.1% in mAP0.5-0.95 value compared to 
the baseline model.
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In recent decades, cardiovascular diseases have emerged as a prominent cause of impaired health and reduced 
lifespan in humans. According to data released by the World Heart Federation (WHF), cardiovascular diseases 
consistently rank as the primary global cause of mortality, affecting over 500 million individuals worldwide. 
In 2021 alone, approximately 20.5  million people succumbed to cardiovascular diseases, accounting for an 
astonishing one-third of total deaths globally1.

Heart disease is a significant component of cardiovascular disease. In recent years, MRI technology has 
been widely utilized in the cardiac medicine field. However, analyzing cardiac MRI images requires specialized 
knowledge and experience from cardiologists due to the unique characteristics of the heart’s complex structure 
and variations in size and shape among individual patients’ hearts. As a result, diagnosing cardiac pathology is a 
knowledge-intensive task that demands significant investments of resources to train qualified cardiac physicians. 
This process is both expensive and time-consuming. With the increasing number of patients each year in this 
field alone, relying solely on training new physicians to address the shortage of medical resources becomes 
impractical, thus necessitating the exploration of alternative solutions.

Thanks to the application of deep learning techniques in machine vision tasks, significant advances have also 
been made in Image Segmentation2,3 and Object Detection (OD) related technologies. OD models effectively 
learn pathological features from medical images, enabling accurate and rapid detection and identification 
of diseased tissues or organs. Significant research advancements have been made in various medical fields, 
including segmentation or detection of brain diseases4,5, cell detection6, breast lesion identification7,8, skin 
disease detection9, lung disease recognition10, and bone fracture detection11, and the same is true of research into 
the diagnosis of heart disease. For example: Song, B12 conducted research on the automatic segmentation of the 
biventricular heart and classification of heart diseases using cardiac MRI medical images, achieving satisfactory 
results in classification and segmentation. Lin, Y13 researched the auxiliary diagnosis and treatment of congenital 
heart disease using deep learning, proposing a lesion detection network based on refined SSD, which achieved 
the detection of congenital heart disease from cardiac ultrasound images. Qiao, S. et al.14 proposed a residual 
learning diagnostic system RLDS based on convolutional neural networks (CNNs) for congenital heart 
disease in fetuses. They conducted experiments on a self-made dataset of fetal echocardiography, where the 
RLDS model achieved detection accuracy and recall rates of 93% for fetal coronary heart disease. Jothiaruna, 
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N. et al.15 proposed a method using deep neural networks to detect heart diseases, achieving a classification 
accuracy of 95.88% mAP on 12-lead electrocardiogram images. Wu, B. et al.16 proposed a machine learning-
based two-dimensional ultrasound image fetal cardiac defect feature extraction/recognition model, achieving a 
maximum classification accuracy of 87.35%. Doppala, B. et al.17 introduced a lightweight Tiny 2D-CNN model 
for detecting cardiac enlargement in cardiac CT images, with a classification accuracy of 96.32%. Paul, V. V. et 
al.18 through the investigation and analysis of various cardiovascular disease prediction methods, the advantages 
and disadvantages of different algorithms have been revealed, providing valuable insights for future research. 
Wang, Z.et al.19 gave a comprehensive overview of 3D vision-based cardiovascular imaging, explored its future 
applications in cardiovascular image analysis, and reviewed the most advanced 3D vision methods for vascular 
tasks, providing effective assistance for heart disease-related research.

Generally, deep learning-based OD algorithms have made significant progress in recent years, and there is 
still a lot of untapped potential in cardiac medicine. The current OD model faces challenges and limitations 
in cardiac MRI medical image detection. For example, the annotation of cardiac MRI images requires the 
participation of medical experts, which is costly, time-consuming, and laborious. The accuracy and consistency 
of annotation may also affect the training effect of the model. Cardiac MRI images may come from different 
modalities (such as different contrast images or different imaging slices), and the differences between these 
modalities pose great challenges to target detection. Some cardiac MRI images have a slightly lower resolution, 
resulting in some lesions or structures that cannot be accurately detected or organ detection confusion problems. 
High-precision target detection models often require a lot of computing resources, are not easy to deploy, and 
have insufficient generalization capabilities. Because of these problems, most models performed poorly when the 
author’s team used cardiac MRI image datasets for model training. Additionally, researchers predominantly rely 
on echocardiograms14,20,21, CT images17,22,23, and electrocardiograms15,24,25 as their primary data sources, with 
relatively fewer studies focusing on cardiac MRI images.

To resolve these concerns, the article proposes a novel OD model for diagnosing cardiac pathology called 
SA-YOLO. This model is built upon the YOLOv826 network architecture and incorporates an innovative Multi-
Channel Spatial Pyramid Pooling (SPPMC) module and attention mechanism (UECA) module that unites the 
ideas of squeeze-excitation and coordinating attention while optimizing the Bounding Box Regression (BBR) 
loss function. In order to validate the effectiveness and advantages of our proposed method, extensive ablation, 
and comparative experiments were performed using the publicly available Automatic Cardiac Diagnosis 
Challenge (ACDC) cardiac MRI image data27. The experimental results demonstrate that our improvement 
strategies significantly enhance the performance of both the baseline model and other models when integrated 
with them. Furthermore, in comparative experiments with other cutting-edge OD models, our SA-YOLO model 
achieves superior detection and recognition results compared to the baseline model, exhibiting an improvement 
of 7.4% in mAP0.5 metric and 5.1% in mAP0.5-0.95 metric.

The findings of this paper are outlined below:

	(a)	� Designed a Multi-Channel Spatial Pyramid Pooling Network Module (SPPMC). This module consists of 
parallelized max-pooling layers and convolutional layers with varying sampling rates, effectively enlarging 
the receptive fields within the network. Such design enables the extraction of comprehensive feature in-
formation from input feature maps, encompassing both fine-grained and coarse features. Moreover, this 
module adopts a strategy of separately processing and subsequently integrating extracted global or local 
feature information, thereby reducing interference and redundancy between global and local information. 
This enhances the model’s capacity to accurately represent input data features while improving its efficiency 
in handling complex data.

	(b)	� Designed the UECA module to integrate the ideas of the Squeeze-and-Excitation Attention Network (SE)28 
and the Coordinate Attention Network (CA)29. This module synergistically combines the squeeze-and-ex-
citation submodule and the coordinate information embedding submodule in a weighted parallel manner, 
enabling comprehensive attention consideration across both channel and spatial dimensions. This design 
effectively enhances the network’s capacity to capture contextual information of targets and expand its 
perception range. Furthermore, this mechanism dynamically adjusts spatial and channel weights through 
learning, reinforcing the representation of crucial features while suppressing irrelevant feature interference.

	(c)	� The SPPMC and UECA modules have been seamlessly integrated into the YOLOv8 architecture. Addition-
ally, we propose optimizations to the BBR loss function to address challenges associated with unreliable 
cardiac pathology detection and enhance model robustness in cardiac MRI medical imaging. Experimental 
results on the ACDC dataset demonstrate that our SA-YOLO model surpasses both the baseline model and 
other cutting-edge OD models.

Related works
In the context of cardiac pathology target detection, the key to improving the performance of target detection 
models and helping the network to better detect and classify cardiac pathology in MRI medical images is how to 
extract richer multilevel features, how to enhance and fuse the extracted features, how to optimize the training 
process, and how to improve the localization accuracy of the model. This paper will provide solutions to the above 
problems by studying spatial pyramid pooling networks, attention mechanisms, and loss function optimization.

Spatial pyramid pooling
Spatial Pyramid Pooling (SPP) was originally proposed by Kaiming He et al.30. The main role of the SPP module 
in backbone networks is to solve the limitations brought by different sizes of image inputs in neural networks, 
to help the network capture richer, more comprehensive, and high-quality feature information, to provide the 
network with powerful contextual information, and to enhance the robustness of the model without introducing 
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significant computational costs, etc., so the design of the SPP module structure is fundamental. Subsequent 
researchers have proposed a variety of variants on this basis, such as the standard Spatial Pyramid Pooling Fast 
(SPPF), SPPCSPC, SPPELAN, etc.

The SPPF reduces the computational cost and improves the computational efficiency through the convolutional 
sharing operation, but the modification is relatively limited; The SPPCSPC combines the advantages of the SPP 
and Cross Stage Partial (CSP) structures and enhances feature expression capability, but the computational 
cost is increased, and the feature details are easily lost after the iteration of multiple convolutional layers. The 
SPPELAN combines the ideas of SPP and Efficient Layer Aggregation Network (ELAN), which further increases 
the capability of feature fusion and feature expression, but the complexity of the model structure is increased.

Attention mechanism
The attention mechanism plays an important role in feature enhancement and fusion, after the introduction of 
the attention mechanism in the Neck part of the target detection model, the network can dynamically adjust 
the feature weights according to the input feature maps, inhibit the perturbation of non-essential features, 
and contribute to the enhancement of the characterization ability of important features. In addition, the 
introduction of the attention mechanism can effectively promote multi-scale feature fusion, enabling the model 
to simultaneously utilize high-level semantic information, and low-level detail information plays a positive role 
in model performance enhancement. Commonly used attention mechanisms include SE, CA, Convolutional 
Block Attention Module (CBAM)31, etc.

The SE attention mechanism demonstrates a straightforward structure and convenient usage, enabling neural 
network models to selectively emphasize valuable features by leveraging global information while suppressing 
fewer valuable ones. However, it solely focuses on channel-wise attention without considering spatial attention, 
thus possessing certain limitations. The CA attention mechanism incorporates location information into 
channel attention and expands the network’s attention span. Additionally, it facilitates adaptive selection and 
weighting of channel features, enhancing the network’s ability to focus on crucial channel information. However, 
the CA attention mechanism primarily emphasizes spatial relationships between pixels, which poses certain 
limitations in handling long-range dependency relationships. The CBAM attention mechanism processes feature 
maps sequentially through two submodules, channel attention, and spatial attention, which take into account 
the feature enhancement in both channel and spatial dimensions, and the network can pay more attention to the 
important features, which improves the model’s performance ability. However, its mode of computing channels 
attention first and then spatial attention limits the flexibility of the attention mechanism to some extent.

Loss function optimization
A good loss function design can help the target detection model to improve the localization accuracy, optimize 
the training process, accelerate the model convergence and so on. In recent years, BBR loss functions have made 
very rapid development in target detection, such as DIoU32, CIoU32, SIoU33, Shape-IoU34, Inner-IoU35, etc. 
DIoU introduces a centroid distance penalty term on the basis of IoU36, which takes into account the influence 
of the overlapping area of the Bounding (BD) box and the distance between the centroids of the BD box. CIOU 
is improved from DIoU and introduces a new shape loss, which takes into account the transverse area between 
the Anchor box and the Ground truth (GT) box. CIoU is improved from DIoU by introducing a new shape loss, 
taking into account the difference in aspect ratios between the Anchor box and the GT box, and optimizing the 
location and shape of the BD box. SIoU is optimized in terms of the location, size, aspect ratio, and angle of the 
BD box, and the introduction of the angle penalty makes it shine in the task of detecting the tilted box. Shape-
IoU focuses on the influence of the shape and scale factor of the BD box on the regression results. Shape-IoU 
pays more attention to the influence of the shape and scale factor of the BD box on the regression results to make 
the bounding regression more accurate. Inner-IoU calculates the IoU loss by designing an auxiliary BD box 
and accelerates the convergence by using different sizes of the BD box for the high IoU and low IoU samples, 
respectively.

Based on the above research, this paper proposes the SPPMC module, the UECA module, and the iSD-IoU 
loss function, respectively, to enhance the detection accuracy and reliability of the target detection model. The 
SPPMC module connects the backbone network and the neck network and has further enhanced the ability to 
extract the multi-scale features, improves the richness of feature information, and at the same time, the network’s 
adaptive ability has been improved, and the stable propagation of gradient is maintained, and the loss of feature 
information is reduced, etc. The design of the UECA module makes up for the lack of CA and SE attention 
mechanism, while considering the attention of spatial dimension and channel dimension, accessing the neck 
network, which further enhances the characterization ability of important features, and promotes the high-
quality fusion of feature information. iSD-IoU loss function is designed by introducing the idea of an auxiliary 
bounding box to calculate IoU and combining the distance loss, and shape loss effect to further enhance the 
training of the model optimization model, accelerate the convergence speed, and improve the positioning 
accuracy.

Methods
Improved SA-YOLO network model
After incorporating the SPPMC module, UECA module, and BBR loss function iSD-IoU loss into the network 
architecture of YOLOv8, the resulting SA-YOLO model exhibited exceptional performance in complex cardiac 
pathology detection tasks. This model effectively identifies normal human cardiac structures as well as previous 
myocardial infarction cases, hypertrophic cardiomyopathy conditions, dilated cardiomyopathy instances, and 
abnormal right ventricle abnormalities. This innovative approach offers a fresh perspective for advancing research 
and development in cardiac pathological detection methods. Its primary objective is to overcome challenges 
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associated with detecting cardiac pathologies in medical images obtained from cardiac MRI scans, thereby 
fostering scientific advancements in medical imaging technology while enhancing accuracy and efficiency in 
diagnosing and treating heart diseases by healthcare professionals.

The network architecture of the SA-YOLO model proposed in this paper is depicted in Fig.  1. Taking a 
640 × 640-pixel input image as an example, it undergoes feature extraction through a backbone network, 
resulting in three effective feature layers sized 80 × 80, 40 × 40, and 20 × 20 respectively. Then, the network will 
input the above extracted multi-scale features into the neck for feature enhancement and fusion so that it can 
meet the requirements of the target detection task. Finally, the Head part of the model will utilize these fused and 
enhanced feature information for cardiology detection and classification, and generate the final detection results.

It is worth noting that the design of the SPPMC module’s adding position as the last layer of the backbone 
part, can help the network better process targets of different scales, extract feature information, enhance the 
richness of network features, improve the robustness of detection, optimize the computational efficiency, and 
thus improve the detection performance of the entire model. In the cardiac MRI image data, the heart organ 
occupies large pixels, which can be used as medium and large-scale targets. The second detection head of 
YOLOv8 accesses the feature map at the middle level of the network, which is responsible for detecting medium-
scale objects; and the third detection head accesses the feature map at the deeper level of the network, which 
is responsible for detecting objects at large iso-scales. Thus, in this paper, we add the UECA module before the 
second and third detection heads of the model and enhance the network’s ability to focus on its key features and 
contextual information processing, in order to improve the quality of the feature representations, which in turn 
significantly improves the overall performance of the model.

The multi-channel spatial pyramid pooling module
In cardiac MRI images, due to the specificity of heart size, the scale differences of various cardiac pathology 
features, and the effect of image resolution, this can pose a great challenge to the model’s multi-scale information 
extraction and fusion capabilities. Traditional convolutional neural networks are usually more sensitive to scale 
differences and difficult to handle multi-scale features simultaneously, and the traditional Spatial Pyramid 
Pooling module utilizes a fixed-size pooling layer, which may limit the size of the receptive field, fail to effectively 
capture comprehensive feature information, and easily lose the details during the convolutional iteration process. 
To address this problem, this paper combines the characteristics of cardiac MRI medical images, this paper 
designs a SPPMC module for cardiac pathology detection tasks, which enables the model to simultaneously 
process abnormalities at more scales, helps the network model to improve the ability to capture and fuse multi-
scale feature information, while reducing the loss of useful information, and thus improves the ability to detect 
a wide range of cardiac pathologies. The structure diagram is depicted in Fig. 1.

Inspired by the SPPCSPC module37, the design of SPPMC incorporates four max-pooling layers with kernel 
sizes increases in the order of 5, 9, 13, and 17, taking into account the feature abstraction level, multi-scale 
information requirements, and task requirements. This design strategy not only helps the network capture a 

Fig. 1.  Network structure diagram of the SA-YOLO model.
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wider range of context information but also helps the network obtain an appropriate amount of shallow features 
and deeper features simultaneously, enhancing the diversity and completeness of feature representation. The 
pooling of multiple scales can reduce information redundancy to a certain extent, and ensure that some features 
that are more significant at a certain scale will not be ignored; When processing data, the network can easily 
deal with all kinds of data and extract the most representative features, which increases the flexibility and 
adaptability of the network. Furthermore, the design of the pooling kernel size in the max pooling layer adheres 
to an arithmetic progression, enabling the network to produce a uniformly varying receptive field across both 
width and height dimensions, and further enhancing the coverage range of the receptive field, avoiding the risk 
of overfitting caused by a single scale change and the situation of uneven or discontinuous feature extraction, 
ensuring that the network’s perception ability of input data at all scales is balanced. It is helpful for the network 
to capture more sensitive features at different scales to obtain higher-quality feature information. In addition, the 
jump connection of the parallel residual network structure is conducive to the stability of gradient propagation, 
alleviates the situation of feature loss, and provides the network with richer and more diversified features. The 
smooth and non-monotonic Sigmoid Linear Unit (SILU) function38 is chosen as the activation function in this 
module to help the model always maintain more effective information propagation and gradient updating, etc. 
during the practicing process.

The receptive field in convolutional neural networks is defined as the region is located in the feature map of 
each layer that corresponds to pixels on the original input image. Equations (1) and (2) illustrate the calculation 
method for determining the receptive field in the network. Here, R represents the overall receptive field, Rn 
represents the receptive field of layer n, kn represents the convolution kernel of layer n, and si denotes the step 
size of Layer i. According to Eqs. (1) and (2), the SPPMC module can generate a relatively uniform variation 
of the receptive fields before feature fusion, whose dimensions are 1 × 1, 5 × 5, 7 × 7, 11 × 11, 15 × 15 and 19 × 19, 
respectively.

	 R0 = 1; R1 = k1� (1)

	
Rn = Rn−1 + (kn − 1) ∗

∏
n−1
i=0 si n ≥ 2� (2)

Joint attention mechanisms incorporating SE and CA
In cardiac MRI images, the image composition is complex, often mixed with other organs and tissues, and the 
background noise is large, which poses a challenge to the extraction and fusion of key cardiac lesion feature 
information, and there are some limitations on the focus range or flexibility of some traditional attention 
mechanisms. To address this problem, this paper draws on SE and CA attention mechanisms to design the UECA 
attention mechanism module, which take into account both spatial and channel dimensions, and improve the 
global context perception ability, which can adaptively strengthen the key features in the channel dimension, and 
also improves the ability of the model to pay attention to the key features in the spatial dimension, to enable the 
model to face the complex cardiac lesion scenarios. In addition, the parallel computation of channel attention 
and spatial attention not only increases the flexibility of the attention mechanism, but also allows the model to 
optimize in different dimensions at the same time, which improves the feature selection and expression ability.

As depicted in Fig.  2(a). The UECA module consists of two parallel-weighted submodules capable of 
processing feature information across different dimensions, significantly enhancing model performance. The 
UECA module functions as an independent computational unit, transforming the input tensor X into the output 
tensor Y, as demonstrated in the following equation:

	 Y = X*(L1 + L2)� (3)

	 L1 = X*s1; L2 = X*s2� (4)

	
zC = 1

H × W

∑
H
i=1

∑
W
j=1xC(i, j), .zCϵz� (5)

	 s1 = ρ (M1∂ (M2z)) , M1 ∈ R
C
r

× C ; M2 ∈ RC× C
r � (6)

	
zh

C (h) = 1
W

∑
0≤ i≤ W xC (h, i) , zh

C (h) ϵzh� (7)

	
zw

C (w) = 1
H

∑
0≤ j≤ HxC (j, w) , . . . zw

C (w) ϵzw � (8)

	 v = ∂ (F 1

([
zh, zw

])
)� (9)

	 gh = ρ (F h

(
vh

)
); gw = ρ (F w(vw ))� (10)

	 s2 = gh*gw � (11)

where X = [x1, x2, . . . , xC ] are elements of RC′ × H′ × W ′
, Y = [y1, y2, . . . , yC ] are elements of 

RC× H× W ; L1 = [l1
1, l2

1, . . . , lc
1] are elements of RC′ ′ × H′ ′ × W ′ ′

and L2 = [l1
2, l2

2, . . . , lc
2] are elements 

of RC′ ′ ′ × H′ ′ ′ × W ′ ′ ′
represent the outputs of the left and right submodules, respectively; z ∈ RC  denotes 

the result after a series of operations over the spatial dimensions; zCϵz represents the output of the Cth channel. 
s1 indicates the output of the left submodule after capturing channel dependencies; ρ  is the Sigmoid function; 
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M1 and M2 are the parameters for linear transformations; r is the reduction ratio; ∂  represents the ReLU 
function; v denotes the feature map obtained after convolution processing; vh and vw  are the decompositions 
of v in the spatial dimensions H and W, respectively; gh and gware the results of applying convolution 
operations to vh and vw , respectively; s2 represents the product of gh and gw .

The UECA module has a simple structure and is very suitable for integration into various classic mobile 
networks. It enables the network to capture richer contextual information and better focus on key features 
by integrating dimensions such as channel, space, and global information, thereby promoting feature fusion. 
Through feature extraction in different spatial dimensions, global context information weighting, and global 
average pooling operations, the network’s ability to capture contextual information can be effectively improved. 
The network not only captures contextual information in different spatial directions and provides a finer-grained 
spatial position relationship, but also summarizes the global information of the entire feature map, improving the 
network’s channel feature expression ability in the global scope. In addition, the UECA module can dynamically 
adjust the focus between the global and local by extracting feature information in the horizontal and vertical 
directions, directly expanding the network’s perception range in the spatial dimension and improving its ability 
to understand features of different scales and positions. By dynamically adjusting channel weights, the network 
can optimize channel features from a global perspective, and indirectly expand the perception range and 
suppress irrelevant features, so that the network can more effectively focus on basic cardiac pathological features.

Optimization of loss function
When dealing with complex cardiac MRI images, the traditional IoU loss function will have problems such 
as failing to provide accurate localization due to problems such as fuzzy target boundaries, limited ability to 
optimize the model training process, and failure to quickly help the model converge. To address these problems, 
this paper designs the iSD-IoU loss function. As shown in Fig. 2(b), the iSD-IoU loss employs the intersection 
over union of auxiliary boxes ( IoU in) and incorporates both distance loss (Δ) and shape loss (Ω) into the BBR 
loss function, thereby facilitating faster convergence of the bounding boxes and optimizing the overall model 
training. The introduction of an auxiliary bounding box model allows for a more comprehensive assessment 
of overlap, position, and shape alignment between predicted (PD) boxes and GT boxes, enhancing detection 
accuracy. Additionally, incorporating a distance loss model enables simultaneous optimization of both overlap 
degree and positional accuracy, bringing the center points of PD and GT boxes closer together to improve 
localization precision. Furthermore, integrating a shape loss model optimizes aspect ratio concurrently, ensuring 
that the PD box’s shape aligns more closely with the true contour of the target, thus further enhancing localization 
accuracy. The iSD-IoU loss is defined as follows:

	 LiSD−IoU = 1 − IoU in + ∆ + Ω � (12)

The calculation of the IoU in is presented in Eq. (19), where b represents the centroid coordinates (xgt
c , ygt

c ) of 
both the GT box and its inner GT box. The upper left and lower right corners of the inner GT frame are denoted 
by coordinates ( bl, bt) and ( br, bb), respectively. Similarly, a denotes the centroid coordinates (xc, yc) of both 
the PD box and its inner PD box. The upper left and lower right corners of the inner PD box are represented as 
( al, at) and ( ar , ab). Herein, r signifies a scaling factor that relates to target sizes within the dataset ranging 

Fig. 2.  The structure diagram of modules: (a)The structure of the UECA module. (b) Descriptive diagram of 
iSD-IoU.
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from 0.5 to 1.5; w and h represent width and height values for the PD box, respectively, while wgt and hgt 
correspondingly denote width and height values for the GT box; in_inter refers to intersection area between 
the inner GT box and inner PD box; finally, in_union indicates union area between these two boxes.

	
bl = xgt

c − wgt*r

2 , br = xgt
c + wgt*r

2
� (13)

	
bt = ygt

c − hgt*r
2 , bb = ygt

c + hgt*r
2

� (14)

	
al = xc − w*r

2 , ar = xc + w*r
2

� (15)

	
at = yc − h*r

2 , ab = yc + h*r
2

� (16)

	 in_inter = (min (br, ar) − max (bl, al)) * (min (bb, ab) − max(bt, at))� (17)

	 in_union =
(
wgt*hgt

)
*r2 + (w*h) *r2 − in_inter� (18)

	 IoU in = in_inter/in_union� (19)

The distance loss evaluates the discrepancy in positional alignment between the GT box and its corresponding 
predicted counterpart along both horizontal and vertical axes, following the computation outlined by Eq. (20). 
Meanwhile, the shape loss assesses variations in shape size between these two boxes by employing calculations 
described in Eq. (21).

The variables wc and hc represent the width and height of the minimum BD box that covers both the GT 
box and the PD box, respectively. The coefficient k is a weight with a range between 0 and 1. The weights w1 and 
h1 correspond to the horizontal and vertical directions, respectively, taking into account the size of the GT box. 
The scaling factor s relates to the target scales in the dataset. Lastly, c represents the diagonal distance between 
boxes a and b’s minimum enclosing bounding boxes; Θ  denotes attention towards shape loss.

	
∆ = k*

∑
t=x,y(1 − e−ρ t )� (20)

	
Ω = 1

2
∑

t=w,h(1 − e−wt )Θ
, Θ = [2,6]� (21)

	




ρ x = w1 ∗
(

xc−x
gt
c

wc

)2

ρ y = h1*
(

yc−y
gt
c

hc

)2 � (22)

	

{
w1 = 2*(wgt)s

(wgt)s+(hgt)s

h1 = 2*(hgt)s

(wgt)s+(hgt)s

� (23)

	

{
ww = h1 ∗ |w− wgt|

max(w,wgt)

wh = w1 ∗ |h− hgt|
max(h,hgt)

� (24)

Experiments
In the experimental section, we initially present the preparatory work, encompassing relevant information 
regarding the ACDC dataset, methods for data preprocessing, and details of the experimental environment. 
Secondly, this article elaborates on the experimental setup for this study, which includes model selection, 
configurations of training parameters, and metrics employed for model evaluation. Subsequently, the efficacy 
of the SPPMC module, UECA module, iSD-IoU loss for bounding box regression, and the SA-YOLO model is 
substantiated through ablation and comparative experiments. Finally, comparative experiments are conducted 
with additional state-of-the-art OD models to demonstrate the advantages of the SA-YOLO model.

Experimental preparation
Dataset
The cardiac MRI medical image dataset studied in this paper is a publicly available dataset, which comes from 
the 2017 Automated Cardiac Diagnosis Challenge (ACDC) of the Medical Image Computing and Computer 
Assisted Intervention Society (MICCAI). The data in this dataset were collected by the University Hospital of 
Dijon in France over 6 years, comprising 150 patients, each with 28 to 40 image scans. In the ACDC dataset, 
the patients are categorized into five groups based on pathology: Normal Cardiacs (NOR), previous Myocardial 
Infarction (MINF), Hypertrophic Cardiomyopathy (HCM), Dilated Cardiomyopathy (DCM), and Abnormal 
Right Ventricle (ARV).

Since the image data used for OD models are typically in formats such as JPEG or PNG, while the images in 
the ACDC dataset are in the nii.gz format, conversion of the format is required. The converted images need to be 
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annotated according to the standard before they can be used for training OD models. Here, the labeling tool used 
is LabelImg. Additionally, to minimize interference from the data itself on the model, we conducted a screening 
process on the acquired image data, excluding images of low quality and those with missing targets. Ultimately, 
we obtained 2682 images, with a partition ratio of approximately 7:2:1 for the training, testing, and validation 
sets, respectively. Some image data are shown in Fig. 3.

Experimental environment
The experiments in this study were conducted on the same computer equipment to ensure consistency in the 
experimental environment and reliability of the results. The detailed configuration is provided in Table 1. In 
terms of hardware, a 13th generation Intel(R) Core (TM) i5-13400 F CPU running at 2.50 GHz was utilized, 
along with an NVIDIA GeForce RTX 3060Ti GPU. Regarding software, Windows 11 served as the Operating 
System (OS), Anaconda3 was used as the Integrated Development Environment (IDE), Python 3.9.16 was 
employed as the programming language, Pytorch 2.0.0 was chosen as the deep learning framework, CUDA 11.2 
facilitated accelerated computing, and cuDNN 8.1.1 was employed for deep learning tasks.

Experimental detail
Models training parameter setting
During the training process, Table 2 presents the key hyperparameter configurations of the SA-YOLO model. 
The hyperparameters not listed in Table 2 remain unchanged, and other advanced OD models are trained using 
their default hyperparameters. Moreover, all OD models were trained for 200 epochs with a batch size of 8 and 
an input image resolution of 640 × 640. A confidence threshold of 0.55 was set for OD during predictions. To 
ensure objectivity, the final results were averaged over ten experimental runs. No pre-trained weight files were 
utilized in the training of any models.

Configuration Name Detailed Information

Hardware
CPU Intel i5 13,400 F

GPU RTX 3060Ti

Software

OS Windows11

IDE Anaconda3

Python version:3.9.16

Pytorch version:2.0.0

CUDA version:11.2

cuDNN version:8.1.1

Table 1.  Experimental equipment configuration table.

 

Fig. 3.  Cardiac MRI medical images in an ACDC dataset. (a) Normal Cardiacs; (b) Previous Myocardial 
Infarction; (c) Hypertrophic Cardiomyopathy; (d) Dilated Cardiomyopathy; (e) Abnormal Right Ventricle.
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Model evaluation
The performance of the OD model in this paper is quantitatively evaluated using Average Precision (AP), mAP0.5, 
mAP0.5-0.95, F1 score, FPS, and GFLOPs as evaluation metrics. The definitions and computation methods for 
each metric are presented in Table 3. In this paper, AP is used to represent the AP value when the IoU threshold 
is 0.5; the mAP0.5 indicates the mean of AP across all classes at an IoU threshold of 0.5; the mAP0.5-0.95 
represents the mean of AP across all classes over a range of IoU thresholds from [0.5, 0.95]. True Positive (TP) 
indicates the number of samples that the model predicts to be positive and are actually positive. False Positive 
(FP) indicates the number of samples that the model predicts to be positive but are actually negative. False 
Negative (FN) indicates the number of samples that the model predicts to be negative but are actually positive.

Experiment results
The ablation experiment
The YOLOv8-l model is employed as the baseline in this study, and a series of ablation experiments are 
conducted on the ACDC dataset to validate the efficacy of each proposed enhancement. The results obtained 
from these ablation experiments can be found in Tables 4 and 5, and 6; Figs. 4 and 5. Discussion on the selection 
of maximum pooling layer kernel size for the SPPMC module as Table 4, and in the SPPMC module, a group 
using the size parameters of the pooling kernel designed by this article has achieved the best experimental 
results, which proves the effectiveness of the design strategy.

As shown in Table 6; Fig. 4(a), replacing the SPPF module with the SPPMC module in the baseline model 
effectively expands the neural network’s receptive field and employs a unique information fusion strategy, thereby 
enabling more efficient processing of acquired feature information and resulting in a significant enhancement in 
performance. In comparison to the baseline model, although there is a slight decrease in detection speed, and the 
computational complexity has increased, incorporating the SPPMC module leads to an increase of 0.3% in the 
F1 score, along with improvements of 4.5% and 4.1% for mAP0.5 and mAP0.5-0.95 respectively, demonstrating 
convincingly its efficacy for enhancing model performance.

maximum pooling kernel sizes F1 mAP 0.5 mAP 0.5–0.95 GFLOPs

3,5,7,9 0.592 0.689 0.584 175.4

5,7,9,11 0.627 0.671 0.571 175.4

7,9,11,13 0.638 0.675 0.561 175.4

9,11,13,15 0.637 0.693 0.577 175.4

11,13,15,17 0.642 0.704 0.589 175.4

5,9,13,17(Ours) 0.662 0.722 0.601 175.4

Table 4.  Discussion on the selection of maximum pooling layer kernel size for the SPPMC module.

 

Evaluation 
Metric Definition Computing formula

P Precision (P) measures the proportion of samples that are actually positive when the model predicts them to be positive. P = T P
T P +F P

R Recall (R) measures the ability of the model to identify all actual positive samples. R = T P
T P +F N

F1 score The F1 score is a metric that combines Precision (P) and Recall (R) through a weighted average. F1 = 2P R
P +R

AP The AP is a metric utilized to evaluate the performance of OD models by measuring the accuracy of detecting different 
classes of objects.

The area bounded by the P-R curve 
corresponds to the value of AP.

mAP mAP stands for Mean Average Precision. mAP =

∑
N
i=1AP i

N

FPS FPS stands for Frames Per Second, a measure of the rate at which consecutive frames or images are displayed or processed. F P S = 1
Latency

GFLOPs GFLOPs are billions of floating-point operations, which can be used to measure the complexity of an algorithm. The larger the value, the more 
complex the model.

Table 3.  Evaluation Metric Summary table.

 

Hyperparameter Value Hyperparameter Value

Optimizer SGD Batch Size 8

original Learning Rate 0.01 Input Resolution 640 × 640

Weight Decay 0.0005 Epochs 200

Momentum 0.8 conf 0.55

Table 2.  Hyperparameters of the SA-YOLO Model.
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After incorporating the UECA module independently into the baseline model, the network’s ability to capture 
contextual information and expand its perceptive range is enhanced, while attention to key feature information 
is heightened. This enables more effective processing of acquired feature information, resulting in a significant 
performance improvement. Compared to the baseline model, introducing the UECA module leads to an increase 
in detection speed with the F1 score rising by 0.1%, and mAP0.5 and mAP0.5-0.95 improving by 3.5% and 3.7%, 
respectively. These results confirm that integrating the UECA module effectively enhances model performance.

Subsequently, after independently substituting the original CIoU loss with the enhanced BBR loss function 
iSD-IoU loss in the baseline model, a significant enhancement in model performance is observed. While 
experiencing a slight reduction in detection speed, there is no shift in the F1 score; however, mAP0.5 and 
mAP0.5-0.95 increase by 3.1% and 1.4%, respectively. Moreover, In the ablation experiments of various BBR 
loss functions shown in Table 5, the performance of the target measurement model has been well improved 
after the addition of the loss function without sacrificing the complexity of the model. The data of the other 
evaluation indicators rank the first place, except for the index mAP 0.5–0.95, which is slightly lower. Figure 4(b) 
demonstrates that when utilizing the iSD-IoU loss function, convergence occurs at a faster rate with lower 

Fig. 4.  Visualization of the ablation experiment results. (a) Radial bar chart of the ablation experiment results; 
(b) Convergence curves of CIoU loss and iSD-IoU loss.

 

YOLOv8-l SPPMC UECA iSD-IoU F1 mAP 0.5
mAP
0.5–0.95 FPS GFLOPs

✓ 0.659 0.677 0.560 65.12 167.5

✓ ✓ 0.662 0.722 0.601 61.91 175.4

✓ ✓ 0.660 0.712 0.597 65.37 169.7

✓ ✓ 0.659 0.708 0.574 61.65 167.5

✓ ✓ ✓ 0.668 0.732 0.605 61.48 175.6

✓ ✓ ✓ ✓ 0.684 0.751 0.611 61.21 175.6

Table 6.  Ablation experiment results Summary table.

 

BBR Loss Function Classes F1 mAP 0.5 mAP 0.5–0.95 GFLOPs

DIoU 0.630 0.689 0.579 167.5

CIoU 0.659 0.677 0.560 167.5

SIoU 0.656 0.702 0.594 167.5

Shape-IoU 0.655 0.689 0.569 167.5

Inner-IoU 0.658 0.695 0.572 167.5

iSD-IoU (Ours) 0.659 0.708 0.574 167.5

Table 5.  Loss function ablation experiment.
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loss values for the bounding box loss functions employed. In summary, the strategy of using the iSD-IoU loss 
function helps to speed up the model convergence and improve the overall performance of the model.

By incorporating the SPPMC and UECA modules into the baseline model as per the strategy outlined in Fig. 1, 
there is a significant enhancement in model performance. The F1 score experiences an increase of 0.9%, while 
mAP0.5 and mAP0.5-0.95 see respective increases of 5.5% and 4.5%. Building upon this improvement, replacing 
the CIoU loss function with the iSD-IoU loss function leads to a significant enhancement in performance within 
the SA-YOLO model. In comparison to the baseline network model, although the detection speed is reduced, 
and the computational complexity is increased, but there is an observed increase of 2.5% in the F1 score and 
improvements of 7.4% and 5.1% in mAP0.5 and mAP0.5-0.95, respectively. Furthermore, 15 random images 
from the MRI medical images of the heart that were not included in the model training and validation process 
were selected for each category, with three images per category, to investigate the detection and recognition 
capabilities of various cardiovascular pathologies by the models. The results are presented in Fig. 5. The baseline 
model exhibits susceptibility to misclassification, failure in OD, anomaly detection, and confusion organs. 
With the incorporation of the improved module in this study, these problems were effectively mitigated, and 
the model was able to better resist interference from complex backgrounds and more accurately discriminate 
between various types of complex cardiac lesions. Importantly, in all ablation experiments, it is easy to see that 

Fig. 5.  The diagram illustrates the predictive outcomes of the model involved in the ablation experiment. (a) 
Baseline model; (b) The baseline model incorporates the SPPMC module. (c) The baseline model incorporates 
the UECA module; (d) The baseline model incorporates the iSD loss function; (e) The baseline model 
incorporates the SPPMC module and the UECA module; (f) The SA-YOLO model exhibits superior accuracy 
in predicting cardiac pathologies. (Notes: “No object detected” indicates failure in OD on the image; “Anomaly 
detection” suggests the model predicts multiple categories including itself within a single bounding box; “Error 
detection” denotes misclassification by the model; “Confused organ” signifies misidentification of other organs 
as the heart.)
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the SA-YOLO model is able to predict different cardiac lesions more accurately and with higher confidence than 
the baseline model, and also demonstrates excellent discrimination of cardiac lesions with smaller pixels. This 
further confirms the advance and validity of our proposed SA-YOLO model.

The comparative experiment of spatial pyramid pooling modules
To further demonstrate the advantages of the SPPMC module, this study integrates the SPPMC module, with the 
baseline models YOLOv8-l (denoted as A) and YOLOv739 (denoted as B) and conducts comparative experiments 
with other spatial pyramid pooling networks. The other spatial pyramid pooling modules tested include the 
SPP30, SPPF, SPPCSPC, and SPPELAN. The experimental implementation details remained unaltered. The 
experiments and visual representations are presented in Table 7; Figs. 6 and 7.

The performance of models A and B exhibited significant improvement after the incorporation of the 
SPPMC module, as evident from Table 7; Fig. 6(a), and Fig. 6(b), leading to superior detection results. After 
incorporating the SPPMC module in model A, there is a small decrease in the AP values for the two categories, 
yet surpasses that of baseline models, while the remaining categories exhibit the highest AP values. Furthermore, 
both mAP0.5 and mAP0.5-0.95 values significantly exceed those of other models, with improvements of 4.5% 
and 4.1%, respectively, compared to the baseline network. After incorporating the SPPMC module in model B, 
there is a slight decrease in the AP values for one category, while the remaining categories exhibit the highest 
AP values. The mAP0.5 and mAP0.5-0.95 values exhibit higher than the other models, showcasing respective 
increments of 3.4% and 3.2% compared to the baseline network.

The replacement of the spatial pyramid pooling modules in model A and model B significantly improved 
the prediction efficacy for cardiac pathology. After conducting a comprehensive comparative analysis, it was 
observed that the model incorporating the SPPMC module exhibited superior predictive performance for cardiac 

Fig. 6.  The experimental results of the model on the ACDC dataset are visualized through the integration of 
diverse spatial pyramid pooling modules. (a) Model A adds the different spatial pyramid pooling modules; (b) 
Model B adds the different spatial pyramid pooling modules.

 

Method

AP

mAP0.5
mAP
0.5–0.95NOR MINF HCM DCM ARV

A + SPPF(Baseline) 0.654 0.583 0.572 0.721 0.854 0.677 0.560

A + SPP 0.594 0.533 0.681 0.702 0.852 0.673 0.555

A + SPPCSPC 0.580 0.566 0.617 0.690 0.873 0.665 0.553

A + SPPELAN 0.695 0.546 0.628 0.640 0.912 0.684 0.571

A + SPPMC(Ours) 0.722 0.608 0.623 0.776 0.883 0.722 0.601

B + SPPF(Baseline) 0.559 0.655 0.638 0.794 0.875 0.704 0.571

B + SPP 0.619 0.655 0.665 0.804 0.849 0.719 0.586

B + SPPCSPC 0.581 0.655 0.679 0.780 0.862 0.711 0.580

B + SPPELAN 0.633 0.627 0.656 0.814 0.854 0.717 0.581

B + SPPMC(Ours) 0.646 0.626 0.687 0.827 0.903 0.738 0.603

Table 7.  After adding various spatial pyramid Pooling Network modules, the model’s experimental results on 
the ACDC dataset.
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pathology. The integration of the SPPMC module into model A, as depicted in Fig. 7(a) and Fig. 7(e), resulted in 
a significant reduction in instances of missed detections, detection anomalies, and organ misclassifications, and 
it led to an improvement in the confidence of detection results for the images. In addition, Fig. 7(f) and Fig. 7(j) 
demonstrate that the performance of model B was significantly enhanced with the incorporation of the SPPMC 
module. This enhancement resulted in a reduction of erroneous predictions and an increase in the confidence 
level of detection results for the images. Based on these findings, this study concludes that the SPPMC module 
effectively enhances OD models’ performance in cardiac pathology tasks, surpassing classical spatial pyramid 
pooling modules’ achievements.

Comparative experiments on improved attention mechanism networks
To further demonstrate the UECA module’s effectiveness, we incorporate the UECA attention mechanism module 
and other attention mechanism modules (for example: SE, CA, and CBAM31) into the network architectures 
of baseline models A and B for comparative experiments. No modifications are made to the experimental 
implementation details. The experimental results and visualizations are presented in Table 8; Figs. 8 and 9.

From Table 8; Fig. 8(a), and Fig. 8(b), it is evident that the performance of models A and B significantly 
improved after adding the UECA module. In model A, after incorporating the UECA network, the AP value 
for two categories is higher than all other models, and for one category, it is lower than all other models; the AP 
values for the remaining categories are higher than those of most models. Both mAP0.5 and mAP0.5-0.95 values 
are higher than those of all other models, with increases of 3.5% and 3.7%, respectively, compared to the baseline 
network. In model B, after adding the UECA network, three categories’ AP values are the highest among all 
models, and one category’s AP value is the lowest; the AP values for the remaining categories are slightly lower 
than those of a few models. Both mAP0.5 and mAP0.5-0.95 values are higher than those of all other models, with 
increases of 3.0% and 2.2%, respectively, compared to the baseline network.

The replacement of the attention mechanism modules in model A and model B resulted in a significant 
improvement in the prediction efficacy for cardiac pathology. After conducting a comprehensive comparative 
analysis, it was observed that the model incorporating the UECA module exhibited superior predictive 
performance for cardiac pathology. From Fig. 9(a) and Fig. 9(e), it can be seen that when the UECA module 
is added to model A, although the number of error detection images increases by one image, the omission of 
detection, prediction abnormality, and organ confusion are effectively improved, and the number of images with 
improvement in the confidence of prediction results increased. Figure 9(f) and Fig. 9(j) reveal that upon adding 
the UECA module to model B, there is a reduction in detection errors, and more images exhibit increased 
confidence in the predicted results. Taking all factors into consideration, this study concludes that the UECA 
module effectively enhances the performance of the model in cardiac pathology detection, demonstrating 
superiority over the aforementioned classic attention mechanism modules.

Fig. 7.  The prediction outcomes of cardiac pathology in model A and model B following the incorporation 
of diverse spatial pyramid pooling modules. (a) Model A adds the SPPF module; (b) Model A adds the SPP 
module; (c) Model A adds the SPPCSPC module; (d) Model A adds the SPPELAN module; (e) Model A adds 
the SPPMC module; (f) Model B adds the SPPF module; (g) Model B adds the SPP module; (h) Model B adds 
the SPPCSPC module; (i) Model B adds the SPPELAN module; (j) Model B adds the SPPMC module.
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Performance comparison experiment of the OD model
In this study, we compared our proposed SA-YOLO algorithm with several cutting-edge OD algorithms, 
including Rt-Detr40, EfficientDet41, Fcos42, Faster-RCNN, SSD, YOLOv5-l43, YOLOv7, YOLOv8-l, YOLOv9-c44, 
and YOLOv10-l45. The objective is to demonstrate the strong competitiveness of our model in detecting cardiac 
MRI medical images. We conducted comparative experiments on the ACDC dataset using these aforementioned 
OD models. The experimental results are summarized in Table 9; Fig. 10.

Through the analysis of Table 9; Fig. 10, it can be observed that, locally, the SA-YOLO model demonstrates 
superior performance in detecting Normal Cardiacs, previous Myocardial Infarction, Dilated Cardiomyopathy, 
and Hypertrophic Cardiomyopathy, with AP scores higher than other models. Additionally, in the detection and 
recognition of Abnormal Right Ventricle, the SA-YOLO model also ranks among the top performers, with AP 
scores still higher than most other advanced OD models, including baseline models, albeit slightly lower than 
individual advanced OD models. Furthermore, from the numerical values of the AP scores, it is evident that 
most models exhibit the best detection performance for Dilated Cardiomyopathy and Abnormal Right Ventricle, 
while the detection performance for Normal Cardiacs, previous Myocardial Infarction, and Hypertrophic 
Cardiomyopathy is slightly inferior. We attribute these results to the following reasons:

	1.	� The MRI medical image data for various cardiac pathologies are not evenly balanced, and there is a certain 
lack of data volume.

	2.	� Due to the variability among individual human hearts, some features of MRI images for certain cardiac 
pathologies may exhibit similarities, and interference from other tissue organs may lead to misjudgments in 
OD models.

Fig. 8.  The experimental results of the model on the ACDC dataset are visualized through the integration of 
diverse attention mechanism modules. (a) Model A adds the various modules for attention mechanisms; (b) 
Model B adds the various modules for attention mechanisms.

 

Method

AP

mAP0.5
mAP
0.5–0.95NOR MINF HCM DCM ARV

A(Baseline) 0.654 0.583 0.572 0.721 0.854 0.677 0.560

A + SE 0.594 0.521 0.708 0.685 0.905 0.683 0.564

A + CBAM 0.556 0.662 0.603 0.800 0.865 0.697 0.584

A + CA 0.732 0.568 0.556 0.738 0.883 0.695 0.573

A + UECA 
(Ours) 0.741 0.517 0.575 0.812 0.913 0.712 0.597

B(Baseline) 0.559 0.655 0.638 0.794 0.875 0.704 0.571

B + SE 0.634 0.549 0.685 0.789 0.884 0.710 0.572

B + CBAM 0.635 0.598 0.662 0.802 0.883 0.716 0.592

B + CA 0.599 0.665 0.608 0.793 0.865 0.706 0.568

B + UECA (Ours) 0.635 0.663 0.733 0.752 0.885 0.734 0.593

Table 8.  After adding different types of attention mechanism modules, the experimental results of the model 
on the ACDC dataset.
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Overall, the SA-YOLO model demonstrates exceptional performance on the ACDC dataset compared to 
other state-of-the-art models, securing first place in accurately detecting cardiac pathologies in MRI medical 
images. The mAP0.5 and mAP0.5-0.95 scores stand at 0.751 and 0.611, respectively, significantly surpassing the 
performance of other advanced OD models. Additionally, the mAP0.5 and mAP0.5-0.95 scores have witnessed 
a significant increase of 7.4% and 5.1%, respectively, when compared to the baseline model YOLOv8-l. In 
comparison to the second-ranked YOLOv9-c model, there has been an improvement of 4.8% and 1.6% in the 
mAP0.5 and mAP0.5-0.95 scores, respectively. Furthermore, when contrasted with the last-ranked EfficientDet 

Method

AP mAP
0.5

mAP
0.5–0.95NOR MINF HCM DCM ARV

YOLOv8-l(Baseline) 0.654 0.583 0.572 0.721 0.854 0.677 0.560

Rt_Detr-l 0.461 0.389 0.305 0.613 0.741 0.502 0.417

EfficientDet 0.313 0.325 0.394 0.462 0.782 0.455 0.263

Fcos 0.474 0.510 0.605 0.587 0.839 0.603 0.425

Faster-RCNN 0.586 0.606 0.625 0.642 0.800 0.646 0.412

SSD 0.535 0.482 0.592 0.617 0.880 0.621 0.438

YOLOv5-l 0.523 0.490 0.542 0.742 0.835 0.626 0.504

YOLOv7 0.559 0.655 0.638 0.794 0.875 0.704 0.571

YOLOv9-c 0.664 0.611 0.635 0.747 0.860 0.703 0.595

YOLOv10-l 0.692 0.460 0.630 0.697 0.888 0.674 0.551

SA-YOLO(Ours) 0.728 0.700 0.587 0.805 0.933 0.751 0.611

Table 9.  OD model comparison experimental results summary table.

 

Fig. 9.  The prediction outcomes of cardiac pathology in model A and model B following the incorporation 
of diverse attention mechanism modules; (a) Model A, (b) Model A adds the SE module; (c) Model A adds 
the CBAM module; (d) Model A adds the CA module; (e) Model A adds the UECA module; (f) Model B; 
(g) Model B adds the SE module; (h) Model B adds the CBAM module; (i) Model B adds the CA module; (j) 
Model B adds the UECA module.

 

Scientific Reports |         (2025) 15:4053 15| https://doi.org/10.1038/s41598-025-88567-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


model, remarkable enhancements of 29.6% and 34.8% have been achieved in the mAP0.5 and mAP0.5-0.95 
scores.

In summary, SA-YOLO exhibits exceptional performance in the detection of cardiac pathologies in cardiac 
MRI medical images compared to other advanced OD models. It offers significant improvements in performance 
and strong competitiveness.

Discussion
This paper addresses the challenges in detecting cardiac MRI images in medical imaging and proposes an 
enhanced OD algorithm model, called SA-YOLO. A considerable number of experimental results on the ACDC 
dataset demonstrate that the improved strategy proposed in this paper can effectively improve the accuracy 
and reliability of the target detection model for cardiac pathology detection. Performance can be improved 
by adding a single improvement module or all of them to the baseline model. With the addition of a single 
module, the baseline model’s mAP0.5 and mAP0.5-0.95 scores mostly rose increased by more than 2%. When 
all the improved modules were added to the baseline model, the F1, mAP0.5 and mAP0.5-0.95 scores increased 
significantly, to 2.5%, 7.4%, and 5.1%, respectively. Compared with other advanced object detection models, the 
SA-YOLO model performs well, ranking first with mAP0.5 and mAP0.5-0.95 scores.

There are still some limitations in this study. First, there is still a lot of room for improvement in the 
performance of the model. When the SPPMC or UECA module is introduced into the baseline model, the 
complexity of the model will increase to a certain extent. In addition, although 2682 images are a good starting 
point for an object detection task, in the medical field, the total amount of the data set is still slightly insufficient, 
which may cause the model to perform poorly on new and unseen samples. This dataset has achieved good 
performance in the current object detection task, and the clinical application of the model also faces some 
challenges. Before clinical use, rigorous verification and evaluation are still required.

Conclusion
This paper conducts in-depth research on multi-scale feature extraction and fusion, training process optimization, 
and Positioning accuracy improvement of the target detection model, intending to solve the problems of low 
detection accuracy and unreliable detection results of target detection models for cardiac pathology detection on 
cardiac MRI medical images. Based on the YOLOv8 model, this paper proposes a cardiac pathology detection 
model with cardiac MRI medical images, which introduces the innovative SPPMC module, UECA module, 
and iSD-IoU loss function. the SPPMC module solves the limitations of the traditional spatial pyramid pooling 
network, enhances the flexibility of the network to handle multi-scale feature maps, and helps the backbone 
network to extract deeper and richer multi-scale features, etc. The UECA module considers the effects of channel 
attention and spatial attention at the same time and inherits the advantages of CA and SE. The network can better 
adjust the feature weights dynamically according to the input feature maps, inhibit the perturbation of non-
essential features, and enhance the attention of important features, which effectively promotes feature fusion 
in the neck network. iSD-IoU loss function is designed to optimize the training process of the model further 
and to enhance the detection performance of the model, which introduces an auxiliary box to improve the 
detection performance, which introduces the idea of an auxiliary frame to calculate the IoU and considers the 

Fig. 10.  Visualization of the comparative experimental results of OD models on the ACDC dataset. (a) Radial 
bar chart showing AP values for different cardiac pathologies, and (b) Bar chart showing mAP0.5 and mAP0.5-
0.95 values.
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effects of shape loss and distance loss at the same time. A large number of experiments on the ACDC dataset 
verify the effectiveness of the improved strategy in this paper, and the SA-YOLO model, with a small amount of 
computational complexity sacrificed, significantly improves its performance, and performs well in the detection 
task of cardiac pathology, obtaining more reliable and better detection results than other advanced target 
detection models。.

In the future, the authors’ team will combine the concept of more advanced target detection models to 
continue to improve the performance of the SA-YOLO model in cardiac MRI medical image detection tasks, 
while reducing the complexity of the model and easing the difficulty of model deployment. Secondly, the author 
team will continue to carry out in-depth cooperation with partner hospitals to address the limitations of the 
ACDC dataset, gradually increase the number of data in the study, make the data more representative, and solve 
the challenges of clinical application of the model.

Data availability
The ACDC dataset used in this paper is a publicly available dataset, and the relevant data on which the results of 
this paper are based can be obtained from the corresponding author upon reasonable request.
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