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A sort of major malignant disease, cancer can compromise human health wherever. Somemechanisms of the occurrence and evolution
of cancer still seem elusive even now. Consequently, the therapeutic strategies for cancer must continually evolve. The hedgehog
signaling pathway, a critical mediator in the normal development of numerous organs and the pathogenesis of cancer, is typically
quiescent but is aberrantly activated in several malignancies. Extensive research has delineated that the aberrant activity of the
hedgehog signaling pathway, whether autocrine or paracrine, is implicated in the initiation and progression of various neoplasms,
including medulloblastoma (MB), basal cell carcinoma (BCC) and so on. Thus, notably Smo inhibitors, the opening of inhibitors of the
hedgehog signaling pathway has become a topic of research attention. This review aims to summarize four aberrant activation
pathways and the influence of hedgehog signaling pathway associated chemicals on tumor formation and development. Additionally,
it will explore the therapeutic potential of targeted interventions in the hedgehog signaling pathway for cancer treatment.
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FACTS

1. The overactivation or inhibition of Hedgehog pathways may
be the key to triggering tumors.

2. The application of inducers and inhibitors is crucial in the
study of the Hedgehog pathways and related cancers.

3. Targeting these interactions about the Hedgehog pathway
interacts with other signaling networks in cancer may be a
useful treatment strategy.

OPEN QUESTIONS

1. Whether and how to develop more efficient inducers and
inhibitors of Hedgehog pathway?

2. What are the mechanisms of Hedgehog pathways during
early carcinogenesis?

3. How might Hedgehog pathway inhibitors be made more
effective for various cancer types?

INTRODUCTION
The Hedgehog gene was found in Drosophila due to the
remarkable phenotype of fly larvae lacking Hh. Mutant larvae fail
to develop the segmented anterior-to-posterior body plan and
have ectopic denticles resembling a hedgehog [1].Hedgehog (Hh)
proteins constitute one family of a small number of secreted
signaling proteins, the core components of which are the secreted

molecule Hh, the twelve-pass transmembrane receptor Patched
(PTCH), the seven-pass transmembrane co-receptor Smoothened
(SMO), and the GLI transcription factors [2]. Normal activation of
the hedgehog signaling pathway regulates multiple aspects of
animal development, tissue homeostasis, regeneration [3], stem
cell maintenance and tissue homeostasis [4]. Abnormal activation
of the Hh pathway has been shown to contribute to tumorigen-
esis, progression, metastasis, and drug resistance in various
cancers, including basal cell carcinoma (BCC) [5], medulloblastoma
(MB) [6], and many other solid and hematological tumors [4]. In
addition, the abnormal activation of Hh signaling has also been
linked to the pathologies of breast [7], lung [8], pancreas [9], and
prostate cancers [10, 11]. Nowadays, with the deepening of
research on it, the abnormal activation mechanism of HH signaling
pathway is divided into four categories: ligand-independent
signaling, ligand-dependent autocrine signaling [12], ligand-
dependent Hh signaling in a paracrine or reverse paracrine
manner [13]. To understand the effects of these four types of
abnormal activation mechanisms on tumorigenesis and develop-
ment and the differences between them is very important for the
study of tumorigenesis mechanisms and treatment strategies. This
review focuses on the abnormal activation mechanism of the Hh
pathway and its related tumors.

MECHANISM OF HEDGEHOG SIGNALING PATHWAY
Essential in controlling development [14], tissue homeostasis [15],
and regeneration [3, 16, 17], the Hedgehog (Hh) signaling system
comprises ligands, receptors, and transcription factors.The
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secreted signaling proteins known as Sonic hedgehog (Shh),
Indian hedgehog (Ihh), and Desert hedgehog (Dhh) have evolved
from their original form in fruit flies, which only have one Hh
ligand, into three homologs in mammals [18]. It has recently been
discovered that the Smoothened (Smo) extracellular domain (ECD)
mutation is critical for controlling the location of Smo cilia and
high-level Hedgehog (Hh) signaling [19]. This mutation was
previously believed to be non-essential in vertebrates. It is crucial
to target Gli transcription factors for possible cancer therapeutics
because multiple studies have shown that their deregulation in
stem or progenitor cells can initiate carcinogenesis [20]. The work
conducted by Alexandre et al. shown that Ci acts as a
transcriptional activator in the Hh pathway, since elevated Ci
levels can activate the patched gene (ptc) and other Hh target
genes even in the absence of Hh activity [21].
Furthermore, co-culture experiments with Ptch1 overexpression

and Ptch1 small interfering RNA (siRNA) transfected cells revealed
that Ptch1 can exert non-cell autonomous inhibition on Smooth-
ened (Smo) [22]. The transcriptional activation of the PTCH1 gene
within the Hh-signaling pathway relies on a single functional Gli-
binding site [23]. The Shh-Ptch1-Gli1 signaling pathway is
implicated in the development and progression of colorectal
tumors [24]. Gli proteins (GLI1, Gli2, and GLI3) bind in the PTCH1
promoter region to increase transcription. Strong suppression of
both baseline and induced PTCH1 transcription results also from
reduced GLI3 expression. As so, a single functional binding site for
Gli1 determines the transcriptional activation of the PTCH1 gene
mediated by the Hh signaling pathway [24].

This research revealed that the Hh signaling pathway activates
its cascade by inhibiting the secretion of 3β-hydroxysteroid (pro-
vitamin D3), which depends on Ptch1. This inhibition releases the
inhibitory effects on Smoothened (Smo) and the downstream
transcription factor Gli. This finding not only clarifies the contra-
dictory cause of Smith-Lemli-Opitz syndrome (SLOS) but also
confirms that Hh acts as a unique morphogen. Its binding to one
cell can activate Hh-dependent signaling cascades in other cells
[22]. Together, these studies highlight the complex and important
role of Hh signaling pathways in cell localization, gene regulation,
and disease mechanisms (Fig. 1).

HEDGEHOG SIGNALING PATHWAY IN CANCER
Ligands of Hedgehog signaling pathway in cancer
Sonic Hedgehog (SHH) is one of the three Hedgehog (Hh) ligands
and has been extensively studied for its crucial role in central
nervous system (CNS) development. It influences cell fate
determination, pattern formation, axon guidance, and the survival,
proliferation, and differentiation of neurons [25]. Therefore, many
neurological disorders are linked to disruptions in SHH signaling
pathways. Beyond its role in development and neurological
health, Shh also plays a important role to the occurrence and
development of cancer, such as lung [26],prostate [27], breast [28],
colon [29], ovarian [30], pancreatic [31], hepatocellular carcinoma
[32], bladder [33] and renal cell carcinoma [34]. In renal cell
carcinoma(RCC), Shh signaling plays a role in the progression of it,
along with epithelial-mesenchymal transition (EMT) [34]. Dormoy

Fig. 1 Normal activation mechanism of hedgehog signaling pathway. A Without HH ligand activation: Ptch1 inhibits Smo, preventing it
from translocating to the cilium. SuFu binds with Gli2/3 and moves into the cilium, where Gli2/3 is phosphorylated by CK1, PKA, and GSK3β,
causing Gli2/3 to separate from SuFu. Gli2 and Gli3 then cross the nuclear membrane into the nucleus, where they repress the transcription of
target genes, with Gli3 being the primary repressor. B With HH ligand activation: The HH secreting cell releases the HH ligand, activating Smo
and causing it to translocate to the cilium. SuFu binds with Gli2/3 and moves into the cilium, where Gli2/3 is phosphorylated by EVC and EVC2,
causing Gli2/3 to separate from SuFu. Gli3 remains in the cytoplasm, while Gli2 crosses the nuclear membrane into the nucleus, where it
initiates the transcription of target genes. Created with BioRender.com.
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et al. through two experimental methods, quantitative RT-PCR and
immunoblotting, observed that in RCC, even in most cases, the
von Hippel-Lindau (VHL) tumor suppressor gene was inactivated,
but SHH signaling pathway remained activated [35]., this indicates
the universality of the SHH signaling pathway in RCC. Moreover,
TGF-β1 can induce Shh signaling, which in turn enhances bladder
cancer cell migration, clonogenicity, and invasiveness by promot-
ing EMT and bladder cancer stemness [33]. Nedjadi et al. further
reported that high Shh expression is linked to lymph node
metastasis in bladder cancer [36], emphasizing the significance of
SHH signaling in cancer dissemination. And in breast cancer, Shh
overexpression is a key event, with Shh promoter hypomethyla-
tion and NF-κB upregulation responsible for the observed increase
in Shh expression [28]. In summary, the SHH signaling pathway is
not only essential for CNS development but also plays a universal
role in the progression of various cancers.
The Indian Hedgehog (IHH) gene, expressed in prehypertrophic

and hypertrophic chondrocytes, is crucial for endochondral
ossification, regulating chondrocyte differentiation, promoting
proliferation and modulating osteoblast function [37]. Moreover,
IHH has also been implicated in the development of cancer,
including pancreatic cancer [38], colorectal cancer [39], and
invasive ductal carcinoma of the breast [40]. In pancreatic cancer,
the expression of Ihh and its receptor is closely related to the
development of cancer. Relevant research shows that inhibiting
the Hedgehog signaling pathway significantly inhibited the
growth of pancreatic cancer cells [38], suggesting that abnormal
activation of Ihh signaling is involved in cancer progression.
Desert Hedgehog is a key signaling molecule that influences

gonadal development and plays an important role in testicular
development, particularly during the differentiation of testicular
mesenchymal stem cells into testosterone-secreting stromal cells
[41, 42]. In addition to affecting gonadal development, DHH is also
associated with the development of a variety of cancers.
Proliferation of mouse glioblastoma stem cells is associated with
inhibition of DHH-induced gamma-glutamyl cyclotransferase
knockdown [43], while plexiform neurofibromatosis is associated
with loss of Nf1 in DHH-expressing cells [44]. This suggests that
DHH plays an important role in the reproductive system and the
development of some tumors, as well as drug interventions
targeting DHH signaling pathways, may become potential
strategies for the treatment of cancer.

Receptor of Hedgehog signaling pathway in cancer
The Patched (Ptch) protein receptor plays an important role in the
regulation of the Hedgehog signaling pathway. It exists in two
forms, Ptch1 and Ptch2, both of which serve as primary binding
sites for the Sonic hedgehog (Shh) ligand [45]. Additionally, the
transmembrane protein Smoothened (Smo) is a key component of
this pathway. Normally, Patched inhibits Smoothened, preventing
the activation of the Hh signaling; however, in the absence of
Patched, Smoothened becomes structurally activated, which can
lead to tumor development [46].
In the Hh signaling pathway, Ptch1 is regard as the primary

regulator, but the concurrent loss of both Ptch1 and Ptch2 results
in more severe tumorigenesis than the loss of Ptch1 alone [47, 48],
highlighting the cooperative role of these two proteins in tumor
suppression. However, their expression patterns are not comple-
tely overlapping. PTCH2, which is mainly expressed in germ cells,
is located on chromosome 1p33-34. This chromosomal region is
often deleted in certain reproductive cell tumors, indicating that
PTCH2 may act as a tumor suppressor [49]. Furthermore, Ptch1
influences the intracellular positioning of cyclin B1, linking its
tumor-suppressive function to the regulation of cell division [8].
This function is particularly critical in tumor-associated precursor
cells found in nevoid basal cell carcinoma syndrome (NBCCS) [50].
In summary, Ptch1 and Ptch2 may play an important role in tumor
inhibition, and their functions overlap but are unique. These

findings provide valuable information for future cancer research
and treatment.

Transcription factors of Hedgehog signaling pathway
in cancer
The Gli family of transcription factors, comprising Gli1, Gli2, and
Gli3, plays distinct roles in the Hedgehog (Hh) signaling pathway.
Gli1 primarily functions as a transcriptional activator of down-
stream target genes. Gli2 and Gli3 have the opposite effect, Gli2
mainly activates gene transcription, while Gli3 mainly acts as a
repressor. A critical difference between Gli1 and Gli2 is Gli1’s
capability to counteract the repressive function of Gli3 [51]. Gli3
repressor formation and activation of Gli1 and Gli2 combine to act
on the cellular response to Hedgehog signaling [52, 53].
The dysregulation of the Hedgehog (Hh)-Gli signaling pathway

is increasingly recognized as a key factor in the development of
various human cancers, including basal cell carcinoma (BCC) [54],
medulloblastoma (MB) [55], and embryonal rhabdomyosarcoma
(eRMS) [56, 57], which are the three primary tumors associated
with Gorlin syndrome [58]. Additionally, Gli involvement has also
been observed in non-small cell lung cancer and many primitive
neuroectodermal tumors [59]. In Gli-related cancers, cell prolifera-
tion is enhanced through the Gli-dependent expression of cyclin
D1/D2 or N-myc proto-oncogenes [60]. But the Gli family does not
always act together on cancer cells, for example, nearly all BCCs
express Gli1, but not Gli3 or SHH, suggesting that Gli1, which
can be induced by SHH, may serve as the principal oncogenic
agent [61].

Crosstalk between Hedgehog signaling pathway and other
signaling pathways in cancer
There is substantial evidence of crosstalk between the Hedgehog
(Hh) signaling pathway and other key pathways in various tumor
types [62]. This interaction is particularly crucial in the resistance of
cancer stem cells (CSCs) to treatment [63]. Notably, both Notch
and HH pathways are concurrently activated in desmoid tumors
and mesenchymal cell lines derived from desmoid tumors [64].
Meanwhile, When Patched, a negative regulator of Hedgehog, is
disrupted in mice, it leads to the development of medulloblas-
toma with enhanced Notch signaling [65]. However, a mutually
exclusive relationship between the Hedgehog and Notch path-
ways has been observed in skin cancer [5]. This complex
interaction may depend on the specific tumor microenvironment.
In docetaxel-resistant prostate cancer cells, there is a notable lack
of differentiation markers accompanied by upregulation of both
the Notch and Hedgehog pathways [66]. Notch may inhibit
Hedgehog activity by suppressing Gli1 transcription through Hes1.
Targeting both pathways concurrently may offer a more effective
strategy for tumors cells [67].
Overexpression of Gli1 inhibits Wnt pathway activity, leading to

reduced nuclear β-catenin accumulation and decreased prolifera-
tion of AGS cells [68]. This crosstalk between the Hh and Wnt
pathways presents potential therapeutic opportunities for treating
gastric cancer. Notably, overexpression of ZnRF3 not only inhibits
Lgr5, a critical component of the Wnt pathway, but also
significantly reduces Gli1 expression, a key transcription factor in
the Hh pathway. These findings suggest that ZnRF3 suppresses
the proliferation of gastric cancer cells and induces apoptosis by
down-regulating both the Wnt and Hh pathways [69]. Such
crosstalk has also been identified as a crucial factor in the
recurrence, invasion, and metastasis of colon cancer [70].
Moreover, The RAS signaling pathway is intricately linked with

the Hedgehog (Hh) pathway in promoting cell proliferation and
survival, particularly in melanoma. This interaction is facilitated by
the regulation of Gli1’s nuclear localization and transcriptional
activity, which is crucial for cancer development [71]. In addition,
research has shown that activation of the RAS/MAPK pathway
(KRAS), through various upstream signals and converging at Gli

G. Cong et al.

3

Cell Death Discovery           (2025) 11:40 



transcription factors, plays an important role in the development
of pancreatic tumors [72]. In summary, crosstalk between the
Hedgehog signaling pathway and the RAS signaling pathway can
affect different tumors.

Abnormal activation of Hedgehog signaling pathway and
associated cancers
The abnormal activation of the Hedgehog (Hh) signaling pathway
not only accelerates the proliferation of cancer cells but also
maintains the population of cancer stem cells and cancer-
associated fibroblasts (CAFs) across a range of cancers, including
lung cancer [8]. As research progresses, the mechanisms of
abnormal Hedgehog (Hh) signaling pathway activation are now
categorized into four types: ligand-independent signaling, ligand-
dependent autocrine signaling, ligand-dependent Hh signaling in
a paracrine or reverse paracrine manner [12, 13] (Table 1).

Hh signaling of autonomous and ligand-independent types
Recent studies have shown that during both development and
tumorigenesis, the ligand-independent autocrine hedgehog
signaling pathway can induce the expression of Gli1 independent
of Hh/Smo signaling [73, 74]. This abnormal activation mechanism
influences the development of a variety of tumors, such as basal
cell carcinoma [75], medulloblastoma [76], meningiomas [77] and
Rhabdomyosarcoma [78] (Fig. 2).

Neoplasms of skin system
Ptch1 and Ptch2, both crucial in suppressing tumor growth in
basal cell carcinoma (BCC) cells. However, when both are targeted
at the same time, they can unexpectedly activate the Hedgehog
(Hh) signaling pathway without bounding ligand, which may act
promote tumor growth [48]. Additional evidence for the critical
role of activated Hh signaling in BCC development has been
obtained from genetic mouse models and skin grafting experi-
ments. Various methods have demonstrated the involvement of
Hh signaling in BCC formation. Heterozygous ptc+ /7 mice, when
exposed to UV irradiation, develop features similar to BCC,
although spontaneous BCC formation is rare in mice [75].
Additionly, grafting human keratinocytes expressing Sonic hedge-
hog (SHH) onto the backs of nude mice results in the formation of
BCC-like structures [79]. Moreover, overexpression of key Hh-
signaling mediators, including SHH, GLI1, GLI2, and an oncogenic
form of SMOH, in the epidermal cells of transgenic mice, leads to
the induction of BCC-like tumors [80]. The above conclusions can
prove that abnormal activation of HH signaling pathway plays an
important role in the development of BCC.

Nervous system neoplasms
Medulloblastoma (MB), one of the most prevalent malignant brain
tumors in children, originate from various distinct populations of
neural stem cells or progenitor cells during early development
[81]. It is categorized based on molecular and histological
characteristics into WNT-activated, SHH-activated TP53 wild type,
SHH-activated TP53 mutant, and non-WNT/non-SHH subgroups,
with the ‘SHH-activated’ group being driven by the activation of
the Hedgehog pathway, often associated with desmoplastic
histology [76, 82]. This group arises due to mutations in PTCH1,
SMO, and SUFU, or through the amplification of GLI1, GLI2,
CCND2, and N-MYC8. Among them, PTCH1 mutations is the most
frequent drivers of MB [83–87]. Common cytogenetic events in
this subgroup include the loss of chromosome 9q, which results in
the loss of heterozygosity of PTCH1, and the loss of chromosome
10q, leading to the loss of SUFU [88]. Moreover, SHH-MB
frequently exhibits recurring changes in the copy numbers of
genes involved in the p53 pathway. Disruption of p53 signaling
can result in issues with cell-cycle regulation, apoptosis, and DNA
repair [86]. The Hh pathway maintains cancer stem cell (CSC)
characteristics in MB through regulators like Nanog, which is

involved in the GLI gene family, and governs the self-renewal and
proliferation of cancer stem cells by downstream mediators such
as NFκB [89].

Soft tissue sarcoma
In Rhabdomyosarcoma (RMS), the Hedgehog (Hh) signaling
pathway is critically involved in the occurrence and development
of tumors. This involvement was first identified by Hahn et al. in
1998, who discovered that mice with partial inactivation of PTCH1
exhibited a higher incidence of embryonal RMS (ERMS), a specific
RMS subtype [90]. This early work suggested that the Hh pathway
might be a therapeutic target in RMS. Further research by
Almazań-Moga et al. demonstrated that down-regulation of IHH,
DHH, and GLI1 significantly reduced the expression of GLI1, GLI2,
and PTCH1. Notably, suppression of SHH did not affect GLI1 levels
but significantly lowered GLI2 and PTCH1 expression [78],
indicating that while SHH is present in a minor fraction of RMS
cell lines and tumors, IHH and DHH are the primary Hh ligands in
RMS. This research highlights the complexity of Hh signaling in
tumorigenesis and implies that targeted therapies against these
ligands may be more effective than those targeting SHH.

Ligand-dependent carcinogenic Hh signaling in
autocrine mode
Multiple studies have shown that the ligand-dependent autocrine
Hedgehog signaling pathway is overexpressed in a range of
tumors, such as those affecting the stomach [91], esophagus [92],
pancreas [13], colon [93], ovaries [94], uterus [95], breasts [96],
prostate [97], lungs [98], Bladder Cancer [99] and gliomas [100].

Digestive system neoplasm
The Hedgehog (Hh) signaling pathway plays a dual role in the
colonic epithelium, promoting Paneth cell differentiation and
regulating the development of colonic epithelial cells through
autocrine signals [96]. However, in colorectal cancer, the Hh pathway
is persistently activated through ligand-dependent mechanisms,
which can involve both canonical and non-canonical pathways. This
activation often leads to overexpression of Hedgehog/Gli compo-
nents, including Shh, PTCH1, SMO, and Gli [101–103]. Epigalloca-
techin gallate (EGCG) has been shown to inhibit colon tumor growth
by targeting the Shh and PI3K pathways, inducing apoptosis, and
reducing cancer cell migration and invasion. Thus, EGCG holds
potential as a chemotherapeutic agent for colorectal cancer [104],
suggesting its potential as a chemotherapeutic agent
Additionally, research by Huang et al. indicates that lymphatic

metastasis significantly contributes to colorectal cancer (CRC)
progression, with lymphangiogenesis in CRC being regulated by
pathways such as Sonic Hedgehog (Shh) signaling [105]. The
expression levels of Hh components may modulate the local
immune response and epithelial barrier integrity in CRC [106].
Additionally, a variant of the Hedgehog signaling pathway,
functioning independently of GLI, has been observed in cancer
organoids rich in CSCs, potentially sustaining the undifferentiated
state of these cells [107]. In vivo studies have confirmed the role of
the Hedgehog-GLI (HH-GLI) pathway in preserving the self-
renewal capacity of CSCs, including CD133+ colon CSCs [108].
These findings underscore the complexity of the Hh signaling
pathway in colon cancer and suggest that targeted therapies
against this pathway could be effective in treating CRC.
The Sonic Hedgehog (SHH) signaling system is a key factor in

the development of pancreatic cancer, influencing the tumor
microenvironment and encouraging the growth of cancer cells
[109]. According to research by Wang et al., tumor necrosis factor
alpha and interleukin-1 beta in stromal hyperplasia activate the
SHH pathway, which involves both canonical and non-canonical
processes, promoting the growth of pancreatic ductal adenocar-
cinoma [110]. The intricate relationship between the tumor and its
surroundings is highlighted by this activation.
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The epithelial-mesenchymal transition (EMT), a crucial step in the
early phases of pancreatic carcinogenesis that promotes cell
dispersion, is also connected to the activation of the Hedgehog
signaling system [111]. This implies that the Hedgehog signaling
pathway may be activated early in the development and spread of
pancreatic cancer. According to research by Kimberly Walter et al., the
Hedgehog receptor Smo was expressed more frequently in human
pancreatic cancer-associated fibroblasts (CAFs) than in normal
pancreatic fibroblasts. In CAFs, Smo activates Gli1 expression by
sending Sonic Hedgehog signals. Gli1 activation in these cells was
inhibited by Smo knockdown with short interfering RNA [112],
indicating the potential of targeting Smo as a therapeutic approach to
interfere with the pro-tumorigenic SHH signaling in the microenvir-
onment of pancreatic cancer. Further more, Jeng et al. have shown
that hypoxia can directly induce the Hh pathway in PDAC cells by
upregulating the transcription of Smoothened (Smo), independent of
ligand binding. This ligand-independent activation enhances the
invasiveness of PDAC cells [113]. Therefore, abnormal activation of
Hedgehog signaling pathway, both ligand-dependent and non-
ligand-dependent, has been implicated in the development of
pancreatic cancer and may be a potential target for its treatment.

Urogenital neoplasms
Originating from different paths, bladder cancer can be categor-
ized as non-muscle-invasive or muscle-invasive [114]. The Sonic
Hedgehog (Shh) molecule suppresses Ptch during urothelial
mesenchymal development, therefore activating the Gli transcrip-
tion factor in target cells. With mega bladder mgb−/− mutant
mice, DeSouza and colleagues examined Shh expression patterns
in both normal and aberrant bladder development. This work
revealed unique regional and temporal patterns of Shh signaling
components across bladder development [115]. By modifying or
eliminating particular cells, Shin et al. showed that muscle-invasive
bladder carcinomas develop only from Shh-expressing stem cells
in the basal urothelium [116]. This result offers a fresh viewpoint
for explaining the source of invading bladder cancer. Furthermore
linked to a range of cancer-promoted metabolic processes
including enhanced glycolysis, nucleotide metabolism, and amino
acid metabolism is raised activity of the Hedgehog signaling
pathway in bladder cancer [117]. Changes in these metabolic
pathways might give cancer cells the energy and biomacromo-
lecules they need to proliferate and survive, therefore promoting
cancer formation and spread.

Fig. 2 Autocrine of the hedgehog signaling pathway. A Ligand-Independent Activation: In this scenario, the HH pathway is activated
without the presence of the HH ligand. The Patched (Ptch) receptor is inactive, allowing the Smoothened (Smo) protein to remain active. This
leads to the activation of the Gli-A transcription factor, which then moves into the nucleus and promotes the transcription of target genes that
drive cancer cell proliferation. B Ligand-Dependent Activation: Here, the HH pathway activation depends on the presence of the HH ligand.
The HH ligand binds to the Ptch receptor, which results in the inhibition of Ptch activity. This inhibition allows Smo to activate, leading to the
activation of the Gli-A transcription factor. Gli-A then translocates to the nucleus and induces the expression of target genes involved in
cancer progression. Created with BioRender.com.

G. Cong et al.

6

Cell Death Discovery           (2025) 11:40 



Using Ptc1lacZ and Gli1lacZ reporter mice to trace Hedgehog
(Hh) pathway activation, Bushman et al., studying activation of the
Hedgehog (Hh) signaling pathway in the adult prostate, observed
rather rare and scattered epithelial staining in the adult prostate,
indicating that autocrine Hh pathway activation is limited to a
small subset of epithelial cells, particularly during prostate
development [118]. Although blocking Hh signaling can help to
lower tumor invasion and metastases, long-term suppression may
cause treatment resistance to develop [119]. Preclinical studies in
prostate cancer also support this. Autocrine signaling often
stimulates the route in prostate cancer [120], inting that blocking
this signaling system may not impair normal prostate develop-
ment but could improve the response to castration and impede
tissue regeneration when testosterone is reintroduced [118, 121].
Using GANT61 or genistein, an isoflavone present in soybeans,
inhibition of the Hh pathway essentially prevented tumor phere
and colony development [122]. This finding further confirms that
the Hh signaling pathway plays a key role in the maintenance of
prostate cancer stem cells.
In breast cancer, Hedgehog signaling has been shown to

promote early tumorigenesis by enhancing tumor cell prolifera-
tion [123] and play a vital role in the self-renewal and
differentiation of breast cancer stem cells [124]. Studies related
to breast cancer have shown that inhibition of Hh signaling in
MCF-7-derived CD44+/CD24− CSCs led to a reduction in cell
numbers, accompanied by downregulation of stem cell markers
such as OCT4, NESTIN, and NANOG. This suggests that Hh
signaling helps maintain a self-renewing profile in breast CSCs by
upregulating these key stem cell markers [125].

Ligand-dependent Hh signaling in paracrine or reverse
paracrine mode
Paracrine Hedgehog (Hh) signaling plays a crucial role in the
development and maintenance of various epithelial structures
[126]. In epithelial cancers such as lung [127], prostate [128], colon
[129], pancreatic [130], and ovarian [131] cancer without muta-
tions in the Hh pathway, tumor-expressed Hh ligands stimulate
tumor growth indirectly by activating Hh signaling in the
surrounding stroma. This activation creates a microenvironment
conducive to tumor progression [13] (Fig. 3).

Digestive system neoplasm
Research on ligand-dependent paracrine signaling has revealed
that pancreatic cancer development is much influenced by it.
Using a tissue-specific gene activation model, Marina et al. shown
how Hedgehog ligands contribute to tumor development [130].
Furthermore supporting paracrine signaling in pancreatic ductal
adenocarcinoma (PDA), in a Pdx1-Cre, LsL-KrasG12D, and Ink4a/
Arflox/lox transgenic mouse model [132]. Hedgehog ligands Using
a Ptc-LacZ reporter mouse, Hua et al. demonstrated via paracrine
processes that tumor-derived Hh ligands induce PDA [133]. These
results imply that Hh ligands not only function inside tumor cells
but also influence the surrounding cells and microenvironment,
hence promoting tumor growth. In animal studies, co-
implantation of paracrine Shh-activated cells also enhances tumor
cell invasion in the trunk, triggers nerve dysfunction, and
promotes orthotopic xenograft tumor development, metastases,
and perineural invasion [134]. These findings underline the several
functions of paracrine Shh signaling in pancreatic cancer
progression: tumor behavior linked with neurological dysfunction,
and tumor cell invasiveness and metastases promotion.
In colorectal cancer (CRC), tumor microenvironment is substan-

tially influenced by elevation of Hh ligand expression. Two ways
may be used to achieve this effect: paracrine support, in which
cancer cells secreted by them subsequently act on surrounding
cells, so influencing tumor development and invasion; or
autocrine action, in which case Hh ligands act directly on the
ligand-producing cancer cells themselves, so contradicting

paracrine action and resulting with different biological effects
[135, 136]. New understanding of the function of the Hh signaling
pathway in CRC is offered by the work of Marco Gerling et al.
Reduced activation of the Hh signaling system, they discovered,
helps colorectal cancer linked with colitis in a mouse model
develop. This implies that under some conditions the Hh signaling
pathway might be inhibitory for intestinal inflammation and
tumor formation. Nevertheless, the Hh signaling pathway was able
to stop tumor formation when it was especially triggered in
stromal cells of the tumor microenvironment [137]. This implies
that the type of cell where the Hh signaling pathway activates
determines the complicated function of the system in CRC.

Urogenital neoplasms
Paracrine Sonic hedgehog (Shh) signaling drives osteoblast
development in the bone microenvironment in metastatic
settings, therefore enabling prostate cancer spread [138, 139].
Furthermore underlining the complex functions of paracrine
signaling in prostate cancer progression is SEMA3C-induced
androgen production in prostatic stromal cells [140]. Recent
studies highlight the complex roles of paracrine Hedgehog
signaling in both cancer and non-cancerous settings, therefore
impacting different biological processes and tumor microenviron-
ment. Paracrine Hh signaling affects epithelial ductal development
in prostate cancer, presumably mediated by interactions of
complex tissue microenvironment [128]. Moreover, Hh-driven
steroidogenesis by stromal cells in prostate cancers may help
tumor development and progression to a castration-resistant
state [141].

Hedgehog pathway inhibitor in cancer therapy
Inhibitors targeting the Hedgehog pathway have shown promis-
ing outcomes in clinical trials, with ongoing evaluations.
Vismodegib (GDC-0449), an orally administered inhibitor of the
Hedgehog signaling pathway targeting SMO protein, has pro-
gressed furthest in clinical development. Initial trials in basal cell
carcinoma and medulloblastoma have demonstrated significant
efficacy and safety [142]. In January 2012, vismodegib became the
first FDA-approved drug targeting the Hedgehog (Hh) pathway,
based on favorable results from phase I and II trials showing its
effectiveness against basal cell carcinoma (BCC) [143]. GDC-0449 is
a low molecular weight inhibitor of the tumor-promoting hedge-
hog (Hh) signaling pathway, and the ability of GDC-0449 and
related compounds to inhibit two key ABC transporters may
contribute to its effectiveness in treating malignant tumors [144].
Sonidegib, as an smo inhibitor, has shown sustained efficacy and a
manageable safety profile in the treatment of patients with
advanced basal cell carcinoma [145]. This approval marks a
significant advance for Hh signaling pathway inhibitors in the
treatment of basal cell carcinoma and provides a new therapeutic
option for other potential indications.
Inhibitors that target the Hedgehog (Hh) signaling pathway

have shown potential in clinical trials to inhibit tumor growth and
metastasis. To be specific, Arsenic compounds like sodium
arsenite, arsenic trioxide (ATO), and phenylarsine oxide (PAO)
effectively inhibit the response of the Sonic hedgehog (Shh)
amino-terminal domain (ShhN). Arsenic trioxide (ATO) specifically
targets GLI1 levels by binding to the GLI1 protein, thereby
suppressing its transcriptional activity and reducing expression of
endogenous GLI target genes. This mechanism leads to significant
inhibition of human cancer cell growth and tumor development in
animal models [146, 147]. Moreover, Cyclopamine, another
inhibitor, disrupts Hedgehog signaling in vertebrate animals by
binding to the seven-helical receptor of the Smoothened (Smo)
protein. In vitro studies demonstrate that cyclopamine inhibits cell
proliferation and alters gene expression patterns associated with
neuronal differentiation, showing promise in preclinical models of
medulloblastoma [148, 149].
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Cancer stem cell self-renewal is under control by the SHH/SMO/
GLI signaling system. Targeting these cancer stem cells efficiently
requires combining SHH signaling inhibitors with chemotherapy,
radiation treatment, or immunotherapy [150]. Inoscavin A causes
death dependent on Smo, the central Hedgehog pathway
receptor. On the other hand, upregulating Smo expression
reduces Inoscavin A’s dead effects on cells [151].
Garcinone C modulates non-canonical Hedgehog signaling path-

ways involving Gli1 to show effectiveness in preventing colon tumor
development [152]. Based on the Sonic hedgehog (Shh) binding ring
(HHIP), Owens et al. developed a cyclic peptide and carried out
several rounds of affinity maturation screening for big cyclic peptide
libraries generated in E. coli cells. We obtained an optimal macrocyclic
peptide inhibitor (HL2-m5) using this approach which essentially

inhibits SH-mediated hedgehog signaling pathway and GliL-regulated
gene transcription in living cells [153]. Lea et al. detailed how cell
screening helped to identify HH-pathway modulator Pipinib. Pipinib
specifically inhibits phosphatidylinositol 4-kinase IIIβ (PI4KB) and
reduces Glib-mediated transcription and Hh target gene expression
by means of SMO translocation to cilia [154]. Thus, another route to
limit SMO activity and Hedgehog signaling could be blocking PI4KB,
so lowering phosphatidyl4-phosphate levels. Targeting glioma-
associated oncogene homologous protein (gli), GANT61 is the first
and most often utilized inhibitor of Hedgehog (Hh) signaling pathway
[155]. Novel HH inhibitor with considerable potential in the treatment
of hematological malignancies HH78 competitively binds to SMO and
suppresses GLI transcriptional activity [156]. These investigations
taken together expose a set of molecules that block the Hh signaling

Fig. 3 Paracrine of the hedgehog signaling pathway. A Paracrine Signaling: Stroma cells release HH ligands (SHH, IHH, DHH), which bind to
the Ptch1 receptor on the cancer cell. This binding inhibits Ptch1, allowing Smo to become active. Active Smo leads to the activation of Gli
transcription factors (Gli-A), which then translocate into the nucleus to promote the transcription of target genes. B Reverse Paracrine
Signaling: Cancer cells release HH ligands (SHH, IHH, DHH), which bind to the Ptch1 receptor on the stroma cell. This binding inhibits Ptch1,
allowing Smo to become active in the stroma cell. Active Smo then leads to the activation of Gli transcription factors (Gli-A), which then
translocate into the nucleus to promote the transcription of target genes. Created with BioRender.com.

G. Cong et al.

8

Cell Death Discovery           (2025) 11:40 



pathway via several channels. These inhibitors might become a major
part of cancer treatment since a better knowledge of the function of
the Hh signaling system in tumor formation helps to guide treatment
(Table 2).

CONCLUSION AND FUTURE DIRECTIONS
During development, the Hedgehog (Hh) signaling pathway is
essential for controlling tissue patterning, cell differentiation, and
proliferation. The pathophysiology of many cancers is primarily linked
to dysregulation of the Hh signaling system. A thorough grasp of the
subtleties of Hh pathway activation, including both autocrine and
paracrine pathways, is essential for the effectiveness of targeted
cancer therapies.Current therapeutic approaches, such as the use of
Smoothened (Smo) inhibitors, have shown promise in the face of
obstacles such drug resistance. Identifying new therapeutic targets
within the Hh pathway and clarifying the interactions between Hh
signaling and other cellular signaling pathways should be the main
goals of future research projects. Advances in this field could greatly
increase the effectiveness of cancer treatment plans and provide
patients suffering from Hh pathway-associated tumors fresh hope.
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