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ABSTRACT

Angiogenesis is an important event in the development of allergic inflammation as well as 
in the pathophysiology of tissue remodeling in asthma. Increased angiogenesis is a well-
documented feature of airway remodeling in asthma. Angiogenesis refers to the formation 
of new blood vessels from pre-existing endothelium. Angiogenesis can be initiated by 
endogenous angiogenic factors released from mesenchymal cells or inflammatory cells. 
Under physiological conditions, angiogenesis is controlled by an equilibrium between pro-
endogenous and anti-endogenous angiogenic factors released from the extracellular matrix 
to become bioavailable. The presence of increased size and number of bronchial blood 
vessels indicates that angiogenesis plays a crucial role in tissue growth and remodeling in 
asthma. However, the diagnostic significance of circulating angiogenic factors in asthma 
remains unclear. This review summarizes the role of angiogenesis in airway remodeling in 
asthma, and the potential diagnostic implications of circulating angiogenetic factors.
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INTRODUCTION

Asthma is an important non-communicable disease affecting people of all ages and 
represents a major global health problem. It is a heterogeneous disease characterized 
by chronic airway inflammation. Dysregulated immune and inflammatory pathways 
ultimately affect lung tissue cells, causing the cardinal features of asthma, including airway 
inflammation and hyperreactivity.1 Asthma manifests symptoms such as wheezing, chest 
tightness, coughing, and shortness of breath, resulting from factors including airway 
inflammation, bronchoconstriction, hyperresponsiveness, and airway remodeling.1 Initially, 
the key feature of asthma was known as the constriction of airway smooth muscle (ASM) 
due to excessive airway responsiveness to external stimuli. Currently, it is recognized that 
airway inflammation is a cardinal feature of asthma, along with structural changes in the 
airways and lungs known as airway remodeling.1 The main pathology of asthma includes 
wall remodeling and lumen narrowing,2,3 with the involvement of small airways increasingly 
recognized, particularly in severe asthma.4,5
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Angiogenesis or the increased size and numbers of bronchial blood vessels is the essential 
component of tissue growth and remodeling in asthma.6 Angiogenesis is initiated by 
endogenous angiogenic factors released from mesenchymal cells or inflammatory cells.7 
Under physiological conditions, angiogenesis is controlled by an equilibrium between pro-
endogenous and anti-endogenous angiogenic factors that are released from the extracellular 
matrix to become bioavailable.7 Angiogenesis is an important event in the development 
of allergic inflammation and the pathophysiology of tissue remodeling in asthma,7 with 
increased angiogenesis being a well-documented feature of airway remodeling.8-10

This review summarizes the role of angiogenesis in airway remodeling in asthma, and the 
potential diagnostic implication of circulating angiogenetic factors.

AIRWAY REMODELING IN ASTHMA

Airway remodeling involves hypertrophy and hyperplasia of ASM cells, leading to reduced 
lung function and recurrent exacerbations.11 The pathophysiology of asthma encompasses a 
multifaceted interplay of molecular and cellular components, including cytoskeletal proteins 
and inflammatory mediators.12-14

Airway remodeling, a crucial phenomenon in respiratory diseases such as asthma, 
entails structural changes in the airway that profoundly impact pathological alterations 
and disrupt normal physiological functions. These structural changes include epithelial 
damage, increased number of goblet and mucus cell causing excessive mucus production, 
subepithelial fibrosis leading to increased airway rigidity, ASM hypertrophy leading to 
heightened airway constriction, and structural modifications in airway vasculature.15,16

Angiogenesis, a critical component of airway remodeling, contributes to chronic 
inflammation by creating a network of blood vessels that facilitates eosinophil migration 
into the bronchial mucosa.17 Angiogenesis plays a pivotal role in asthma progression, and 
analyzing its association with clinical outcomes could improve understanding of asthma 
endotypes and aid in identifying novel therapeutic targets and biomarkers.

Invasive methods offer valuable insights into structural alterations occurring in the airways 
but are often accompanied by ethical and practical challenges.18 Recently, non-invasive 
approaches, including a computed tomography (CT) scan and biomarker-based methods, 
have been used to evaluate airway remodeling. CT scans assess airway parameters including 
bronchial wall thickness, luminal diameter, lumen area, wall area, total area, and the 
percentage of wall area to total area (WA/TA or wall area %). These parameters can be 
correlated with lung function, making it a valuable tool for assessing airway remodeling.19-21

BIOMARKERS IN ASTHMA

Until now, various biomarkers of asthma have been identified (Table 1). Airway inflammation 
in eosinophilic asthma can be indicated by sputum eosinophilia, determined by an eosinophil 
count exceeding 2%–3% of the total cells in sputum samples.22 Because sputum induction 
and quantification are complex and time-consuming processes, researchers are increasingly 
focusing on alternative diagnostic biomarkers linked to eosinophilic inflammation. 
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Eosinophilic asthma is often indicated by peripheral blood eosinophil counts frequently 
linked to the severity of asthma exacerbations.23,24 Interestingly, eosinophil counts in the 
sputum strongly correlate with those in the blood. Elevated levels of eosinophil-derived 
neurotoxin and eosinophil peroxidase were observed, exhibiting a significant correlation with 
symptom severity scores (P < 0.0001) and eosinophil counts (P < 0.0001). These findings 
indicate the activation of eosinophilic biomarkers in individuals with eosinophilic asthma.25,26 
In addition to evaluating sputum and blood/serum eosinophil counts, they can be assessed by 
eosinophils in bronchoalveolar lavage fluid (BALF) or biopsies of the airway mucosa. Elevated 
fractional exhaled nitric oxide (FeNO) levels, particularly those exceeding 25 parts per billion 
(ppb), are indicative of eosinophilic airway inflammation and can predict responsiveness 
to corticosteroids.27 A meta-analysis has shown that FeNO demonstrates fair accuracy 
and sensitivity in diagnosing asthma.28 Recent insights suggest that combining FeNO 
levels with blood eosinophil counts can further optimize asthma management.27 Exhaled 
breath condensate offers a noninvasive method for assessing severe eosinophilic asthma 
by measuring compounds such as cysteinyl leukotrienes and volatile organic compounds, 
which correlate with asthma exacerbations.29,30 Standardizing collection methods and 
validating analysis techniques are needed for broader application. The progression of 
eosinophilic asthma results in significant changes in the composition of urine metabolites.31 
Bromotyrosine (BrTyr) and other urinary markers have been identified as valuable indicators 
of the disease progression. Notably, elevated BrTyr levels were a significant predictor of 
asthma exacerbation at follow-up, with participants exhibiting a 4.0-fold increased risk 
of exacerbation during the follow-up period (95% confidence interval, 1.1–14.7; P = 0.03) 
compared to those with lower BrTyr levels.25 These markers not only offer insights into 
the progression of eosinophilic asthma but also serve as important tools for assessing the 
efficacy of steroid therapy.32
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Table 1. Biomarkers in asthma
Biomarker Sample Associated asthma endotype References
EDN Sputum, blood T2-high 25
EPO Blood T2-high 26
FeNO Exhaled breath T2-high 27,28
CysLTs Exhaled breath T2-high 29
VOCs Exhaled breath Not determined 30
Bromotyrosine Urine T2-high 31
miRNAs Bronchoscopy T2-high 33,34,35
Periostin Sputum, blood T2-high 36,37
Siglec-8 Sputum, exhaled breath T2-high 38
CD11b Blood T2-high 39
CD62L Sputum, blood T2-high 39
CD69 Blood T2-high 39
CX3CR1 Blood T2-high/T2-low 39
B7-2/CD86 Blood T2-high 39
IL-6TS Sputum T2-low 40
TSLP Blood T2-high 41
Nectin-4 Blood, tissue T2-high 43
Claudins Blood, tissue T2-high 44,45
JAM-A Blood, tissue T2-high 46
Fibronectin Blood T2-high 47
Collagen types I, III, and V Bronchial biopsy T2-high 47
Laminin Tissue, blood T2-high 47
Tenascin Blood T2-high 47
Versican Tissue, BAL fluid T2-low 47
Annexin Blood, tissue T2-high 48
EDN, eosinophil-derived neurotoxin; EPO, eosinophil peroxidase; CysLT, cysteinyl leukotriene; VOC, volatile 
organic compound; miRNA, micro RNA.



Genetic markers and proteomic studies of airway tissues are unveiling potential therapeutic 
targets and elucidating the underlying molecular landscape of asthma.33 MicroRNAs 
(miRNAs) play a significant role in Th2-driven airway inflammation in eosinophilic asthma. 
A wide range of miRNAs, including miR-21, miR-135a, miR-142, miR-143, miR-146b, miR-
193b, miR-223, miR-365, miR-375, miR-452, and miR-1165-3p, have been implicated in this 
process.33 Analysis of miRNA-338 and miRNA-145 in sputum samples effectively distinguishes 
patients with severe eosinophilic asthma from those with chronic obstructive pulmonary 
disease (COPD).34 Also, miRNA-338-3p has emerged as a promising early biomarker for 
predicting response to reslizumab and mepolizumab treatments in severe eosinophilic 
asthma.35 Profiling these miRNAs can aid in distinguishing severe asthma patients from 
healthy individuals and in predicting responses to treatment.33 Periostin plays a crucial 
role in tissue remodeling and inflammation and has emerged as a potential diagnostic 
and prognostic biomarker for asthma. Elevated serum periostin levels and increased 
bronchial epithelial cell proliferation are linked to frequent asthma exacerbations and 
persistent eosinophilic airway inflammation, even with corticosteroid treatment. Periostin 
is released in response to interleukin (IL)-4 and IL-13 signaling, and therapies targeting 
these pathways have been shown to reduce periostin levels.36 Specific treatments such as 
omalizumab, Lebrikizumab, and Tralokinumab have effectively decreased periostin levels in 
the airways, suggesting their potential role in managing asthma-related tissue remodeling 
and inflammation.36,37 Siglec-8, a surface molecule expressed on eosinophils, correlates with 
eosinophilic airway inflammation when measured in sputum or exhaled breath.38 Markers of 
eosinophil activation, such as CD11b, CD62L, CD69, CX3CR1, and B7-2/CD86, could provide 
real-time information about ongoing inflammation and serve as prognostic biomarkers due 
to their increased expression upon eosinophil activation.39 Elevated IL-6 trans-signaling 
levels offer insights into asthma, including eosinophilia, phenotypic differences, and 
increased immune cell infiltration in the airway submucosa.40 Elevated levels of mast cell 
tryptase in severe asthma patients indicate its significance, particularly when combined with 
thymic stromal lymphopoietin and blood eosinophil count, in assessing exacerbation risks.41

The airway epithelium in asthmatic individuals undergoes significant phenotypic alterations, 
leading to a loss of epithelial integrity through epithelial shedding and increased mucus 
production via mucous gland hyperplasia.42 The bronchial epithelial cells collectively create 
a selective permeability barrier that regulates fluid loss, prevents pathogen entry, and curbs 
inappropriate immune responses in the subepithelial lung mucosa.43 Many studies have 
also revealed structural alterations in the airway epithelium of asthmatic patients, including 
disruption of tight and adherens junctions. Plasma proteins of cell barrier proteins, such 
as JAM-A, Claudins and Nectin-4, were related to the exacerbation of asthma and chronic 
obstructive lung disease.43-46

A notable and frequent characteristic of asthmatic airway remodeling is the thickening of the 
ASM layer. Abnormal thickening of the ASM layer with increased deposition of fibronectin, 
collagen types I, III, and V, laminin, tenascin, and versican, annexin has been observed in 
patients with mild to severe and fatal asthma in several studies.42,47,48

Proteomic analysis offers a roadmap for identifying potential biomarkers associated with 
eosinophilic asthma.42 Imaging biomarkers and artificial intelligence, in conjunction with 
cluster analyses, could enhance the effectiveness of models that determine responses to 
specific biologic therapies.49
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ANGIOGENESIS IN ASTHMA

Although numerous asthma biomarkers have been identified (Table 2), research on 
angiogenesis remains limited. One feature central to the pathophysiology of this respiratory 
condition is the increased microvascular network within the asthmatic airway wall. 
Studies suggest that increased blood flow to the airway tissue promotes a chronic influx of 
inflammatory mediators, abnormal cell growth and proliferation, and thickening of the airway 
wall, all of which contribute to the pathophysiology of asthma.50,51 The abnormal expansion of 
the vascular network has been reported in a series of publications which identified increased 
blood vessel numbers, vessel density (number of vessels/mm2) and percentage vascular area in 
the sub-epithelial space, including the lamina propria and submucosa, of asthmatic airways.52 
Given that vascular remodeling is a critical component in the pathophysiology of asthma, 
this process needs to be addressed in the therapeutic management. Neovascularization and 
vascular leakage are commonly observed in asthma53; consequently, the blood vessels in the 
asthmatic lung exhibit characteristics similar to the dysfunctional, permeable vessels found in 
tumors.54 Thus, the same anti-angiogenic strategies may provide new avenues for combating 
the angiogenic component of airway remodeling associated with asthma.

Vascular endothelial growth factor (VEGF) is a key pro-angiogenic factor that plays a critical 
role in vascular remodeling, inflammation, and increased blood vessel permeability.55 VEGF 
levels were elevated in induced sputum and biopsy specimens from asthma patients, with 
VEGF mRNA-expressing cells in the airway mucosa correlating with vascular permeability and 
airway hyperresponsiveness.55,56 Asthmatic serum, sputum, BALF and airway tissue showed 
increased levels of the pro-angiogenic factor VEGF-A compared to non-asthmatic controls.57 
VEGF-A stimulated vascular network expansion, vasodilation, and plasma leakage.58 
VEGF-A together with IL-8 could be used as diagnostic biomarkers of Asthma-COPD overlap 
syndrome.59 Interestingly, asthma treatments with budesonide, montelukast, and diosmetin 
attenuated the expression of VEGF. These findings suggest that targeting VEGF could offer 
therapeutic benefits in asthma management.60 BALF from asthmatic patients exhibits pro-
angiogenic properties, including increased levels of pro-angiogenic mediators.56 Many pro-
inflammatory mediators increased in asthma, including transforming growth factor (TGF)-β, 
fibroblast growth factor-2 and matrix metalloproteinases (MMPs), also have pro-angiogenic 
properties.61 They can stimulate quiescent vascular expansion or increase endothelial cell 
permeability, either by direct contact or indirectly through the stimulation of inflammatory 
and accessory cells.62 The pilot study demonstrated that serum levels of MMP-1 and TGF-β1 
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Table 2. Angiogenesis markers in asthma
Biomarker Sample Associated asthma endotype References
VEGF Sputum, tissue T2-high 55,56
VEGF-A Sputum, blood, BAL fluid T2-high 57,58,59
TGF-β Blood, tissue T2-low 61,62
FGF-2 Sputum, BAL fluid T2-high 61
MMPs Sputum, blood, BAL fluid T2-low 61,62
SDF-1 Tissue, blood, BAL fluid T2-high 63
Angiopoietin-1 Sputum, blood T2-high 64,65,66
Angiopoietin-2 Sputum, blood T2-high 64,65,66
SOX18 Blood T2-high 67
Angiomotin Blood, tissue T2-high/T2-low 68,69
Angiostatin Blood, tissue T2-high/T2-low 68,69
VEGF, vascular endothelial growth factor; TGF, transforming growth factor; FGF, fibroblast growth factor; MMP, 
matrix metalloproteinase; SDF, stromal cell-derived factor.



are significantly elevated in individuals with chronic asthma, suggesting their potential utility 
as adjunct biomarkers for differentiating between moderate and severe forms of the disease.62 
Increased vascularity of the bronchial mucosa in asthmatic subjects is closely related to the 
expression of stromal cell-derived factor (SDF)-1, a member of the chemokine family with both 
angiogenic and angiostatic properties.63 SDF-1 is released at concentrations 15 times higher 
in the BALF of asthma patients compared to healthy subjects. This chemokine correlated 
with cell recruitment within asthmatic airways.63 SDF-1 release from asthmatic airways may 
contribute to increased airway vascularity and decline in lung function.63

Previous studies have demonstrated the physiologic roles of angiopoietin-1 and 
angiopoietin-2 as regulatory factors in airway microvascular phenomena. The finding that 
levels of angiopoietin-1 and angiopoietin-2 in induced sputum were significantly higher in 
asthmatic patients than in healthy control subjects suggests dysregulated vascular function 
in the airways of individuals with asthma.64,65 Regression analysis showed a significant 
positive association between angiopoietin-1, angiopoietin-2, and eosinophil counts in severe 
refractory asthma.66 This dysregulation could potentially contribute to increased permeability 
of blood vessels in the airway, which may exacerbate inflammation and other asthma-related 
symptoms. SOX18, a transcription factor, participates in various physiological processes, 
including endothelial cell differentiation in the formation of new blood vessels. Plasma 
SOX18 increased more during exacerbation than in stable state, suggesting its association 
with asthma exacerbation related to angiogenesis and airway remodeling.67 Moreover, we 
reported that angiomotin and angiostatin exhibit distinct functions in angiogenic signaling 
associated with the pathogenesis of asthma.67,68 Angiomotin and angiostatin, when analyzed 
together, represents important parameters for distinguishing between stable and exacerbated 
states in asthma patients, demonstrating greater effectiveness than either biomarker alone.68 
These results suggest that they could serve as potential biomarkers and offer possibilities for 
the development of asthma therapeutics.68,69

Circulating vasoactive factors may provide insights into disease development and novel 
therapeutic strategies in asthma (Figure).70,71 Interestingly, some studies suggest that 
anti-VEGF monoclonal antibodies shows potential for asthma treatment.58,72 Despite these 
insights, there are no widely used pharmacological agents specifically targeting angiogenesis 
in asthma. This presents several challenges, including an incomplete understanding of 
underlying mechanisms, difficulty identifying effective targets, potential side effects of 
angiogenesis inhibition, and the inherent heterogeneity among asthma patients. However, 
targeting angiogenesis remains a promising therapeutic strategy for asthma, highlighting the 
need for further investigation in this field.

CONCLUSION

Angiogenesis, the formation of new blood vessels from existing ones, is a process not 
exclusive to asthma. To address the issue of specificity, researchers and clinicians should 
adopt a broader approach by combining angiogenic biomarkers with asthma-specific 
factors, such as eosinophil counts, immunoglobulin E levels, or Th2 cytokines (e.g., IL-4, 
IL-13). Additionally, assessing local angiogenesis in the airways through bronchial biopsies 
or imaging could help develop more targeted treatments that focus on the fundamental 
mechanisms of angiogenesis in asthma, distinguishing it from the systemic inflammation 
observed in other diseases.
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