
Forder et al. 
Diagnostic and Prognostic Research             (2025) 9:3  
https://doi.org/10.1186/s41512-024-00178-0

RESEARCH Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Diagnostic and
Prognostic Research

Models for predicting risk of endometrial 
cancer: a systematic review
Bea Harris Forder1, Anastasia Ardasheva1, Karyna Atha1, Hannah Nentwich1, Roxanna Abhari1 and 
Christiana Kartsonaki2*   

Abstract 

Background Endometrial cancer (EC) is the most prevalent gynaecological cancer in the UK with a rising incidence. 
Various models exist to predict the risk of developing EC, for different settings and prediction timeframes. This system-
atic review aims to provide a summary of models and assess their characteristics and performance.

Methods A systematic search of the MEDLINE and Embase (OVID) databases was used to identify risk prediction 
models related to EC and studies validating these models. Papers relating to predicting the risk of a future diagnosis 
of EC were selected for inclusion. Study characteristics, variables included in the model, methods used, and model 
performance, were extracted. The Prediction model Risk-of-Bias Assessment Tool was used to assess model quality.

Results Twenty studies describing 19 models were included. Ten were designed for the general population and nine 
for high-risk populations. Three models were developed for premenopausal women and two for postmenopausal 
women. Logistic regression was the most used development method. Three models, all in the general population, 
had a low risk of bias and all models had high applicability. Most models had moderate (area under the receiver oper-
ating characteristic curve (AUC) 0.60–0.80) or high predictive ability (AUC > 0.80) with AUCs ranging from 0.56 to 0.92. 
Calibration was assessed for five models. Two of these, the Hippisley-Cox and Coupland QCancer models, had high 
predictive ability and were well calibrated; these models also received a low risk of bias rating.

Conclusions Several models of moderate-high predictive ability exist for predicting the risk of EC, but study quality 
varies, with most models at high risk of bias. External validation of well-performing models in large, diverse cohorts 
is needed to assess their utility.

Registration The protocol for this review is available on PROSPERO (CRD42022303085).

Keywords Endometrial cancer, Risk prediction, Early detection

Introduction
Endometrial cancer (EC) is the most common gynaeco-
logical cancer in the UK and the eighth most common 
cause of cancer death in UK females, causing around 
2500 deaths annually [1]. Globally, in 2019, there were 
435,041 new cases of EC [2]. The rate of EC is increasing 
in many countries and across all age groups [3]; indeed, it 
is estimated that EC cases may reach 600,000 in 2044 [2]. 
This rise in cases is likely explained by increases in the 
prevalence of obesity and other factors that increase the 
risk of developing EC [4].
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EC typically presents early due to the malignant process 
within the endometrium causing abnormal uterine bleed-
ing. Whilst postmenopausal bleeding (PMB) is sensitive 
for EC (detecting around 90% of postmenopausal cases) 
[5], it is not specific; the prevalence of EC in women with 
PMB is only around 9% [6]. Other symptoms may present 
in the later stages. Reflecting its often early presentation, 
EC typically has a good prognosis; however, high-grade 
and serous subtypes have a much poorer prognosis [7, 8].

The presentation of EC in premenopausal women is 
harder to discern, due to the physiological circulation of 
reproductive hormones. In this population, it may cause 
menorrhagia, intermenstrual bleeding, and changes 
in discharge, all of which could be explained by benign 
pathologies.

EC diagnosis may include a combination of transvagi-
nal ultrasound scan, hysteroscopy, and endometrial sam-
pling in a single hospital visit; however, these invasive 
procedures can be associated with severe pain for some 
women and moderate pain for most [9]. The non-spe-
cific nature of the typical presenting symptoms results in 
many women with benign conditions undergoing inva-
sive testing [10].

There are a number of established risk factors for EC; 
the most important of which is adiposity which leads to 
conversion of androgens by aromatase in adipocytes to 
oestrogen [11], which subsequently exerts proliferative 
effects on the endometrium. Insulin activates the same 
pro-proliferative signalling pathways as oestrogen; hence, 
conditions in which insulin is dysregulated, such as dia-
betes mellitus (DM) and polycystic ovarian syndrome 
(PCOS), also carry the risk for EC [12]. Other oestrogenic 
risk factors include oestrogen-only HRT [13], tamox-
ifen [14], early menarche [15], and late menopause [16], 
whilst parity is a protective factor [17]. Certain genetic 
syndromes are also associated with EC. Lynch syndrome 
is caused by germline mutations in DNA mismatch repair 
genes MSH2, MSH6, MLH1, PMS2, or EPCAM, with a 
risk of EC of up to 54% by the age of 70 [18], as well as an 
elevated risk of colorectal and ovarian cancer. Lynch syn-
drome is rare and causes approximately 3% of EC cases 
[19]. Cowden syndrome is very rare, with an estimated 
incidence of around 1 in 200,000 [20], mainly caused by 
pathogenic germline PTEN mutations, and carries a high 
risk of EC, breast, thyroid, kidney cancers, and mela-
noma. The lifetime risk of EC in Cowden syndrome has 
been estimated to be 28% [21].

Risk prediction models can be used to estimate an 
individual’s probability of developing cancer. They can 
be useful when clinicians need to estimate a person’s 
risk when considering how urgently a patient should 
be further assessed and considering a differential diag-
nosis. Models could also prove to be a good adjunct to 

streamline the decision-making regarding which women 
end up undergoing biopsy, allowing more informed clini-
cal decisions to be made prior to progressing to investi-
gation. Moreover, models could identify women in whom 
lifestyle adjustments should be encouraged, to reduce the 
risk of EC development. A need for such models has been 
highlighted: a 2016 gap analysis [22] identified a key area 
in EC research is the development of risk-scoring systems 
for EC and a stratification system for women with abnor-
mal vaginal bleeding to determine who needs referral for 
secondary investigations.

Several risk prediction models for EC have been devel-
oped, but as of yet, no summary of available models 
predicting future EC risk exists. This systematic review 
summarises risk prediction models for EC, the variables 
they include, and their performance, with the aim of 
identifying models with strong performance, and those 
which can be used in practice settings with different lev-
els of resources. A summary of these models would be 
useful in external validation and would allow them to be 
further adapted to improve their predictive ability. This 
carries the potential for utilisation in predicting future 
EC in symptomatic and asymptomatic women.

Methods
The MEDLINE and Embase (OVID) databases were 
searched from inception to the 29th of January 2022, 
identifying articles on ovarian, endometrial/uterine, 
cervical, vaginal, and vulvar cancers, the risk prediction 
models related to these cancers and validation studies 
testing these models (see PROSPERO CRD42022303085). 
Here we only consider endometrial cancer models, with 
other gynaecological cancers considered in other papers. 
The search (Appendix S1) was subsequently re-run on 
the 20th of January 2023 and the 3rd of December 2023 
in order to identify studies published between the search 
dates. To be included, papers had to be written in the 
English language. Conference papers and abstracts, as 
well as studies assessing performance of diagnostic tools 
and techniques, were excluded. We did, however, include 
studies which aimed to predict short-term risk of endo-
metrial cancer, for example, diagnosis over the next 
1–2 years. Prior to the final analysis, the references of 
included articles and reviews were searched for inclusion.

Title and abstract screening and full-text screening 
were performed independently by two reviewers (AA/
BF, CK) using Rayyan, after excluding duplicates, with 
disagreements settled by discussion. Data extraction was 
performed independently by two reviewers (BF, KA/HN) 
and extracted data were then consolidated. The extracted 
data included study information, study design, the size 
and type of population, the variables included in the risk 
models, and measures of model performance including 
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the area under the receiver operating characteristic curve 
(AUC) as a measure of discrimination, sensitivity, speci-
ficity, positive predictive value (PPV), negative predic-
tive value (NPV), and measures of calibration such as the 
Brier score, Hosmer–Lemeshow statistic, Goodness of Fit 
χ2 statistic, and the ratio of observed to expected cases. 
In cases where models provided calibration plots but not 
statistics, the original authors’ judgement of the calibra-
tion plots was extracted.

The Prediction Model Risk Of Bias Assessment Tool 
(PROBAST) [23] was used to assess the risk of bias and 
applicability of models. This tool assesses four domains 
for potential risk of bias: participants, predictors, out-
come, and analysis. In general, this tool assigns a low risk 
of bias rating to studies which use a robust study design, 
clearly define outcomes, predictors, and time frame and 
validate their models, and provide acceptable measures 
of discrimination and calibration. Regarding the latter, 
whilst Hosmer–Lemeshow statistics were extracted; they 
were not deemed an acceptable measure of calibration, 
and hence, papers reporting this as their sole measure of 
calibration could not receive a ‘low’ risk of bias rating in 
the analysis domain. Three domains of applicability are 
assessed: participants, predictors, and outcome. A high 
applicability is assigned to papers whose study popula-
tion, variables incorporated, and outcomes are in line 
with the scope of the review question. For each domain, 
studies were rated as having a ‘high’, ‘low’, or ‘unclear’ 
risk of bias or a ‘high’, ‘low’, or ‘unclear’ concern regard-
ing applicability. The tool was used independently by 
two authors (BF, KA/HN), with discrepancies in these 
domains resolved by discussion.

The PRISMA reporting guidelines were followed 
throughout the process of reporting this systematic 
review.

Results
Model characteristics
The initial search and two subsequent updates of this, for 
risk prediction models spanning ovarian, endometrial/
uterine, and cervical cancers, identified 6494 titles after 
the removal of duplicates. One hundred and twenty-
three studies were selected for full-text screening and 
were subsequently split by cancer type; this paper only 
discusses those including EC, with 20 papers [24–43] 
on EC selected for inclusion (eFigure 1). Baak et al. [41] 
is a validation study of a model proposed in one of their 
earlier papers [43]; hence, the total number of mod-
els assessed was 19. Table  1 provides a summary of the 
included studies including descriptions, locations and 
population types, and study type. Six of the studies were 
from the UK [29, 31, 33, 37, 38, 40], with others from the 
US [25, 28, 39], Norway [26, 41], Taiwan [30], India [32], 

Italy [34], the Netherlands [41, 43], and Sweden [42]. One 
of the studies was based both in the Netherlands and 
Norway [41]. Some utilised data from large multi-centre 
cohort studies: two used data from the European Pro-
spective Investigation into Cancer and Nutrition (EPIC) 
cohort [35, 36] comprised of ten European countries; one 
was part of the FORECEE (4C) programme [24] which 
is based in five European countries and another utilised 
data from the Epidemiology for Endometrial Cancer 
Consortium (E2C2) [28]. Ten models were developed 
in the general population [24, 28, 29, 31, 33, 35–39] and 
nine in a high-risk population [25–27, 30, 32, 34, 41–43]. 
High-risk individuals were defined as having abnormal 
uterine bleeding [25, 27, 32, 34, 40], endometrial hyper-
plasia [26, 30, 41, 43], or on the basis of having received a 
referral to gynaecological oncology [42]. Fourteen mod-
els were developed for use in all women [24, 26, 27, 29–
31, 33, 35–39, 42, 43], with three models developed for 
premenopausal women [30, 34, 37, 38], and two for post-
menopausal women [28, 40]. The number of EC cases 
used in model development varied from 3 [34] to 6949 
[37]. Four models explicitly stated a time frame for risk 
prediction [30, 36–38]. Although studies did not always 
make the time frame over which they predict future risk 
clear, reported outcomes ranged from a 2-year risk [38] 
to a lifetime risk of developing EC. Three models, Baak 
et al. [43], Burbos et al. [40], and Hippisley-Cox and Cou-
pland [38] predicted risk over a shorter time (< 4 years), 
whilst other models predicted risk over longer periods.

Model development
Logistic regression, with various regularisation tech-
niques, was the most commonly used method [24, 26–29, 
32, 34, 35, 38, 40], followed by Cox regression [33, 36, 37, 
39].  One study,  Hutt et  al. [31], used a neural network 
model incorporating medical and lifestyle factors.

The variables included in the risk prediction mod-
els were grouped into the following categories: age, 
demographic and lifestyle, reproductive history, 
comorbidities, genetics, investigation findings and 
associated symptoms, and others. Tables  2 and 3 pro-
vide a summary of the variables included in the dif-
ferent models in general and high-risk populations, 
with Fig.  1 showing the number of models using each 
variable. Demographic and lifestyle information was 
used most commonly, with 13 models including either 
BMI, smoking, or both [25, 27, 28, 31, 32, 34–40, 42]. 
The least utilised category was reproductive history, 
which was used by six models. No model included vari-
ables from all six categories. Four models used varia-
bles from five of the categories [27, 30, 37, 38]. Three 
models included variables from four categories [32, 40, 
42], each including age, demographic and lifestyle, and 
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investigation findings and associated symptoms. Three 
models included variables from three categories: Bea-
vis et al. [25] from age, demographic and lifestyle, and 
comorbidity; Hutt et  al. [31] from demographic and 
lifestyle, reproductive history, and comorbidity; and 
Giannella et  al. [34] from demographic and lifestyle, 
comorbidity, and investigation findings and associated 
symptoms. Three of the papers included variables from 
two categories: [35, 36, 39] demographic and lifestyle, 
and reproductive history. Six models utilised variables 

from only a single category [24, 26, 29, 30, 33, 43], most 
commonly genomic-related information (for example 
SNVs, CpG methylation, and miRNA expression); [24, 
29, 30, 33] two models, Baak et  al. [43] and Rewcastle 
et al. [26] were developed based on histological findings 
of endometrial biopsy [26, 43].

Risk of bias and applicability in the general population
The risk of bias and applicability of the risk prediction 
models were assessed using the PROBAST tool (Table 4). 
Of the ten models designed for use in the general 

Table 1 Summary of included studies

a Details provided in eTable 1

Author(s), year Model name (if applicable) Model description Location Study type

General population
 Barrett et al. 2023 [24] WID-EC Classifier index based 

on ridge and lasso regres-
sion

Europe (FORECEE 
programme)a

Development and validation

 Shi et al. 2023 [28] Logistic regression US Development and validation

 Bafligil et al. 2022 [29] Polygenic risk score UK Development and validation

 Hutt et al. 2021 [31] Neural network UK Development and validation

 Choi et al. 2020 [33] Cox regression includ-
ing polygenic risk scores

UK (UK Biobank) Development only

 Fortner et al. 2017 [35] Conditional logistic regres-
sion

Europe (EPIC Cohort)a Development and validation

 Hüsing et al. 2016 [36] Cox regression Europe (EPIC Cohort)a Development and validation

 Hippisley-Cox and Coup-
land 2015 [37]

QCancer® 10-year risk algorithms 
based on Cox proportional 
hazard models

UK Development and validation

 Hippisley-Cox and Coup-
land 2013 [38]

QCancer® Multinomial logistic 
regression-based

UK Development and validation

 Pfeiffer et al. 2013 [39] Cox regression-generated 
absolute risk scores

US Development and validation

High-risk population
 Beavis et al. 2023 [25] Multivariate Poisson regres-

sion
US Development only

 Rewcastle et al. 2023 [26] ENDOAPP Logistic regression Norway Development only

 Ruan et al. 2023 [27] Multivariate logistic regres-
sion

China Development and validation

 Lin et al. 2022 [30] Measures the levels 
of different miRNAs, used 
solely and in combination 
with PTEN loss

Taiwan Development and validation

 Bagepalli Srinivas et al. 
2020 [32]

PAD30 Score based on variables 
identified by multivariate 
regression analysis

India Development and validation

 Giannella et al. 2019 [34] Multivariate logistic regres-
sion

Italy Development only

 Burbos et al. 2010 [40] Norwich DEFAB risk assess-
ment tool

Logistic regression UK Development only

 Baak et al. 2001 [41] D-Score External validation of their 
previously described 
D-score

Netherlands, Norway Validation only

 Dahlgren et al. 1989 [42] Linear model Sweden Development only

 Baak et al. 1988 [43] D-Score Linear model Netherlands Development only
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population, three models were deemed to be at low risk 
of bias. These were both the Hippisley-Cox and Cou-
pland QCancer models [37, 38] and Hüsing et  al. [36]. 
These models were developed in large populations with 
appropriate study design, and the studies included either 
internal or external validation and presented relevant 
measures of model performance, that is discrimination 
and calibration. Barrett et al. [24], Shi et al. [28], Bafligil 
et al. [29], and Hutt et al. [31] all received a rating of high 
risk of bias in the participants domain for being based 
on a case–control study design. Hutt et al. [31] and Choi 
et al. [33] received a high risk of bias rating in the analysis 
domain. In the case of Hutt et  al. this was due to inap-
propriate treatment of continuous variables, whilst Choi 
et al. were penalised for not including validation or cali-
bration. Fortner et al. [35] received an unclear risk of bias 
rating, as whilst they included 1000-fold bootstrapped 
internal validation they did not include a measure of 
calibration. All models except Shi et al. [28], the QCan-
cer models [37, 38], and Hüsing et  al. [36] received an 
unclear risk of bias rating for the outcome domain due to 
not explicitly stating a time frame of risk prediction [39].

All models in the general population received a rat-
ing of low concern for applicability as the participants, 

predictors, and outcomes of each of them were felt to be 
within the scope of the review question.

Risk of bias and applicability in the high-risk population
Of the nine models developed for high-risk populations, 
none received a rating of a low risk of bias [25–27, 30, 
32, 34, 41–43]. All received a rating of high risk of bias 
in the analysis domain, due to inappropriate handling of 
continuous or categorical predictors, failing to include 
both validation and calibration, or having events (in this 
case number of EC cases) per variable of less than ten. 
Giannella et al. [34] developed their model with the low-
est number of cases, with only three EC cases. Ruan et al. 
[27], Lin et al. [30], Bagepalli Srinivas et al. [32], Giannella 
et  al. [34], and Baak et  al. [43] all also received a rating 
of high risk of bias for participants. Two of the models 
were developed for use in premenopausal women: Bage-
palli Srinivas et al. [32] and Giannella et al. [34], both had 
included endometrial thickness as a variable and were 
rated as having a high risk of bias in the predictors’ 
domain due to the fluctuations in endometrial thickness 
throughout the menstrual cycle making this an unreli-
able predictor. Ruan et al. [27] received a rating of unclear 
risk of bias in the predictors’ domain due to ambigu-
ity in how and when their predictors were assessed. No 

Fig. 1 Frequency of variable use
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model received a rating of low risk of bias in the outcome 
domain, with most receiving an unclear rating for not 
stating a time frame of risk prediction, with the exception 
of Rewcastle et al. [26] and Baak et al. [41] who received 
high risk of bias rating.

Similarly to the models in the general population, all 
models in the high-risk populations received a rating of 
low concern regarding applicability, as they were deemed 
to have participants, predictors, and outcomes that fit 
with the review question.

Performance of models developed in the general 
population
The predictive ability of all included models is sum-
marised in Table  5. Ten models were developed for use 
in the general population [24, 28, 29, 31, 33, 35–39]. Of 
these, eight provided measures of discrimination in the 
form of an AUC [24, 31, 33, 35–39]. Three models had 
a high AUC (> 0.80). Barrett et al. [24] reported an AUC 
of 0.92 (95% CI 0.88–0.97) in internal validation in a 

retrospective case–control sample, whilst prospective 
external validation yielded an AUC of 0.82 (95% CI 0.74–
0.89). The models in Hippisley-Cox and Coupland’s [37, 
38] papers performed similarly, with AUCs of 0.83 (95% 
CI 0.82–0.84) and 0.910 (95% CI 0.90–0.93) respectively 
in internal validation. Shi et  al. [28], Fortner et  al. [35], 
Hüsing et al. [36], and Pfeiffer et al. [39] reported moder-
ate AUCs (ranging between 0.60 and 0.80). Shi et al. [28] 
provide AUCs ranging from 0.64 to 0.69 for their epide-
miological model and 0.61 to 0.67 for their epidemio-
logical and genetic model. Fortner et  al. [35] described 
two models, with AUCs of 0.69 95% CI 0.64–0.73) for 
model 1 and 0.68 (95% CI 0.64–0.72) for model 2. Hüsing 
et  al. [36] reported an AUC of 0.77 (95% CI 0.68–0.85) 
and Pfeiffer et al. [39] included an AUC of 0.68 (95% CI 
0.66–0.70). The other two models designed for use in 
the general population that assessed model discrimina-
tion reported AUCs that suggest poor predictive ability 
(< 0.60). These were Bafligil et al. [29] who reported AUCs 
ranging between 0.53 and 0.56 in external validation, and 

Table 4 PROBAST  assessmenta for included studies

a PROBAST prediction model risk of bias assessment tool, ROB risk of bias

The positive symbol “ + ” indicates low-risk ROB/concern regarding applicability; the negative symbol “ − ” indicates high ROB/concern regarding applicability; the 
question mark “?” indicates unclear ROB/concern regarding applicability

Author(s), year ROB Applicability Overall

Participants Predictors Outcome Analysis Participants Predictors Outcome ROB Applicability

General population
 Barrett et al. 2023 [24] -  + ? ?  +  +  + -  + 

 Shi et al. 2023 [28] -  +  +  +  +  +  +  +  + 

 Bafligil et al. 2022 [29] -  + ? ?  +  +  + -  + 

 Hutt et al. 2021 [31] -  + ? -  +  +  + -  + 

 Choi et al. 2020 [33]  +  + ? -  +  +  + -  + 

 Fortner et al. 2017 [35]  +  + ? ?  +  +  + ?  + 

 Hüsing et al. 2016 [36]  +  +  +  +  +  +  +  +  + 

 Hippisley-Cox and Coupland 2015 
[37]

 +  +  +  +  +  +  +  +  + 

 Hippisley-Cox and Coupland 2013 
[38]

 +  +  +  +  +  +  +  +  + 

 Pfeiffer et al. 2013 [39]  +  + ?  +  +  +  +  +  + 

High-risk population
 Beavis et al. 2023 [25] -  + ? -  +  +  + -  + 

 Rewcastle et al. 2023 [26]  +  + - -  +  +  + -  + 

 Ruan et al. 2023 [27] - -  + -  +  +  + -  + 

 Lin et al. 2013 [30] -  + ? -  +  +  + -  + 

 Bagepalli Srinivas et al. 2020 [32] - - ? -  +  +  + -  + 

 Choi et al. 2020 [33]  +  + ? -  +  +  + -  + 

 Giannella et al. 2019 [34] - - ? -  +  +  + -  + 

 Burbos et al. 2010 [40]  +  + ? -  +  +  + -  + 

 Baak et al. 2001 [41] -  + - -  +  +  + -  + 

 Dahlgren et al. 1989 [42] ?  + ? -  +  +  + -  + 

 Baak et al. 1988 [43] ?  + ? -  +  +  + -  + 
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Table 5 Performance of the endometrial cancer risk prediction models

Author(s), year Development
population 
size (n)

Development 
population age 
(range and/or 
mean (SD))

Validation
population 
size (n)

Validation 
population age 
(range and/or 
mean (SD))

Model performance

Discrimination 
(AUC (95% CI))

Calibration Other metrics

General population
 Barrett et al. 
2023 [24]

1086 (217 EC 
cases)

Internal valida-
tion
289 (64 EC cases)
Prospective exter-
nal validation
150 (54 EC cases)

Internal valida-
tion
0.920 [0.880–
0.970]
Prospective exter-
nal validation
0.82 [0.74–0.89]

WID-EC ≥ 0.14:
Sensitivity 86%
Specificity 95%
Internal validation
WID-EC ≥ 0.14:
Sensitivity 86%
Specificity 90%
Prospective exter-
nal validation
WID-EC ≥ 0.14:
Sensitivity 52%
Specificity 98%

 Shi et al. 2023 
[28]

15,727 (6665 EC 
cases)

63.1 (EC cases)
62.8 (control)

NHS
68,150
NHS II
56,076
PLCO
30,102

External valida-
tion
Epidemiologic 
model
NHS 0.65 
[0.63–0.67]
NHS II 0.69 
[0.66–0.72]
PLCO 0.64 
[0.61–0.66]
Epidemiologic 
and genetic 
model
NHS 0.61 
[0.57–0.66]
PLCO 0.67 
[0.64–0.69]

Epidemiologic 
model
NHS
E/O ratio 0.55 
[0.51–0.59]
Hosmer–Leme-
show statistic 
151.7 (p < 0.001)
Goodness of fit 
χ2 33.0 (p < 0.001)
NHS II
E/O ratio 1.09 
[0.98–1.22]
Hosmer–Leme-
show statistic 
14.2 (p = 0.165)
Goodness of fit 
χ2 15.3 (p = 0.084)
PLCO
E/O ratio 1.04 
(0.95–1.13)
Hosmer–Leme-
show statistic 
21.3 (p = 0.019)
Goodness of fit 
χ2 20 (p = 0.018)
Epidemiologic 
and genetic 
model
PLCO
E/O ratio 0.94 
(0.85–1.03)
Hosmer–Leme-
show statistic 
20.5 (p = 0.025)
Goodness of fit 
χ2 27.6 (p = 0.001)
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Table 5 (continued)

Author(s), year Development
population 
size (n)

Development 
population age 
(range and/or 
mean (SD))

Validation
population 
size (n)

Validation 
population age 
(range and/or 
mean (SD))

Model performance

Discrimination 
(AUC (95% CI))

Calibration Other metrics

 Bafligil et al. 
2022 [29]

1752 (555 EC 
cases)

62.23 (EC cases)
59 (control)

118,636 (1676 
EC cases)

61 (EC cases)
55 (control)

PRS19 0.59 
[0.56–0.61]
PRS24 0.55 
[0.52–0.58]
PRS72 0.57 
[0.54–0.60]
External valida-
tion
AUC:
PRS19 0.56 
[0.54–0.57]
PRS24 0.53 
[0.52–0.54]
PRS72 0.54 
[0.52–0.55]

 Hutt et al. 
2021 [31]

1200 External validation
Accuracy 98.6%
Sensitivity 75%
Specificity 98.78%

 Choi et al. 
2020 [33]

214,435 (629 EC 
cases)

0.56 [0.54–0.58]

 Fortner et al. 
2017 [35]

716 (247 EC 
cases)

57 1000 
boostrapped 
samples

Model 1 0.69 
[0.64–0.73]
Model 2 0.68 
[0.64–0.72]

 Hüsing et al. 
2016 [36]

208,811 (855 EC 
cases)

50 0.77 [0.68–0.85] E/O ratio 0.99

 Hippisley-Cox 
and Coupland 
2015 [37]

2,495,899 (6949 
EC cases)

25–84
44.6 [15.9]

822,359 44.1
[15.9]

Internal valida-
tion
0.83 [0.82–0.84]

Plot of mean 
predicted risks 
and observed 
risks at 10 
years by tenth 
of predicted risk 
Interpretation: 
‘well calibrated’

Internal validation
Sensitivity 42.6%
Specificity 90.1%

Hippisley-Cox 
and Coupland 
2013 [38]

1,240,864 (1015 
EC cases)

25–89
50.3 [17.5]

667,603 50.1
[17.4]

Internal valida-
tion
0.91 [0.90–0.93]

Plot of mean 
predicted risks 
and observed 
risks at 10 
years by tenth 
of predicted risk 
Interpretation: 
‘well calibrated’

 Pfeiffer et al. 
2013 [39]

146,679 (1559 EC 
cases)

37,241 0.68 [0.66–0.70] E/O ratio 1.20 
[1.11–1.29]

High-risk population
 Beavis et al. 
2023 [25]

3175

 Rewcastle 
et al. 2023 [26]

363 24–88
51

0.77 [0.66–0.79] XR scanner
Sensitivity 50%
Specificity 92%
PPV 0.38
NPV 0.95
S60 scanner
Sensitivity 42%
Specificity 96%
PPV 0.52
NPV 0.94



Page 12 of 18Forder et al. Diagnostic and Prognostic Research             (2025) 9:3 

Table 5 (continued)

Author(s), year Development
population 
size (n)

Development 
population age 
(range and/or 
mean (SD))

Validation
population 
size (n)

Validation 
population age 
(range and/or 
mean (SD))

Model performance

Discrimination 
(AUC (95% CI))

Calibration Other metrics

 Ruan et al. 
2023 [27]

1369 468 0.84 [0.80–0.87]
External valida-
tion
0.91 [0.88–0.94]

Plot of predicted 
and observed 
frequencies
Development
Mean absolute 
error 0.005
Interpretation 
‘good’
Validation
Mean absolute 
error 0.053
Interpretation 
‘acceptable’

Lin et al. 2022 
[30]

119 (25 EC cases) miR-30a-3p 0.62 
[0.48–0.77]
miR-141 0.75 
[0.63–0.87]
miR-200a 0.78 
[0.66–0.91]
miR-200b 0.70 
[0.56–0.85]

miR-30a-3p
Sensitivity 60%
Specificity 67.4%
miR-141
Sensitivity 48%
Specificity 96.6%
miR-200a
Sensitivity 60%
Specificity 100%
miR-200b
Sensitivity 56%
Specificity 89.9%
PTEN
Sensitivity 52%
Specificity 100%
miR-
30a-3p + PTEN
Sensitivity 50%
Specificity 98.9%
miR-141 + PTEN
Sensitivity 50%
Specificity 100%
miR-200a + PTEN
Sensitivity 76%
Specificity 100%
miR-
200b + PTEN
Sensitivity 60%
Specificity 100%

 Bagepalli 
Srinivas et al. 
2020 [32]

236 (14 EC cases) 236 (14 EC 
cases), validated 
via split sam-
pling

Internal valida-
tion
0.85 [0.75–0.93]

Internal validation
PAD30 ≥ 5
Sensitivity 85.7%
Specificity 87.6%
PPV 0.306
NPV 0.989

 Giannella et al. 
2019 [34]

240 (3 EC cases) 0.85 [0.80–0.90] ET > 11
Sensitivity 75%
Specificity 90.79%
PPV 0.300
NPV 0.986
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Choi et al. [33] whose model had an AUC of 0.56 (95% CI 
0.54–0.58).

Five models included measures of calibration: Shi et al. 
[28] tested their epidemiological model in the NHS, 
NHS II, and PLCO cohorts. They reported poor calibra-
tion in the NHS, with an expected-to-observed ratio of 
0.55 (95% CI 0.51–0.59, suggesting a lack of fit. The epi-
demiological model was better calibrated in the NHS II 
cohort, with an expected-to-observed ratio of 1.09 (95% 
CI 0.98–1.22). The expected-to-observed ratio of 1.04 
(95% CI 0.95–1.13) in the PLCO cohort suggested that 
the epidemiological model was well-calibrated, with a 
slight overestimation of outcomes. For the epidemiologi-
cal and genetic model, measures of calibration were only 
provided from the PLCO cohort, with the expected-to-
observed ratio of 0.94 (95% CI 0.85–1.03) suggesting a 
slight under-prediction.

Hüsing et  al. [36] reported a ratio of expected-to-
observed cases of 0.99, indicating good calibration. Pfeiffer 
et  al. [39] also provided a ratio of expected-to-observed 
cases of 1.20 (95% CI 1.11–1.29), suggesting their model 
tends to overpredict. For both of their models, Hippisley-
Cox and Coupland [37, 38] provided calibration plots of 
mean predicted risks and observed risks at 10 years by 
tenths of predicted risk. In both papers they interpreted 
these plots as showing the models to be well calibrated.

Performance of models developed in high-risk populations
Nine models were designed to predict EC in a high-risk 
population [25–27, 30, 32, 34, 40, 42, 43]. Three had a 
high AUC: Ruan et al. [27], Giannella et al. [34] and Bage-
palli Srinivas et  al. [32], and Ruan et  al. [27] externally 
validated their model by testing it in patients from a dif-
ferent time period from the development patients from 
their dataset, reporting AUCs of 0.91 (95% CI 0.88–0.94) 
in external validation and 0.84 (95% CI 0.80–0.87) in 
development. Giannella et  al. [34] had an AUC of 0.85 
(95% CI 0.80–0.90) and Bagepalli Srinivas et  al. [32] 
had an AUC of 0.85 (95% CI 0.75–0.93). Three studies 
reported moderate AUC, with AUC for different miRNAs 
ranging from 0.78 (95% CI 0.66–0.91) to 0.62 (95% CI 
0.48–0.77) in Lin et al. [30]. Rewcastle et al. [26] reported 
an AUC of 0.77 (95% CI 0.66–0.79), whilst Burbos et al. 
[40] reported an AUC of 0.77.

Of the models designed for high-risk populations, only 
one, Ruan et al. [27], provided a measure of calibration. 
They included plots of predicted and observed frequen-
cies for both development and validation cohorts, with 
mean absolute errors of 0.005 and 0.053 respectively, 
interpreting these as showing ‘good’ calibration in devel-
opment and ‘acceptable’ calibration in validation.

Table 5 (continued)

Author(s), year Development
population 
size (n)

Development 
population age 
(range and/or 
mean (SD))

Validation
population 
size (n)

Validation 
population age 
(range and/or 
mean (SD))

Model performance

Discrimination 
(AUC (95% CI))

Calibration Other metrics

 Burbos et al. 
2010 [40]

3,047 (149 EC 
cases)

Overall DEFAB
0.77
DEFAB ≥ 3 0.66
DEFAB ≥ 5 0.71

DEFAB ≥ 3
Sensitivity 81.9%
Specificity 67.8%
PPV 0.0778
NPV 0.982
DEFAB ≥ 5
Sensitivity 67.8%
Specificity 74.1%
PPV 0.119
NPV 0.978

 Baak et al. 
2001 [41]

132 Internal validation 
of [43]
Accuracy 86%
D ≤ 0 vs > 1: 
Sensitivity 100% 
Specificity 82% 
PPV 0.380
NPV 1.00

 Dahlgren et al. 
1989 [42]

1579 (170 EC 
cases)

 Baak et al. 
1988 [43]

2652 (480 EC 
cases)

Abbreviations: AUC  area under the receiver-operator curve, E/O ratio expected to observed ratio, PPV positive predictive value, NPV negative predictive value, SD 
standard deviation
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Discussion
In this review, we have identified and analysed 20 papers 
[24–43] on 19 EC risk prediction models. Most models 
had a moderate (AUC 0.60–0.80) or high discriminative 
ability (AUC > 0.80). Analysis of the risk of bias using 
the PROBAST tool found three models to be rated as 
low risk. All three were designed for the general popula-
tion. All models included in the study had low concern 
regarding applicability as their participants, predictors, 
and outcomes were appropriate for the review question. 
Of the models with an overall low risk of bias, the Hip-
pisley-Cox and Coupland QCancer models had the best 
performance, with high AUCs of 0.83 and 0.91 and good 
calibration [37, 38]. Hüsing et al. [36] reported a moder-
ate AUC of 0.77 for their model, which was also well-cali-
brated with an expected-to-observed ratio of 0.99.

The most commonly used method of model devel-
opment was logistic regression. This may be due to its 
appropriateness given the study designs used, simplic-
ity, and interpretability; however, this binary approach 
may fail to fully capture the temporal aspect of EC, as we 
know cancers develop slowly, over years. Perhaps time-
to-event models such as Cox regression (which was used 
by four models) in prospective studies could offer a bet-
ter understanding of EC risk, especially when consid-
ering the time until an event occurs. Efforts should be 
made to compare these types of model development in 
an EC risk prediction setting to determine differences in 
their performance. These models could also be compared 
with more novel approaches, including machine learning 
methods, to guide future model development.

One of the main issues regarding EC diagnosis is the 
high sensitivity but low specificity of abnormal bleeding 
for EC [10]. According to the 2015 NICE guidelines, last 
updated in February 2021 [44], any woman over 55 with 
postmenopausal bleeding is referred via the 2-week-wait 
pathway for suspected cancer and is offered an endome-
trial biopsy.

Models designed for the primary care setting like those 
described by Hippisley-Cox and Coupland [37, 38] are 
therefore perhaps the most applicable and useful, as they 
do not require endometrial tissue and demonstrate good 
discrimination based on symptoms easily identified in 
primary care without the need for invasive testing. These 
models are developed using electronic records from pri-
mary care settings, which can be heterogeneous between 
practices due to factors such as different practice poli-
cies and coding systems. As a result, model variables 
may reflect symptoms and diagnoses that are commonly 
recorded by the practices included. Whilst the Hippis-
ley-Cox and Coupland models perform well in external 
validation in a different UK cohort [37, 38], validation in 

a non-European cohort may demonstrate the utility of 
these models in different populations.

Risk of bias
The PROBAST tool [23] provides firm conditions for 
the ratings of risk of bias and applicability of models. 
In particular, if a model receives a rating of high risk of 
bias in a single domain, the overall rating must be high 
risk. Fourteen models were assigned a high or unclear 
risk of bias under the analysis domain [24–27, 29–35, 40, 
42, 43]. This was common because they did not report 
on one or both of discrimination and calibration, their 
ratio of model variables to EC cases was less than 10 in 
the development papers (or they included fewer than 100 
EC cases in the validation cohorts), or they handled con-
tinuous variables inappropriately. Studies were also com-
monly penalised in the participants’ domain, often due to 
having a case–control design, with 12 studies receiving a 
rating of high or unclear risk of bias in this domain. Most 
models received an unclear risk of bias rating for out-
comes, due to failing to specify their time frame of risk 
prediction.

In PROBAST, applicability refers to how relevant to 
the review question the participants, predictors, and 
outcomes of the models are. All models included were 
deemed to have low concern regarding applicability, 
which may reflect the broad scope of the review question.

PROBAST does not explicitly consider model gener-
alisability. Two of the models, Shi et al. [28] and Pfeiffer 
et  al. [39] were designed specifically for white women. 
These models reported moderate-low discrimination, 
but this may be lower if the models were to be applied 
to women of all ethnicities. An essential area for future 
development of EC risk models is validation in diverse 
cohorts including different ethnic backgrounds, to assess 
whether models can be used in different populations. It 
has been shown that women of different ethnicities have 
different risks of EC [45]. This could highlight a need for 
population-specific model adaptations, as, for example, 
factors affecting the likelihood of EC development such 
as parity, HRT use, combined oral contraceptive pill use, 
and obesity vary largely between countries and cultures.

High-risk populations
High-risk populations were defined as including women 
with abnormal uterine bleeding [27, 32, 34, 40], endome-
trial hyperplasia [26, 30, 41, 43], or those who had been 
referred to gynaecological oncology [42]. In order to 
define women as high-risk on the basis of having endo-
metrial hyperplasia, they would have had to first undergo 
an ultrasound scan. These are typically only offered 
to women presenting with abnormal bleeding; hence, 
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papers defining women as high-risk based on endome-
trial hyperplasia are likely to sample only a small propor-
tion of women, those with concurrent symptoms. This 
method of recruitment is used in Bagepalli Srinivas et al. 
[32] and Giannella et al. [34] meaning they possibly both 
are susceptible to such sampling bias. Of the nine models 
developed in high-risk populations, all had a high risk of 
bias in the ‘analysis’ domain. Three reported high AUCs, 
0.91 for Ruan et al. [27], 0.85 for Giannella et al. [34], and 
0.85 Bagepalli Srinivas et  al. [32]. Giannella et  al. and 
Bagepalli Srinivas et al. were intended for use in premen-
opausal women. Giannella et  al. included endometrial 
thickness of greater than 11 mm in the model. The util-
ity of endometrial thickness as a risk factor in premeno-
pausal women is unclear, as endometrial thickness can 
exceed 11 mm during the luteal phase of the menstrual 
cycle [46]; therefore, external validation of this model 
would be important to assess its performance.

Overall, the QCancer models [37, 38] emerged as the 
most promising models, because they demonstrated 
a high AUC, good calibration, and low risk of bias, and 
are likely to be the most applicable due to their targeted 
use in primary care. Additionally, both papers use large 
development and validation cohorts. The other models 
with high AUC typically required more invasive test-
ing or were ranked with a high risk of bias. Both of the 
QCancer models [37, 38] predict risk over a short-term 
period (2 and 5 years) as opposed to lifetime risk, hence 
perhaps may be more useful in informing care decisions 
rather than in motivating lifestyle changes.

Interestingly, many models were missing established 
risk factors. Only two models included a family history 
of cancer [27, 37], and no models included genetic syn-
dromes associated with EC, such as Lynch syndrome, 
which underlies 3% of EC cases [19]. Further, women 
with Lynch syndrome often undergo preventative sur-
gery such as hysterectomy with salpingo-oophorectomy. 
Development of risk models for this group of women 
could help with decision-making regarding these proce-
dures and their optimum timings to delay early meno-
pause and prolong childbearing potential, whilst avoiding 
the development of EC. It has also been suggested that 
BRCA1 may be associated with EC [47]; however, this 
may be due to its strong association with breast cancer 
and hence tamoxifen use. Of the papers screened for 
eligibility, tamoxifen use was only included in a single 
model, Kitson et al. [48], which consists of a total score 
calculated by combining obesity, reproductive, insulin, 
and genetic sub-scores. This model is currently entirely 
theoretical and has not been tested or validated.

All but four papers (Shi et  al. 2023 [28], Hüsing et  al. 
2016 [36], and both of the Hippisley-Cox and Coupland 
papers [37, 38]) did not provide a time frame over which 

they were predicting risk. This brings into question the 
potential for utilisation of these models, as it is more dif-
ficult to discern the time frame over which they are pre-
dicting risk. In fact, the studies were conducted over time 
frames ranging from 3 years [40] to up to 19 years [39].

Assessment of model quality is essential and PROBAST 
is an expert-informed and rigorously developed tool 
designed for this purpose. However, for a model to be 
suitable for use in practice, external validation in the tar-
get population is highly desirable which is only one of 
several aspects considered in PROBAST.

Whilst there exists a prior systematic review of EC risk 
prediction models, Alblas et al. [49], we believe that our 
review has captured a different subset of models and is 
the first to focus specifically on models with an applica-
tion in the prediction of future risk of cancer develop-
ment, as opposed to diagnostic models. Eleven of the 
models we include were published after their study, and 
they also omit both of the Hippisley-Cox and Coupland 
papers representing the QCancer models [37, 38], which 
we deemed appropriate for inclusion, a fact which the 
authors of these models commented on [50]. Indeed, 
both of these papers had a high AUC and were devel-
oped and validated in large cohorts, representing the 
most promising models included. Therefore, we believe 
our paper represents an accurate and updated review of 
models predicting future EC risk.

Implications
It is important to question whether there is a need to 
predict the risk of EC. Whilst EC is the most commonly 
diagnosed gynaecological cancer in some populations, 
it often presents early in primary care with abnormal 
bleeding and can be referred for further investigation. 
There is no screening test for EC nor has there even been 
a demand for one [51]. A screening programme would 
only be feasible if there was a rapid, low-cost test with 
very high specificity to account for the fact that EC is rel-
atively rare. Symptoms of EC typically present early in the 
disease; given the purpose of screening is to identify early 
disease it seems there is little benefit in screening for EC.

Risk prediction models could help to overcome key 
gaps in diagnosis and treatment of EC such as risk scor-
ing and grouping of women into risk stratification 
groups. Further, risk scoring could help to stratify women 
into those requiring more drastic investigation and those 
in whom a more minimally invasive approach would suf-
fice. There are key subgroups who could benefit by the 
use of risk prediction models and who warrant further 
investigation, for example, women at risk of more aggres-
sive types of EC and those genetically predisposed.

As for any disease where lifestyle factors may play a 
role in its development, risk models could play a vital role 
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in the identification of at-risk women whose risk could be 
optimised by lifestyle interventions. This approach to risk 
reduction has been proven before; intentional weight loss 
has been shown to reduce EC risk [52]. Perhaps medica-
tions such as the combined oral contraceptive pill may 
play a role in long-term risk prevention, acting to regulate 
oestrogen levels and hence reduce EC risk. It is already 
used for this purpose in the management of PCOS. A 
potential further feature of risk prediction models could 
be to estimate the decrease in risk associated with life-
style interventions, which could inform women on the 
benefits of these before embarking on them. Where risk 
models are being used to identify candidates who may 
benefit from lifestyle interventions, models which pre-
dict over a longer time frame of many years may be more 
appropriate and pragmatic, given implementing lifestyle 
changes is often a slow process and any resulting changes 
in risk would be expected to happen gradually.

It is important to consider the clinical impact of the 
models and how, if at all, they may change clinical prac-
tice. In hand with this, the study of this impact is essen-
tial. The QCancer models are available for use in UK 
general practices; however, a study by Price et  al. [53] 
assessing its implementation found that it is underu-
tilised. Qualitative studies have identified potential 
barriers to the use of QCancer including consultation 
time, potential for over-referral, unnecessary worry of 
patients, and a need for evidence for effectiveness [54]. 
This emphasises the need for external validation of risk 
prediction models before their clinical implementation 
and highlights barriers which are applicable to all risk 
prediction models designed for this setting. The other 
models described in this review are yet to be imple-
mented in a clinical setting, with a lack of external vali-
dation potentially a key factor in this. Other points to 
consider in real-world model implementation include 
the ease of application, which in turn is influenced by 
the variables included in the model. Practically, models 
requiring data from laboratory assays would be much 
more difficult to implement in a wider setting and per-
haps would be more appropriate for selective use in a 
high-risk population. Assessment of clinical outcomes 
will be vital in determining how important risk predic-
tion modelling of EC is. Future research should focus 
on prospective studies or trials to quantify the real-
world impact of these models, looking at factors such 
as earlier diagnosis of EC and survival rates.

Conclusion
Several models exist which could be used to predict the 
risk of short- and long-term risk of EC, with good pre-
dictive performance. However, it is important to vali-
date models in larger and more diverse cohorts. Once 

their applicability is established, they could be explored 
as aids in making clinical judgement and informing life-
style choices with the aim of preventing EC.
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