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Belgium, 5 Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail

(Anses), Ploufragan, France

* claire.guinat@envt.fr

Abstract

In this study, we present a comprehensive analysis of the key spatial risk factors and predic-

tive risk maps for HPAI infection in France, with a focus on the 2016–17 and 2020–21 epi-

demic waves. Our findings indicate that the most explanatory spatial predictor variables

were related to fattening duck movements prior to the epidemic, which should be considered

as indicators of farm operational status, e.g., whether they are active or not. Moreover, we

found that considering the operational status of duck houses in nearby municipalities is

essential for accurately predicting the risk of future HPAI infection. Our results also show

that the density of fattening duck houses could be used as a valuable alternative predictor of

the spatial distribution of outbreaks per municipality, as this data is generally more readily

available than data on movements between houses. Accurate data regarding poultry farm

densities and movements is critical for developing accurate mathematical models of HPAI

virus spread and for designing effective prevention and control strategies for HPAI. Finally,

our study identifies the highest risk areas for HPAI infection in southwest and northwest

France, which is valuable for informing national risk-based strategies and guiding increased

surveillance efforts in these regions.

Introduction

Since November 2014, Europe has experienced several waves of incursions of highly patho-

genic avian influenza (HPAI) A(H5Nx) clade 2.3.4.4b virus [1, 2]. The 2020–21 wave was an

unprecedented epidemic, with a total of 3,791 HPAI poultry farm outbreaks and wild bird

cases in 31 European countries, outreaching those caused by the 2016–17 wave (2,781 in 29

countries) [3]. The 2021–22 wave has now become the largest epidemic wave, with 6,227 cases

in 37 countries, as of September 2022 [4]. During the different waves, HPAI A(H5Nx) virus
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rapidly evolved and reassorted, leading to the co-circulation of several subtypes, with H5N8

being predominant in 2016–17 and 2020–21, and H5N1 in 2021–22 [5–8]. The persistent

occurrence of devastating HPAI A(H5Nx) epidemics in Europe over the last few years raises

concerns about the capacity of applied biosecurity measures to prevent virus introduction and

about our mitigation strategies after virus introduction.

France has been one of the most severely and repeatedly affected European countries by the

successive epidemic waves [5, 9, 10]. In 2016–17 and 2020–21, most of the poultry farm out-

breaks occurred in fattening duck flocks in southwestern France (Fig 1).

This was likely due to very high poultry farm densities but also to the particularities of this

production type, including outdoor rearing practices and strong farm connectivity [9, 11–13].

Notably, the number of wild bird cases remained limited during these periods [10] (Fig 1). Sev-

eral epidemiological and phylogenetic studies have shown that farm-to-farm transmission and

human activities-mediated transmission were likely the main drivers of the spatial spread of

the HPAI H5N8 virus during the 2016–17 and 2020–21 waves in France [11, 14–16], rather

than continuous incursion events from a wild bird reservoir. However, the higher number and

wider range of infected wild bird species reported during the 2021–22 wave may support the

hypothesis that the H5N1 virus has spread in the wild bird population more extensively than

ever before, increasing the opportunity for the virus to spill over into poultry and making the

epidemic particularly difficult to contain [17].

By comparison with other types of poultry production, the fattening duck production is

highly segmented, with three main production stages [18]: rearing (~3 weeks), breeding (~9

weeks) and force-feeding (~12 days). The breeding stage can also be further divided into start-

ing, growing and pre-force-feeding periods. Each stage/period is associated with specific farm-

ing practices, equipment and resources and often involves multiple and different farms at

different geographical locations [15, 19]. As a result, fattening duck farms are highly con-

nected, through the frequent movements of live ducks, vehicles, equipment or humans, which

can represent opportunities for virus farm-to-farm transmission. For instance, during the

2016–17 wave, some of the earliest poultry farm outbreaks were likely associated with the

movements of live ducks and vehicles, prior to the implementation of movements’ restrictions

[12, 13]. In addition, inadequate farm access control systems and management of vehicles and

visitors entering or leaving the farms were identified as the major biosecurity breaches contrib-

uting to the risk of HPAI introduction [11]. During the different epidemic waves, it is also pos-

sible that airborne transmission of the HPAI virus has contributed to the disease transmission

over short distances [20–22].

Based on data collected during the 2016–17 wave, Guinat et al. [15] applied a boosted

regression trees methodology to identify spatial risk factors for HPAI infection and generate

associated predictive risk maps. The outcomes of this study significantly helped provide

actionable advice and guidance to the French authorities on how to mitigate the risk of HPAI

infection in France during the following epidemic waves [23, 24]. For instance, the trade-

related transport of fattening ducks was identified as one of the major factors influencing the

spatial distribution of outbreaks during the 2016–17 wave. This triggered French authorities

and farmer organizations to reinforce biosecurity along the transport of ducks. This included

improved cleaning and disinfection procedures of cages and trade-related vehicles, coverage of

vehicles with nets during high-risk periods and the use of different sets of cages between the

different production stages [25]. The predictive risk maps were also essential to define the

high-risk areas for HPAI infection, where biosecurity measures were reinforced during the

2021–22 wave [23]. This resulted in a list of 539 municipalities identified as high-risk areas for

HPAI infection.
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Despite recent advances in our understanding of the spread of HPAI in France, further

research is necessary to gain a deeper insight into this complex mechanism. To this end, we uti-

lized the opportunity presented by the 2016–17 and 2020–21 waves to update and compare the

most important spatial risk factors and predictive risk maps for HPAI infection in France. Our

approach leveraged scale-optimization techniques and generalized linear mixed models to address

spatial dependencies in the data. The results of our analysis inform the development of national

risk-based strategies by highlighting the regions in France that require increased surveillance

efforts. Additionally, our analytical approach can be applied in other regions to assess the appro-

priate spatial scale for the analysis of epidemiological data and communication of HPAI risk.

Methods

Data collection

Outbreak data. Data related to all confirmed HPAI H5N8 poultry outbreaks during the

2020–21 wave (04/11/2020–20/03/2021, n = 469) were obtained from the French Ministry of

Agriculture (DGAL). A confirmed outbreak was defined as the detection of at least one labora-

tory-confirmed HPAI H5N8 infected bird (by virus isolation or PCR) in a poultry house. To

fit the scale at which prevention and mitigation strategies are implemented, outbreak data

were aggregated at the municipality level and summarized as the number of infected HPAI

H5N8 poultry houses per municipality.

Poultry data. Six variables, related to poultry house densities were considered for their

roles in the spatial distribution of HPAI H5N8 infected poultry houses per municipality

(Table 1): the number of poultry (chicken and duck) houses, the density of chicken houses per

km2, the density of duck houses per km2, the density of fattening duck (all stages) houses per

km2, the density of fattening duck (breeding stage) houses per km2 and the density of fattening

duck (force-feeding stage) houses per km2.

The list of the different types of poultry houses per municipality was obtained from the

DGAl (Direction Générale de l0Alimentation of the French Ministry of Agriculture), from

which the respective densities of poultry per km2 were computed.

Fig 1. Poultry farm outbreaks and densities. Geographical distribution of (i) the French municipalities with at least one highly pathogenic avian influenza

H5N8 poultry farm outbreak reported during the 2016–17 or the 2020–21 waves (left panel), and (ii) poultry farm densities, with colour intensity

proportional to the number of chicken farms per km2 (purple) and the number of duck farms per km2 (cyan). Data were obtained from the DGAl

(Direction Générale de l0Alimentation of the French Ministry of Agriculture) and CIFOG (Comité Interprofessionnel des Palmipèdes à Foie Gras).

Shapefiles used to create maps are based on administrative boundaries available in the public domain (CC BY 4.0).

https://doi.org/10.1371/journal.pone.0316248.g001
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Given the variables related to the density of poultry houses may not encompass information

regarding their operational status, e.g., whether they are active or not, we included the density of

pre-epidemic duck flock movements (e.g., before the implementation of movement ban restric-

tions during the epidemic) to gain more precise information of farm activity. Three variables,

related to duck flock movement densities, were thus considered per municipality (Table 1): the

density of outgoing fattening duck flock movements (breeding to the force-feeding stage) per

km2, the density of incoming fattening duck flock movements (breeding to the force-feeding

stage) per km2 and the number of municipalities sending fattening duck flocks to the targeted

municipality (breeding to the force-feeding stage). The list of movements of outgoing and incom-

ing fattening duck flocks between municipalities was obtained from the CIFOG (Comité Inter-

professionnel des Palmipèdes à Foie Gras) over the period prior to the 2020–21 epidemic wave

(16/06/2020–03/11/2020). The dataset contained 29,005 observations and included information

about the location of fattening duck houses, the flock production stage (rearing, breeding or

force-feeding), the flock destination (farm or slaughterhouse) and the movement date. We exclu-

sively focused on movements occurring between breeding and force-feeding houses, because

they represented the most complete dataset and the majority of the total number of movements,

totaling 12,507 observations. Consequently, we excluded from our analysis movements involving

breeding houses, rearing houses, and slaughterhouses. Also, only duck movements were consid-

ered, given that the majority of outbreaks were reported within this species and because of the

higher frequency of inter-stage movements inherent to this specific production system.

Noteworthily, no variables related to wild bird populations or associated factors such as cli-

mate or landscape features were included in this study. This was based on several key consider-

ations: during that specific wave, infected wild birds were identified as the primary source of

virus introduction into the country, while their role in the diffusion of the virus between poul-

try farms was found negligible [5, 26]. In addition, previous research during the 2016–17 wave,

which exhibited similarities to the 2020–21 wave, revealed that human population density had

a negligible contribution to HPAI H5N8 infection [15].

Risk mapping

Study area. We carried out an analysis at a local spatial scale that only included munici-

palities in southwestern France, and in particular those located in one of the four most affected

Table 1. List of predictor variables. The final spatial predictor variables were calculated using different levels of

municipality aggregation (see Scale-optimized risk models section). Sources: DGAl (Direction Générale de

l0Alimentation of the French Ministry of Agriculture) and CIFOG (Comité Interprofessionnel des Palmipèdes à Foie

Gras).

Data type Variable

Poultry population

data

Number of poultry (chicken and duck) houses

Density of chicken houses (/km2)

Density of duck houses (/km2)

Density of fattening duck (all stages) houses (/km2)

Density of fattening duck (breeding stage) houses (/km2)

Density of fattening duck (force-feeding stage) houses (/km2)

Live duck movement

data

Density of outgoing fattening duck flock movements (breeding to force-feeding stage)

(/km2)

Density of incoming fattening duck flock movements (breeding to force-feeding stage)

(/km2)

Number of municipalities sending fattening duck flocks to the given municipality

(breeding to force-feeding stage)

https://doi.org/10.1371/journal.pone.0316248.t001
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departments (administrative units with a median surface of 6,000 km2) (namely Landes, Gers,

Pyrénées-Atlantiques, Hautes-Pyrénées), to identify the fine-scale spatial predictor variables

for HPAI H5N8 infection in this highly affected region. The spatial extent of this local-scale

analysis is shown in Fig 2.

We produced predictive risk maps for HPAI infection for the western half of the country

based on the statistical model trained with the local-extent analysis. The area used for predic-

tions is shown in Fig 2. Municipalities categorised as high-risk areas for HPAI infection during

the 2016–17 wave [15] are shown in Fig 2.

Scale-optimized risk models. Although high densities of poultry houses at the municipal-

ity level are reported throughout the western part of the country, the number of adjacent

municipalities producing fattening ducks is particularly high in southwestern France. There-

fore, we hypothesised that the degree to which municipalities producing poultry are spatially

clustered is an important factor to be considered in assessing the risk of HPAI presence at the

municipality level. In other words, we hypothesised that the risk of infection in a given munici-

pality is dependent on the density of poultry houses in the wider area, i.e. not only in the given

Fig 2. Study areas. The area used for the model predictions is depicted by the dark yellow contour. The areas used for

the model training are depicted by the red line. The 539 municipalities identified as the high-risk areas for HPAI H5N8

infection during the 2016–17 wave [15] are depicted by the blue line. Only municipalities with poultry houses were

included in the 2020–21 analysis and are depicted in beige, while municipalities without poultry houses were not

included and are depicted in white. R software version 4.2.0 (https://cran.r-project.org/) was used to produce the figure.

Shapefiles used to create maps are based on administrative boundaries available in the public domain (CC BY 4.0).

https://doi.org/10.1371/journal.pone.0316248.g002
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municipality but also in the adjacent municipalities. To account for this, two approaches were

used: (i) First, the spatial predictor variables were smoothed based on five different levels (S1

Fig): level 0 included the given municipality, level 1 included municipalities with contiguous

boundaries with the given municipality, level 2 included the list of the neighbouring munici-

palities from level 1, in addition to municipalities with contiguous boundaries with the neigh-

bouring municipalities from level 1. This process was repeated four times in order to obtain

four sets of neighbouring municipalities, which were then used to calculate the spatial predic-

tor variables used for the modelling part. Maps of spatial predictor variables are available in S1

File. (ii) Second, spatial generalised linear mixed models (GLMM) were used to quantify the

effect of the spatial predictor variables on the proportion of HPAI H5N8 infected poultry

houses per municipality and to generate associated predictive risk maps. Random effects with

a Besag York Mollie (BYM) conditional autoregressive (CAR) prior [27, 28] were used to take

into account spatial auto-correlation and produce a spatially smooth map of the proportion of

HPAI H5N8 infected poultry houses per municipality. A BYM model includes both an intrin-

sic CAR model and an independent and identically distributed Gaussian random effect model

(iid) to take into account spatially and non-spatially structured error terms.

Setting parameters of risk models. The models were developed using a binomial distri-

bution, with the number of infected poultry houses per municipality as the number of suc-

cesses and the total number of poultry houses per municipality as the number of trials. The

models were fitted using the integrated nested Laplace approximation (INLA) [29] specifying

parameters of prior distributions to log-Gamma (1, 0.00005) for the spatial unstructured and

structured random effects which is the default specification of these parameters on R-INLA. In

order to limit over-parametrization of the GLMM, the untransformed spatial predictor vari-

ables were selected based on a forward selection procedure using the widely applicable infor-

mation criterion (WAIC) [30] to compare the models. The models with the lowest WAIC

values were considered as the best trade-offs between a reduction of the model errors and the

over-parametrization of models. WAIC differences greater than or equal to 5 were only con-

sidered in the model comparison process to focus on the main effects influencing the spatial

distribution of HPAI H5N8 outbreaks. We performed a forward model selection procedure

using the iid models. The final iid model was then compared to a BYM model based on the

same untransformed spatial predictor variables selected during the forward model selection

procedure. R software version 4.2.0 [31] and the sf [32, 33], spdep [34] and R-INLA [35] pack-

ages were used for spatial data manipulation, analyses and to produce the figures and maps of

this manuscript. The R code about the spatial smoothing of variables is available online (10.

5281/zenodo.13765228).

Validation of risk models. To evaluate the final model for its capacity to discriminate

between the presence and the absence of HPAI H5N8 infections at the municipality level, the

predicted proportion of HPAI H5N8 infected poultry houses per municipality was converted

into a probability of having at least one outbreak in the municipality. The probability of having

at least one outbreak P(X> 0) was estimated with a binomial distribution as follows: P(X> 0)

= 1 − (1-p)n, where n is the number of poultry houses in the municipality, and p is the propor-

tion of HPAI H5N8 infected poultry houses predicted by the final binomial model. Then, the

discriminatory capacity of the final binomial model was assessed using the area under the

ROC curve [36, 37] over the 2016–17, 2020–21, and 2021–22 epidemic waves. Aggregated data

related to the presence and the absence of HPAI H5N8 infections at the municipality level for

the 2016–17 and 2021–22 waves were obtained from the French Ministry of Agriculture

(DGAL). Ultimately, the discriminatory capacity of the final binomial model was compared to

the Guinat et al. [15] boosted regression trees local-extent model.
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Additional information regarding the ethical, cultural, and scientific considerations specific

to inclusivity in global research is included in the Supporting Information (S1 Checklist).

Results

Two spatial predictor variables were selected in the final model (Table 2): the density of incom-

ing duck movements from breeding to force-feeding houses at level 3 (which includes three

spatial rings of municipalities surrounding the given municipality) and the density of outgoing

duck movements from breeding to force-feeding houses at level 0 (which only includes the

given municipality).

The Pearson correlation coefficient between the selected variables was equal to 0.31. Both

variables were positively associated with the proportion of HPAI H5N8-infected poultry

houses per municipality (Table 3).

We compared this final model to an alternative model (Table 2) that was considered as

equivalent by replacing the density of incoming duck movements from breeding to force-feed-

ing houses at level 3 with the density of force-feeding houses at level 3 and by replacing the

density of outgoing duck movements from breeding to the force-feeding stage at level 0 by the

density of breeding houses at level 0. This alternative model showed similar but slightly higher

WAIC scores compared to the final model, with both variables also positively associated with

the proportion of HPAI H5N8 infected poultry houses per municipality (Table 3). In the final

and alternative models, the iid model shows very similar WAIC scores when compared to the

BYM model which considers spatial auto-correlation effects. A more complete summary of the

final model fits is available in S1 Table.

Fig 3 shows the predictive maps of the proportion of HPAI H5N8 infected poultry houses

per municipality and the probability of having at least one HPAI H5N8 poultry outbreak per

commune.

One major high-risk area was identified in southwestern France, in municipalities located

along the border between Landes, Gers, Hautes-Pyrénées and Pyrénées-Atlantiques depart-

ments. The risk slightly increased in Lot, Lot-et-Garonne, and Dordogne, as well as in north-

west France, in municipalities of Deux-Sevres, Loire-Atlantique, Maine-et-Loire, Mayenne,

Sarthe and Vendée. S2 Fig shows that the final and alternative models generated similar high-

risk areas for HPAI infection.

Table 2. Forward model selection. The widely applicable information criterion (WAIC) score differences between models are also provided. BYM: Besag York Mollie

conditional autoregressive model; iid: Independent and identically distributed Gaussian random effect model.

Model WAIC WAIC difference

Final model Intercept-only model (iid) 1285.55 -

Density of incoming fattening duck flock movements (/km2) at level 3 (iid) 1203.43 82.12

Density of incoming fattening duck flock movements (/km2) at level 3 +

Density of outgoing fattening duck flock movements (/km2) at level 0 (iid)

1193.98 9.45

Density of incoming fattening duck flock movements (/km2) at level 3 +

Density of outgoing fattening duck flock movements (/km2) at level 0 (BYM)

1194.03 -0.05

Alternative model Intercept-only model (iid) 1285.55 -

Density of fattening duck (force-feeding stage) houses (/km2) at level 3 (iid) 1213.93 71.63

Density of fattening duck (force-feeding stage) houses (/km2) at level 3 +

Density of fattening duck (breeding stage) houses (/km2) at level 0 (iid)

1209.07 4.85

Density of fattening duck (force-feeding stage) houses (/km2) at level 3 +

Density of fattening duck (breeding stage) houses (/km2) at level 0 (BYM)

1210.61 -1.54

https://doi.org/10.1371/journal.pone.0316248.t002
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The probabilities of having at least one HPAI H5N8 poultry outbreak per municipality, as

predicted by the final and alternative models, showed very good discriminatory accuracy, with

AUC values of 0.942 and 0.937, respectively, for the 2020–21 wave (Table 4).

The final model performs better than the alternative model and the 2016–17 model [15] in

predicting the presence of HPAI infections during the 2021–22 waves (0.844 compared to

0.830 and 0.825, respectively). However, for the 2021–22 wave, the discriminatory capacities of

both the final and alternative models’ predictions were lower (0.844 and 0.830), as compared

to the 2016–17 (0.880 and 0.872) and 2020–21 waves (0.942 and 0.937). This could be attrib-

uted to the greater similarity in the list of infected municipalities between 2016–17 and 2020–

21 waves, in contrast to the 2021–22 wave (Fig 1) [9].

Discussion

This study expands our understanding of the key spatial risk factors for HPAI infection in

France. The densities of outgoing and incoming duck movements from breeding to force-feed-

ing houses during the pre-epidemic wave were selected as the most explanatory spatial

Table 3. Summary statistics for the final model and the alternative model. Median and the lower and upper limits of 95% credible intervals of the posterior marginal

distribution of variables’ coefficients for the final model and the alternative model.

Model Variable Median 95% credible intervals

Final model (intercept) -4.49 [-4.78; -4.21]

Density of incoming fattening duck flock movements (/km2) at level 3 3.46 [2.80; 4.15]

Density of outgoing fattening duck flock movements (/km2) at level 0 0.27 [0.12; 0.42]

Alternative model (intercept) -4.37 [-4.65; -4.10]

Density of fattening duck (force-feeding stage) houses (/km2) at level 3 4.00 [3.01; 5.05]

Density of fattening duck (breeding stage) houses (/km2) at level 0 0.15 [0.00; 0.31]

https://doi.org/10.1371/journal.pone.0316248.t003

Fig 3. Predictive maps. Posterior means of the proportion of HPAI H5N8 infected poultry houses per municipality predicted by the final

model (left panel). Probability of having at least one HPAI H5N8 poultry outbreak per commune (right panel). Shapefiles used to create maps

are based on administrative boundaries available in the public domain (CC BY 4.0).

https://doi.org/10.1371/journal.pone.0316248.g003
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predictor variables of the proportion of HPAI H5N8 infected poultry houses per municipality.

The role of trade-related transport of fattening ducks in the occurrence of HPAI H5N8 out-

breaks had already been identified during the 2016–17 epidemic wave (7), leading to rein-

forced biosecurity measures along the transport of ducks. However, our study only considered

pre-epidemic duck flock movements, occurring prior to the implementation of movement ban

restrictions during the epidemic, and should not be considered as a direct cause of outbreak

occurrence but rather as indicators of farm operational status, e.g., whether they are active or

not. This underscores the relationship between poultry house activity and the proportion of

infected poultry houses, indicating that greater farm activity corresponds to a higher likelihood

of future outbreak occurrence. Consequently, implementing measures to reduce poultry house

activity or having poultry houses that operate at different periods across the year holds promise

for more effective disease control strategies, as seconded by a recent modelling study [38].

Given the challenges associated with the collection of movement data, we also explored the

possibility of using the density of breeding and force-feeding houses as potential proxies for

the density of outgoing and incoming movements, respectively. To this end, the final model

was compared with an alternative equivalent model based on the density of force-feeding

houses at level 3 and the density of breeding houses at level 0. The results indicated that the

alternative model produced similar but slightly higher WAIC and lower AUC scores compared

to the final model. Thus, our results suggest that the density of fattening duck houses could be

used as a valuable predictor of the spatial distribution of outbreaks per municipality. This is

particularly relevant as data on the density of fattening duck houses is generally more readily

available and easier to collect than data on movements between houses. However, the differ-

ence in prediction accuracy shows that the accuracy of housing density may be less precise as a

reflection of operational status, e.g., whether houses are active or not, compared to the direct

indicator provided by the existence of movements of fattening ducks from/to these houses.

This also underscores the need to improve data precision and update for poultry house den-

sity, accounting for changes such as production cessation or periods during which those

houses are full or empty with ducks, for future risk assessment studies.

Our variables were defined at different levels, each representing rings of municipalities

expanding in size around a central municipality. This approach was used to account for the

fact that while the municipality was the unit of interest, poultry farms are often part of exten-

sive contact networks that extend beyond municipality borders including animal introduction

networks (duck trade), transit networks (transportation vehicle transit), and farm personnel

networks [13, 39–41]. Our study found that the scale-optimized density of incoming move-

ments or of houses at level 3 was the most significant spatial predictor variable of the spatial

distribution of outbreaks per municipality, which on average corresponds to a catchment area

of 643 km2. Notably, models with and without spatio-temporal effects were quite similar in

terms of predictive performance. This finding highlights the efficacy of our approach with vari-

ables defined at different ring levels to account for spatial auto-correlation. This also supports

the hypothesis that considering the operational status of duck houses in nearby municipalities

Table 4. Discriminatory capacity of the different models. The final models, the alternative model and the 2016–17 model [15] were assessed for different epidemic

waves of HPAI H5N8 in France, as measured by the area under the ROC curve.

Observed values

2016–17 2020–21 2021–22

Predicted values 2016–17 model 0.887 0.892 0.825

2020–21 final model 0.880 0.942 0.844

2020–21 alternative model 0.872 0.937 0.830

https://doi.org/10.1371/journal.pone.0316248.t004

PLOS ONE Spatial risk modelling of highly pathogenic avian influenza in France

PLOS ONE | https://doi.org/10.1371/journal.pone.0316248 February 4, 2025 9 / 13

https://doi.org/10.1371/journal.pone.0316248.t004
https://doi.org/10.1371/journal.pone.0316248


is crucial in predicting the risk of future HPAI infection for a given municipality. The scale-

optimization approach used in this study enables the final model’s capacity to capture risk dif-

ferences over a broader spatial area than the existing municipalities.

While the risk models used in this study were based on data obtained from a single epidemic

wave (2020–21), the risk maps of the mean proportion of HPAI H5N8 infected poultry houses

per municipality align with those produced during the 2016–17 wave [15], with the highest risk

observed in southwestern France. Furthermore, the two predicted high-risk areas closely matched

the spatial distribution of poultry farm outbreaks during the 2021–22 epidemic wave [9, 42].

During the 2020–21 wave under study, it was recognized that wild birds served as the pri-

mary source of virus introduction into the country, while their contribution to the diffusion of

the virus between poultry farms was found to be negligible. This was supported by the very

limited number of wild bird cases during that specific wave and by phylogenetic analyses pro-

viding strong evidence of between-farm transmission [5, 26]. This prior knowledge guided our

selection of predictors, which did not include variables related to wild birds or associated fac-

tors such as climate or landscape features. However, it is worth noting that since the 2021–22

wave, the H5N1 virus has spread more extensively than ever before among wild bird popula-

tions [9, 43, 44], thus increasing the risk of virus spillover into domestic poultry. To test this

hypothesis, spatial risk models for the subsequent waves should incorporate wild bird-related

variables, such as the spatial distribution of wild bird cases or indices of wild bird habitat suit-

ability, to comprehensively assess the dynamics of HPAI H5N1 virus transmission. In our

explanatory work, we also considered various potential variables, including farm biosecurity

levels or staff and vehicle movements. However, their incorporation into the model was chal-

lenging due to the unavailability or lack of detailed data. Future research should focus on gen-

erating and collecting such data to better understand their role in the risk of infection. Thus,

we focused on variables with actionable implications, such as duck movements and housing

density, as these provide practical insights that can directly inform targeted interventions for

effective outbreak control. We assumed the perfect reporting of infected houses, meaning that

we did not account for the possibility of having more infected houses than officially reported.

While this could impact our findings, this is a reasonable assumption due to the severe clinical

signs due to HPAI H5N8 infection making them easily detectable, past experiences of farmers

with previous outbreaks resulting in swift reporting practices, and the provision of financial

compensation which further encourages timely reporting.

The persistent occurrence of devastating HPAI epidemics in France in recent years high-

lights the crucial need for research into methods to secure fattening duck production on a

long-term basis. This study underscores the epidemiological relevance of reducing fattening

duck farm activity as a key intervention to limit the risk of HPAI in the French poultry sector,

as suggested in a previous study [38]. Short-term measures to achieve this include increasing

the downtime between production cycles or limiting poultry placements during high-risk peri-

ods. However, implementing such structural changes requires further research to evaluate

their sociological and economic impacts and ensure the sustainability and feasibility of such

proposed interventions. The ultimate goal is to strike a balance between reducing the risk of

HPAI transmission and ensuring the viability of the fattening duck sector. Additionally, this

study guides the allocation of resources for increased surveillance and intervention efforts in

regions identified as high-risk areas.
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pefiles used to create maps are based on administrative boundaries available in the public
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18. Guémené D, Guy G. The past, present and future of force-feeding and “foie gras” production. World’s

Poultry Science Journal. 2004; 60: 210–222.
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