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Abstract

Understanding the multimodality of digital health data, including the scope of death records,

is essential for adequate data acquisition to build a research framework for the health sci-

ences. In this study, I leveraged the diverse healthcare records of over 12 million patients to

reconstitute mortality trajectories that navigate the sequence of disease processes shared

among patients from initial presentation through interim conditions that ultimately terminate

in fatal outcomes. I conducted a comprehensive analysis of longitudinal discharge records

for 10.4 million patients from US hospitals, utilizing the US State Inpatient Data (USSID)

including 290,253 records of deaths in clinics. I also scrutinized the cross-sectional records

of Korea from the billing reviews, specifically the National Inpatients Set of Korea (NISK),

encompassing 2.1 million patients. By tracing the diagnostic timelines of patients diagnosed

with significant comorbid diseases (False Discovery Rate (FDR) <0.1), I built mortality tra-

jectories, mapping the temporal progression of disease diagnoses resulting in death. My tra-

jectory model rewired 705 significant mortality trajectories across both datasets (USSID and

NISK). The presented mortality trajectories successfully recapitulated established patterns

of mortality for each country, while also revealing different trajectories leading to death, influ-

enced by the modality of data. For example, viral hepatitis, a known predisposing feature of

liver cancer in Asia, was observed to initiate in younger Koreans. Interestingly, owing to the

collection of hospital records, the modeled mortality trajectories derived from the USSID

converged towards sepsis. Although a substantial sequence of diagnostic processes is

shared between USSID and NISK, the multimodality of these two datasets highlights differ-

ent diagnoses preceded by fatal outcomes. Unraveling mortality patterns is feasible with an

appropriate understanding of the multimodality of digital health data.
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Introduction

Adequate identification and risk stratification of individuals [1] are pivotal aspects of clinical

decision-making for public health [2–4]. However, the modality (i.e. structure or scope) of

health data are heterogeneous based on the purpose of data generation. For example, owing to

the preference of home death, substantial death records are missed in the hospital records of

US [5]. While understanding the multimodality of digital health data, including the scope of

death records is essential, attempts to unravel the multimodality of digital health data using an

identical approach are rarely suggested. Epidemiological studies using medical records and

questionnaires can compare the prognostic values of risk factors for disease co-occurrence [6,

7] and mortality [8]. Many previous studies have focused on determining the risk factors for

mortality [9] or disease comorbidity [10, 11]. Extensive analyses of comprehensive health reg-

istry data have facilitated data-driven approaches to understanding illness trajectories in Den-

mark [12]. Enormous efforts, such as the Global Burden of Disease, have revealed the

existence of conserved yet partially diverse trends in illness [13] and causes of death, which

vary by nationality, gender, and age [14]. While a previous attempt presented a comparison of

treatment pathways following the transition of original data via the Common Data Model

[15], the impact of source-dependent observations remains unclear. By applying the identical

analytics onto distinct scope of health data, such as administrative hospital record and insur-

ance reviews, the comparison of results would show the contribution of health data modality

for in-depth analysis. Therefore, here, I compare multimodal digital health datasets by leverag-

ing identical approaches.

In previous attempts, I repurposed population-wide administrative healthcare records cov-

ering different sources, including hospital records and insurance reviews. Using Directed Acy-

clic Graph (DAG) modeling, we identified unexpected risks of schizophrenia [16] and cancer

[17] in the US. Similarly, the convergence of genomic evidence, based on the DAG approach,

and digital health data accelerates the discovery of biological knowledge, such as a novel pleio-

tropic variant underlying disease comorbidity [18]. Overall, the utilization of digital health

data derived from various sources and systemic reviews demonstrates the methodological

robustness of the DAG.

The Healthcare Cost and Utilization Project (HCUP) [19] has released the State Inpatient

Dataset (SID) as an encountered-level longitudinal record. For the US State Inpatients Dataset

(USSID), we utilized the SID for California, encompassing over 10.4 million hospitalized

patients from all community hospitals in California, spanning 20 years of hospital records. As

an independent set of the USSID, we also obtained the National Inpatients Set of Korea

(NISK) [20] from the Health Insurance Review & Assessment Service (HIRA) of Korea. This

dataset comprises a cross-section of billing reviews for one year, covering over 2.1 million

patients from all hospitals in Korea. Data from administrative hospital records and billing

reviews were publicly available for application research. From our previous attempts, we uti-

lized scaled digital health records from different data sources to validate our hypothesis [17,

18]. For example, in one of our previous works, we only used USSID to identify unexpected

comorbidity risk without mortality consideration based on its modality [16]. Therefore, an

understanding of data modality builds adequate interpretation of health outcome-related

studies.

Utilizing these datasets, I conducted a systematic investigation to evaluate mortality trajec-

tories, specifically the patterns of disease preceding death shared among patients. Because of

the inherently distinct resolutions of disease coverage captured by each dataset, US data

(USSID) were employed as the primary set to model the longitudinal trajectory between dis-

ease and death. However, I utilized the Korean dataset (NISK) to demonstrate the robustness
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and validity of the DAG method for analyzing administrative billing records. By examining

the deadliest mortality trajectories, I identified corresponding known and significant clinical

burdens in the US (myocardial infarction) and Korea (liver cancer). Within the well-portrayed

mortality patterns of the two countries, my trajectory model revealed data modality-biased

death patterns. Understanding the hetero modality of digital health data is a fundamental

requirement for employing our trajectory model.

Methods

Population-wide administrative healthcare records in two different

countries

The analysis utilized two distinct datasets. The USSID: This dataset comprises the California

set of the SID of the HCUP (Healthcare Cost and Utilization Project); and the NISK: This

another dataset was obtained from the HIRA (Health Insurance Review and Assessment)

(details in Data Availability). Based on the International Classification of Disease, Ninth Revi-

sion, Clinical Modification (ICD-9-CM) codes, I excluded all records of non-disease condi-

tions, such as injuries or healthcare contact. Due to the annual compilation and release of

USSID datasets, I independently selected records of deceased patients in the early generated

dataset and subsequently merged them with later data releases to minimize the redundancy of

records. For NISK, I also excluded non-disease conditions based on the diagnosis codes con-

sisting of International Classification of Disease, Tenth Revision (ICD-10) (Fig 1A).

To minimize confounding impact from racial composition, I used USSID of California to

compare with NISK. Both of NISK and USSID are healthcare records in administrative level,

such as diagnosis codes, admission records, and outcome of discharge. The admission and dis-

charge records involved the date of admission and discharge. The outcomes of discharge pre-

sented as categorical variables including transferred, on-going or deceased. Likewise, the

records of diagnosis presented as a categorical variable, ICD-10 for NISK, and ICD-9-CM for

USSID, respectively (Fig 1B).

Significance of disease comorbidity by time orders

Based on previous research, our disease diagnosis model used a DAG model, where nodes rep-

resent disease diagnoses and edges represent the directed time orders of the relationships

between the nodes. To address the relationship between disease diagnoses, I used relative risk

(RR) and quantified the co-occurrences of disease pairs (Disease i–Disease j) within 1 year in a

patient [7]. To determine the sequential orders of disease diagnoses, I quantified the overall

temporal directionality of disease co-occurrences (for Disease i!Disease j) using the mean dif-

ference in the dates of diagnoses or associated admissions for each subject [21]. I quantified

the likelihood that one disease diagnosis would occur before or after another (δi!j for Disease

i!Disease j) using the dates of diagnosis associated with two diseases in each individual. It

begins counting date differences between when disease I was diagnosed before disease j in

patient p and represent this number as dp
i!j (dp

i!j = sign (date of admission for disease j in

patient p–date of admission for disease I in patient p), where sign stands for the Signum func-

tion, dp
i!j = [–1,1]). Out of re-diagnoses or re-hospitalizations for the same disease in one

patient, the initial date of diagnosis for a disease was used. In addition, I only counted d p
i!j

when the length of duration between dates of admissions for disease j and disease i was less

than 1 year. A value of dp
i!j > 0 indicates the following: an initial admission (diagnosis) for

disease i occurred before the first onset for disease j in a patient p within one year. Then, the

value of δi!j was determined by the mean value of d p
i!j among the set of patients who were
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diagnosed with diseases i and j in one year. Thus, a value of δi!j > 0 indicates that over half of

diagnosis for disease i occurred before the admissions for disease j by one year among the

patients who were diagnosed as both of these diseases. Alternatively, a value of δi!j< 0

denotes the opposite. The statistical significance of co-occurrences and temporal directionality

of diseases was determined using the binomial test (Benjamin-Hochberg False Discovery Rate

[FDR] <0.1) [12]. Finally, I used selected pairs of disease co-occurrences (RR>1, FDR<0.1)

with a directional order of diagnoses (FDR<0.1) for further analysis.

To visualize the results, I present diseases and associated fatal outcomes as a connected path

through nodes for disease (circles) that terminate in death (squares). Here, I remark that the

square node means the last confirmed diagnosis without consideration of the major causality

of death. For example, when patients were diagnosed with acute kidney failure and subse-

quently progressed to sepsis within a year, I drew a directional line (i.e., edges) between the

disease nodes (disease A!B). A non-directional line was used for co-occurring deaths from

each disease (disease A—death with disease A). The edge color and width represented the

mean age and number of patients transferred between the disease and death nodes,

respectively.

Defining mortality trajectories and visualization

All presented DAG modeling approaches for disease diagnoses trajectories were derived from

our previous studies [16–18]. In summary, I combined multiple steps of disease-to-disease tra-

jectories by concatenating two disease progressions into three or more steps (Disease

1!2!3) based on shared patients between two pairs of disease progressions (Disease 1!2

and Disease 2!3, FDR<0.1). In case of disease diagnosis associated deaths are simply

concatenated undirected edges based on the records of diagnosis outcomes from the data

sources. Cytoscape [22] was employed to visualize the trajectories.

To examine the influence of age on mortality trajectories, we stratified all significant mor-

tality trajectories from disease to death based on the mean age of the patients, representing life

cycle phases of younger age groups (mean age of patients, <60 years), the elderly (mean age,

>75 years), and in-between age groups (mean age,�60 and�75 years).

Results

Overall view of methods and data

I conducted a comprehensive analysis of administrative healthcare data associated with mil-

lions of patients, building mortality trajectories that encoded the temporally ordered progres-

sion of diseases in patients with fatal outcomes. The primary USSID study set covered

2,272,018 hospitalizations of 1,488,551 individuals from hospitals in California (Table 1). The

longest interval between the first and the latest date of record for a patient extended up to 26

years (95% confidence interval [CI], 0.92–0.94 months).

An overview of the data structures (i.e., mortality) from the different sources is presented in

Fig 1B and 1C. As expected, these datasets showed unmatched modalities such as distinct diag-

nosis codes and outpatient involvement. However, this disease trajectory modeling approach

deduced the RR of disease co-occurrence and recapitulated the sequential patterns of disease

diagnosis from both datasets. Interestingly, both datasets (USSID and NISK) included the out-

come of diagnosis, including discharge status for deceased patients. Based on these features, I

present the distributions of illness diagnoses and the assigned diagnoses confirmed to have

fatal consequences across all ages in adults (Fig 2A and 2B). Owing to the collection of inpa-

tient hospital data, USSID identifies infectious conditions, particularly sepsis, as the most fre-

quent diagnosis associated with fatal outcomes.

PLOS ONE Unraveling multimodality of digital health records

PLOS ONE | https://doi.org/10.1371/journal.pone.0314993 February 4, 2025 4 / 17

https://doi.org/10.1371/journal.pone.0314993


Within the combined administrative healthcare records of 1.4 million patients in the US, I

employed the RR of disease co-occurrence and temporal differences between diagnoses to estab-

lish the temporal order of disease progression (FDR<0.1) [7, 23]. To capture direct disease co-

occurrences, I filtered for disease pairs that co-occurred within one year. I then traced patients

who underwent significantly paired disease progression to determine the terminal debilitating

processes (details in the Methods) and mortality trajectories through the disease toward death.

For cross-sectional data from Korea (NISK), (the light blue box in Fig 1A; Table 1), the longest

interval between the first and latest diagnoses in each patient is 10.4 months (95% CI, 8.13–8.15

months). Identical processes used in the US data analysis were applied to the Korean data.

Overview of traced trajectories from initial disease diagnosis to fatal

outcome

In this study, the mortality trajectory represented the temporal order of disease progression

that terminated in fatal outcomes from the initial diagnosis. All pairs of disease progression

significantly co-occurred rather than being randomly distributed (FDR<0.1) [12, 23]. To

Fig 1. Overview of data and analysis. (A) Preprocessing of data and overview of analysis methods. We prepared the

primary data set for the US by combining five data sets of the USSID, which are released annually (2006~2010).

Similarly, the National Inpatients Set of Korea (NISK) was utilized to integrate three sets of the released version from

2009 to 2011. NISK covers all of the outpatient records who have admission records in a year. (B-C) Overall modality

of utilized USSID (B) and NISK (C).

https://doi.org/10.1371/journal.pone.0314993.g001
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Table 1. Data statistics of State Inpatient Dataset of California, USA (USSID)* and National Inpatient Set of

Korea (NISK)**.
Features in USSID No. of record (in selected set) in USSID

No. of admissions 19,984,041(2,272,018)

Data build in 20061 (1980 ~ 2006)2 3,997,182 (128,516)

Data build in 20071 (1988 ~ 2007) 2 4,012,774 (126,768)

Data build in 20081 (1987 ~ 2008) 2 4,017,998 (124,632)

Data build in 20091 (1988 ~ 2009) 2 3,985,166 (121,661)

Data build in 20101 (1980 ~ 2010) 2 3,970,921 (1,770,441)

Grand total no of patients 10,408,641(1,488,551)

Data build in 2006 2,095,319 (68,237)

Data build in 2007 2,069,813 (66,611)

Data build in 2008 2,080,984 (66,048)

Data build in 2009 2,077,376 (63,691)

Data build in 2010 2,085,149 (1,223,964)

No. of diagnosis code (ICD-9-CM) 3 5,777

No. of diagnosis code with 3digit3 691

Demographic features (in selected set)

Mean of ages in admission month 63.77 (±19.58)

Genders Male: 691,452(46.4%), Female: 780,230(52.4%)

Outcome of admission

Deceased patients 290,253 (19.5%)

Not deceased patients 1,334,635

Features in NISK No. of record4 (in selected set) in NISK

No. of diagnoses5 55,291,171(13,459,583)

Data of 2009 19,880,745 (183,262)

Data of 2010 22,342,229 (208,124)

Data of 2011 23,031,507 (13,068,197)

Grand total no of patients 2,182,356(763,892)

Data of 2009 711,153 (14,629)

Data of 2010 737,854 (15,914)

Data of 2011 765,559 (733,349)

No. of diagnosis code (ICD-10)6 5,859 (5digit ~ 3digit)

No. of diagnosis code with 3-digit6 1,151

Demographic features (in selected set)

Mean of ages in diagnose date 54.19 (±23.26)

Genders Male: 341,788(44.7%), Female: 420,104 (55.2%)

Outcome of diagnosis

Deceased patients (code 4) 43,545 (5.7%),

On-going patients (code1) 745,918 (97%)

Transferred patients (code 2) 21,763 (2%)

Sand backs (code 3) 13,850 (1.8%)

Others (code 5) 26,163 (3.4%)

Discharged (code 9) 444,420 (58.1%)

* Data resource of the Healthcare Cost ant Utilization Project (H.CUP) covering 97% of hospitals in US.

** Generated by random sampling covering 13% of annual hospitalization reports from HEALTH INSURANCE

REVIEW & ASSESSMENT SERVICE (HIRA).
1Years of data generations. Merged data set covers up to ~26.1 years’ longitudinal events for a patient. It is counted

by administration month. For each inpatient event, up to twenty-five diagnose codes were assigned.
2 Covered years of records by build year versions.
3Excluded injury, symptom, child-birth, pregnancy and health care service.
4Each data set covers 1 year’s longitudinal inpatient events for a patient.
5It is counted by start date of recuperations for diagnose event.
6Excluded injury, symptom, child-birth, pregnancy and health care service.

https://doi.org/10.1371/journal.pone.0314993.t001
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visualize the paired relationship between diagnoses, I utilized directed network model consist-

ing of nodes for diagnosis (or death outcomes) and directed edges for the identified disease

progression. In Fig 3A, a circle represents a disease, such as acute kidney failure, while a square

node indicates death with a disease.

To identify the mortality timelines for the majority of patients, I constructed trajectories

beginning with all possible diseases using greedy search methods [12]. By drawing lines (i.e.,

edges) along the diagnosis history of patients among significant disease comorbidity pairs, we

established the trajectory of diseases and deaths. Fig 3B illustrates a trajectory starting with

Fig 2. Distributions of diagnoses and associated fatal outcomes. (A) Distribution of diagnoses in the USSID by age.

The bottom plot presents the distribution of the diagnoses with fatal outcomes from the USSID. (B) Distribution of

diagnoses in the NISK by age. The bottom plot presents the distribution of the diagnoses with fatal outcomes among

the discharges from the NISK.

https://doi.org/10.1371/journal.pone.0314993.g002
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heart failure. Among the 30,303 patients with heart failure, 4,109 developed acute kidney fail-

ure within a year, and 674 died from this disease. Among the surviving patients with acute kid-

ney failure, 541 were diagnosed with septicemia, with 225 experiencing fatal outcomes.

By systematically altering the starting disease nodes, I meticulously mapped 300 trajectories,

each representing a timeline of death from the initial disease diagnosis through intermediate dis-

ease states in the US. In total, the mortality trajectories originated from 118 diseases in 311,309

patients, revealing 175,556 distinct disease-to-disease transitions and 59,794 fatal outcomes. The

longest mortality trajectory was modelled for up to four steps of disease progression before the

terminal death outcome, while 43 trajectories were terminated without death outcomes from the

final disease progression in the trajectory (Fig 4A). The initial and interim disease nodes demon-

strate heterogeneous disease types, including neoplasms (navy block) and circulatory diseases

such as heart failure (red block). Nevertheless, the end stages converged into homogeneous types

of diseases, such as sepsis, a disease of infection (magenta block) (Fig 4A).

Employing a similar approach to the cross-sectional Korean dataset (NISK), I identified 405

trajectories that encompassed 2,134 deaths by tracking 1,023,171 patients. Owing to the

Fig 3. Trajectory of disease diagnosis and death. (A) Conceptual introductions to visualize timelines from disease (a

circle node) to death (a square node). The linked edge (i.e. the line) between two nodes denotes significant transitions

in patients within a year (FDR<0.1). (B) A simplified example of disease-to-death trajectory based on following

patients from the start of the disease diagnosis.

https://doi.org/10.1371/journal.pone.0314993.g003
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restricted timeframe of NISK (one year), a substantial proportion of trajectories (346) ended

without deaths at terminal disease progression (Fig 4B). Fifty-nine non-truncated mortality

trajectories followed the progression of 201,612 patients from 33 initial diagnoses to 734

deaths. Notably, 24 trajectories (54% of 59 non-truncated trajectories) reached fatal outcomes

associated with cancer (Fig 4B).

These differences in the distribution of fatal outcome-associated diagnoses between the

USSID and NISK mainly belong to the modality of the utilized data sources. The USSID is

gathered from hospital inpatient records, whereas the NISK covers all types of healthcare

insurance reviews, which indicates that there is a minimal loss of death-associated records,

such as long-term care units and nursing residences. Therefore, it is essential to understand

the modalities of medical records.

Unraveling fatal outcomes using trajectories

We stratified all modeled mortality trajectories from disease to death based on the age of the

patients, representing life cycle phases. The results for the in-between age group showed pat-

terns identical to those of the overall combined group analysis.

As presented in our previous study, among all the trajectories of US data, the deadliest tra-

jectory originates from acute myocardial infarction and ends in sepsis through a series of

Fig 4. Trajectory of disease and death. (A) The length distributions of 300 identified trajectories for 59,794 deaths in

the USSID. (B) The length distributions of 405 identified trajectories in the NISK. The aligned histograms of diagnosis

proportion presented by initial and final diagnoses with death outcomes. Each color denotes the type of disease, as

determined by ICD codes.

https://doi.org/10.1371/journal.pone.0314993.g004
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intermediate diseases [17] (S2A Fig). However, for younger patients (mean age, <60 years),

the deadliest trajectory begins with chronic liver diseases and cirrhosis, encompassing a range

of diseases, including liver abscess and sequelae, acute kidney failure, and imbalance of body

fluids and acids (S2A and S2B Fig). In younger patients (mean age<60 years) within the

Korean dataset, the deadliest trajectory originated from chronic viral hepatitis in 1,879 patients

and resulted in the highest number of deaths (335 fatal outcomes) through the progression of

cirrhosis and liver cancer (S3C Fig). Notably, this mortality trajectory among young Koreans

demonstrates a well-known comorbidity pattern among East Asians [23, 24]. Therefore,

although the modality of medical records affects the interpretation of the analysis results, the

overall trends of health-related outcomes were also represented in the DAG-based approach.

Unraveling fatal outcomes using pair-wise network of diagnoses

Based on this confidence in the robustness of the DAG-based approach, I decomposed my

diagnoses trajectories into a pairwise diagnosis-to-diagnosis network. Fig 5 presents the

decomposed network of diagnosis pairs, which can be re-wired into the traced diagnoses tra-

jectories. In the USSID, the 460 edges consisted of 300 diagnosis pairs and 160 diagnosis-death

pairs (Fig 5A). In the NISK dataset, there were 5,869 edges, consisting of 5,454 diagnosis pairs

Fig 5. Decomposing diagnosis trajectory as a pairwise network. The traced trajectories in the USSID and NISK were

decoupled into a pairwise network consisting of nodes (disease and death) and edges (directed associations). (A-B)

Overview of a network of disease diagnoses and associated death outcomes in the USSID (A) and NISK (B).

https://doi.org/10.1371/journal.pone.0314993.g005
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and 415 diagnosis-death pairs (Fig 5B). Interestingly, most of the node degrees in NISK exceed

a hundred, while those in USSID are around 60, suggesting a higher prevalence of comorbidity

patterns in Korea. However, this disparity is primarily based on the modality of the utilized

sources, such as the inpatient-only set from the US and the overall set from Korea.

To provide a more comprehensive overview of the decomposed pairwise network of diag-

nosis and mortality, we analyzed the age distribution of the diagnosis and fatal outcome-asso-

ciated disease pairs (Fig 6A, 6B, 6D and 6E). Despite the different modalities and coverage of

USSID and NISK, fatal outcomes were consistently more prevalent in elderly groups (p-value

of t-test <0.05, Fig 6B and 6E).

More interestingly, the directionality of diagnosis pairs in the network highlights a number

of specific disease diagnoses, including hypertension and heart failure, as common risk factors

for posterior comorbid conditions, regardless of the modality of the data sources (Fig 6C and

6F). As shown in Fig 6(C) and 6(F), the x-axis quantifies the extent of the following comorbidi-

ties. Thus, the bubbles positioned towards the bottom right of the plot represent general risk

diagnoses, as these initially identified conditions precede the development of multimorbidity.

Fig 6. Topological features of a pairwise network of diagnosis and death. (A-B) Distributions of patient age by the

type of edges including disease pairs and death-related edges in the USSID. (D-E) Distributions of patient age by the

type of edges including disease pairs and death-related edges in the NISK. (C-F) Bubble plot of diagnoses nodes by the

topological features. The x-axis indicates number of outlined edges, and y-axis presents degrees of in-linked edges.

https://doi.org/10.1371/journal.pone.0314993.g006
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Based on this network framework, Figs 7 and 8 display the identified risk factors for lethal

diagnoses with top-ranked case fatality ratios (CFRs) in the US and Korea. For example, sub-

arachnoid hemorrhage, a notorious symptom of sudden death [25], showed the absence of a

prior diagnosis (Fig 7A), whereas hypertension was a prioritized risk factor for heart failure

(Fig 8B) [26]. Altogether, decoupling the diagnosis trajectory into a pairwise network catalyzes

the identification of a shared risk factor for multimorbidity, calling for adequate stratification

of the risk of patients.

Discussion

In this study, I performed an extensive temporal analysis of disease-to-disease comorbidity

relationships among over 600 diseases in the US, encompassing 10�4 million patients and

290,253 fatal outcomes. S4 Fig summarized entire process of conducted analysis in present

study. I explored the mortality trajectories of the patients, which represented the temporal

associations of significant comorbidities of diseases that lead to death. I also applied the same

computational approach to the cross-sectional records of 2.1 million Korean patients. The

Fig 7. Risk factors of lethal diagnoses using the pairwise network in the USSID. The decomposed network of

diagnoses identified a prior diagnoses of the diseases. (A) Detected risk factors for the top-ranked diagnosis using the

Case Fatality Ratio (CFR). (B) Detected risk factors for lethal diagnoses (i.e., top-ranked CFRs) in the elderly. (C)

Detected risk factors for lethal diagnoses (i.e., top-ranked CFRs) in younger patients.

https://doi.org/10.1371/journal.pone.0314993.g007
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accompanying analysis provides a comprehensive overview of health-related outcomes in dif-

ferent countries and modality-biased death outcomes. Therefore, interpretation of the analysis

results of health-related records should be based on domain-specific knowledge.

In previous studies, we found that administrative healthcare records routinely collected for

billing purposes could be repurposed for biomedical research [16–18, 27]. ICD codes and

other billing information were used to classify patients and select patient cohorts for popula-

tion-wide studies [28]. Here, I highlight the value of meta-data associated with administrative

data, such as the temporal order of assigned ICD codes, for direct analysis. Therefore, popula-

tion-wide health records that are not specifically intended for medical research are a promising

source for investigating the public health of a population and risk stratification of individuals.

All analyses were conducted without sex or age stratification, as the main purpose of this

study was not to address causality, but rather to identify patterns across populations. The etio-

logical assessment of disease comorbidities and deaths, incorporating adjustments for risk fac-

tors, presents an exciting avenue for future research in precision medicine. With two distinct

datasets, I experienced data alignment issues with respect to the temporal resolution of the

data, quality of records, inherent noise, and other factors, which prevented a direct comparison

Fig 8. Risk factors of lethal diagnoses using the pairwise network in the NISK. (A) Detected risk factors for

prioritized diagnosis using Case Fatality Ratio (CFR). (B) Detected risk factors for lethal diagnoses (i.e., strong CFRs)

in the elderly. (C) Detected risk factors for lethal diagnoses (i.e., top ranked CFRs) in younger patients.

https://doi.org/10.1371/journal.pone.0314993.g008
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between the US and Korean data. Thus, clinical interpretations to assess and compare the con-

vergence and differences in trajectories between these countries must account for these differ-

ences. However, given my ability to independently replicate known epidemiological trends for

patients’ life cycles in both the US and Korean populations, it can be suggested that presented

method, DAG, is robust for finding strong indications of diseases that precede death.

In this study, I gained valuable insights into the utilization of large-scale population data-

sets. To the best of my knowledge, no previous studies have examined such diverse time-

resolved spectra of mortality across diseases by repurposing the administrative healthcare rec-

ords of millions of people from different countries. Although a few significant disease comor-

bidities have already been reported [23, 29], my approach leverages a temporal network to

quantitatively model and align progression across all diseases to identify significant fatally

debilitating processes. The end stages of the trajectory paths of this network converged into

homogeneous states, including sepsis and pneumonia, by following distinct debilitating pro-

cesses involving multiple diseases with age. In addition, the results of the decoupling of disease

trajectory prioritized common risk factors including hypertension and heart failure before

undergoing multimorbid conditions.

The limitations of this study are noted here. The alignment of used data sets including

USSID and NISK is unsolved. Both of data sources have been gathered different purposes

resulting unmatched modality. Although the open-source Observational and Medical Out-

comes Partnerships (OMOP) common data model can be a solution for harmonizing digital

health records, the biased data source issue remains as unsolved. For example, owing to the

scope of hospital records, USSID represents a high incidence of sepsis associated deaths due to

the truncation of the records of long-term care units including hospice and home-death. In

addition, the analyzed data sets (i.e., USSID and NISK) have been gathered at an administra-

tive level meaning the absence of diagnosis evidence including lab tests and pathological

images. Thus, the interpretation of DAG-based analysis for each data set should be considered

based on the clinical guidelines for the health professionals in each country.

I employed a systematic approach to model the trajectories from diagnosis to death, which

I believe has the potential to raise physicians’ awareness and general understanding of public

health determinants (S1 Data). For instance, diagnosis of ‘Mental and behavioral disorders due

to use of alcohol (F10)’ showed complex associations with over thirty disease diagnoses includ-

ing acute pancreatitis and seborrhoeic dermatitis in middle-aged patients indicating burden of

comorbidity in public health. In addition, such systematic views of disease incidence may be

useful for directing additional research to identify better biomarkers, and ultimately, drugs for

the diagnoses and treatment of diseases before their fatal sequelae.

In summary, I presented an explorative and large-scale examination of mortality trajecto-

ries or dying patterns from the initial presentation of the disease across the entire disease spec-

trum by tracking millions of individuals’ healthcare records intended for billing. The insights

gained from our study may be useful to physicians, researchers, and public health officials in

changing the mortality trajectories of individual patients, thereby promoting health. For exam-

ple, except the pandemic years of COVID-19, the Global Burden of Disease (GBD) study have

been prioritized a cardiac disease as a long-standing leading risk across over 200 countries for

decades [30, 31]. Although the previous attempts of GBD present comprehensive understand-

ing of the burden of global health, evaluation of the method for the stratification of risk group

for the initiation of clinical intervention is pending. As presented in Figs 7 and 8, suggested

DAG approach allows us the identification of prior risk factors of leading lethal diagnosis, call-

ing additional clinical intervention and prevention policy.
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