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A trimetallic bismuth(I)-based allyl cation
 

Davide Spinnato    , Nils Nöthling, Markus Leutzsch    , Maurice van Gastel    , 
Lucas Wagner    , Frank Neese       & Josep Cornella     

The chemistry of low-valent bismuth compounds has recently unlocked new 
concepts in catalysis and unique electronic structure fundamentals. In this 
work, we describe the synthesis and characterization of a highly reduced 
bismuth salt featuring a cationic core based on three contiguous Bi(I) centres. 
The triatomic bismuth-based core exhibits an electronic configuration that 
mimics the canonical description of the archetypical carbon-based π-allyl 
cation. Structural, spectroscopic and theoretical analyses validate the unique 
π-delocalization between the bismuth’s highly diffused 6p orbitals, resulting 
in a bonding situation in which the three bismuth atoms are interconnected 
by two bonds, formally possessing a 1.5 bond order each. This electronic 
situation defines this complex as the heaviest and stable π-allyl cation of the 
periodic table. Furthermore, we demonstrate that the newly synthesized 
complex is able to act as a synthon for the transfer of a Bi(I) cation to forge 
other low-valent organobismuth complexes.

The π-allyl cation is one of the most recognizable intermediates in organic 
chemistry, and represents a textbook example to explain molecular 
orbital theory, resonance and chemical bonding1–7. The unique allylic  
system of the triatomic carbon arrangement has been the object of 
study of numerous research groups and has served as guiding principle  
to develop a plethora of synthetic transformations8–12. From the elec-
tronic point of view, the π-allyl cation is comprised of three carbon atoms 
(C1, C2 and C3; Fig. 1, left), with C1 connected to C2 and C3 in a 1.5 bond 
order. More specifically, these carbons are sp2 hybridized and are united 
through two σ bonds. In addition, the three available 2p orbitals allow 
the delocalization of the two additional electrons, thus conforming  
the characteristic delocalized π-system13,14. Fascinated by its struc-
ture, chemists have looked at synthesizing heavier analogues of the 
π-allyl cation; yet, the analogues reported are cyclopropenium-type 
structures15–17 or, in some cases, vinylogous systems which capitalize 
on the delocalization of the positive charge into neighbouring hetero
atoms18,19. Hence, a genuine π-allyl cation analogue based on heavier 
elements remains elusive. Due to its privileged place in the periodic 
table as the last stable element, the heaviest analogue of this cationic 
structure should be within reach using bismuth. A direct comparison 
of the frontier orbitals involved in bonding leads to the realization that 
a cationic triatomic complex of bismuth with formal oxidation state 
+1 for the three contiguous bismuth atoms (Bi)3

+ would be analogous 
to that of the carbon-based allyl cation (Fig. 1, right). This seemingly 

simple analogy presents an enormous synthetic challenge: examples 
of unsupported neutral or cationic dicoordinated Bi(I) compounds are 
rare20. Siddiqui et al. developed a cationic Bi(I) supported by two sterically 
encumbered cyclic alkyl(amino) carbene21, and Zhao and Mo reported a 
bis(silylene)-stabilized Bi(I) cation22. Recently, the group of Driess and 
Frenking developed a similar structure with germylenes as supporting 
ligands23. For many years, overlapping of large and diffused orbitals 
leading to chemical bonding between 5p and 6p orbitals was regarded 
as a challenge in organometallic chemistry24,25. However, this canonical 
notion has been challenged with several examples of heavy main-group 
elements (HMGEs) that form double and triple bonds, or all-metal φ- 
and σ-aromatic structures akin to the lightest main group elements24–33. 
Based on our recent findings on a monocoordinated bismuthinidene 1 
(ref. 34), here we present the synthesis, structure, characterization and 
reactivity of a unique cationic complex featuring three contiguously 
bonded bismuth atoms in a low oxidation state. The electronic structure 
calculations reveal the delocalization of two electrons through the non-
hybridized 6p orbitals of the trimetallic (Bi3)+ core—due to the low energy 
of the buried 6s2 orbitals—characteristic of the classical π-allyl cation.

Results and discussion
Synthesis and structure determination
When 1 was mixed with monohydrated tris(pentafluorophenyl)borane 
[(ArF5)3B·H2O] in PhMe-d8 at 25 °C, 2 precipitated from the mixture as 
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in the (Bi)3
+ core is properly represented by the calculations. A closer 

analysis of the electronic structure of the cationic core in 2 confirms 
that the two Bi1/3 are nearly equivalent and distinct from the bridging 
Bi2. As deduced from the analysis of the occupied orbitals, all bismuth 
atoms feature a non-bonding lone pair of electrons corresponding to 
the inert 6s2 (Fig. 3a). At the same time, the terminal bismuth atoms 
further engage in two-electron–two centre single bonds with the ligand 
framework as well as with Bi2 respectively. The central Bi2 atom forges 
single bonds with the terminal atoms instead. The remaining two 
valence electrons are delocalized over the three centres in the core. 
The Mayer bond order46 for the Bi1‒Bi2 and Bi2‒Bi3 bonds is equal to 
1.4, consistent with a bonding situation in which each Bi‒Bi pair is inter-
connected by one bond, each formally possessing a 1.5 bond order. In 
contrast, a value of 0.91 was found for the Bi‒CAr bond, as expected for 
single bonds. The calculated Mayer bond order for the Bi1‒Bi3 is only 
0.28, which is indicative of a very weak interaction between these two 
centres. In terms of charge delocalization, the outer Bi1/3 centres carry 
slightly more positive charge (natural population analysis (NPA) charge, 
∼+0.7) than the bridging Bi2 (NPA charge, ∼+0.15). These charges add 
up to more than one full positive charge due to the charge transfer 
of the Bi1/3 centres to the C1/57 which possess a negative charge of 
∼−0.34 each.

The ultraviolet–visible absorption spectra (UV–Vis) of com-
pounds 2 and 2′ show absorption bands at 27,701, 19,305, 12,887 
and 10,000 cm−1 (Fig. 4a, top). This was also calculated using time- 
dependent density functional theory (TD-DFT). These all-electron 
calculations were performed with and without the inclusion of spin- 
orbit coupling (SOC) using the X2C-relativistic Hamiltonian47 and 
the spin-orbit mean-field operator48 together with finite nucleus49,50 
and picture change corrections51. Singlet- and triplet excited states  
calculated from the scalar-relativistic TD-DFT calculations were 
allowed to interact via the SOC using quasi-degenerate perturbation 
theory. The resulting calculated spectra (Fig. 4a, middle and bottom) 
compare favourably with experiment if the SOC is included. In particu-
lar, the trailing intensity observed between 8,000 and 12,000 cm−1 
results from a series of singlet-to-triplet transitions that borrow inten-
sity via the SOC, while the main bands observed around 13,000 cm−1 
and 19,000 cm−1 are dominantly singlet–singlet based. Interestingly, 
the calculated spectra predicts that the observed intensities in the  
UV–visible spectra derive from transitions that all involve the same 
acceptor orbital, namely the lowest unoccupied molecular orbital 
(LUMO) of the Bi3 core. The first two excited states are of (Bi)3 σ → (Bi)3 
π* and (Bi)3 π → (Bi)3 π* in nature, and account for the bulk of the inten-
sity observed experimentally at 13,000 cm−1. The remaining transi-
tions all account for a complex set of ligand-to-metal charge transfer 
into the (Bi)3

+ π* acceptor orbital.

an air-sensitive, dark-brown solid. The protonated organic framework 
was obtained as co-product (Fig. 2a). Similarly, when 1 is mixed with 
Brookhardt’s acid [(Et2O)2H]·[BArF] (BArF = tetrakis[3,5-bis(trifluoro
methyl)phenyl]borate) in PhMe at 25 °C, the same cationic moiety is 
obtained, with BArF as the counterion (2′). The structure of 2 and 2′ were 
unambiguously determined by single-crystal X-ray diffraction (SC-XRD) 
which revealed their ionic nature. In both compounds, the cation is 
constituted by a triatomic bismuth core connected in a linear zigzag 
fashion with the bulky organic backbone; whereas [(ArF5)3B]2OH serves 
as counteranion in 2, BArF is the counteranion in 2′. In 2, the two dis-
tances between Bi1–Bi2 and Bi2–Bi3 (2.93428(12) Å and 2.93294(11) Å, 
respectively) are 2% shorter (∆d = 0.0571 Å) than the Bi–Bi single bond 
(2.990(2) Å) in 3 (Fig. 2c)35, and 3% longer (∆d = 0.08721 Å) than the Bi=Bi 
double-bond distance in dibismuthene 4 (2.8464(4) Å)34. Together 
with previously described bond lengths27,34–37, the distances in 2 fall in 
the range between a single and a double bond. At the same time, the 
Bi1−C1 and Bi3-C57 distances in 2 suggests a single bond (2.2833(16) Å 
and 2.2869(16) Å in 2 versus 2.2783(10) Å in 1) (see below)20,34,37,38. 
The observed C1‒Bi1‒Bi2, C57–Bi2–Bi3 and Bi1‒Bi2‒Bi3 bond angles 
(101.33(4)°, 101.24(4)° and 80.637(3)°, respectively) are indicative of 
the limited ability of bismuth to form hybridized sp2 orbitals, primarily 
due to the contraction of the 6s orbital as a consequence of relativistic 
effects27,39,40. In solution, compound 2 is stable in dicholoromethane-d2 
and could be fully characterized at 25 °C by NMR. At this temperature, 2 
exhibits a dynamic exchange behaviour, leading to a pseudosymmetric 
NMR dataset; however, this character is lost at −100 °C, in line with  
the crystal structure which possesses a P-1 space group (Supplemen-
tary Fig. 14). A single set of C(Ar)–F signals can also be observed at 25 °C,  
arising from the [(ArF5)3B]2OH anion. At lower temperatures, this  
equivalence is broken and three distinct C(Ar)–F groups appear, in  
agreement with previous observations for this anion41. The structural 
features and solution behaviour of 2′ resemble those of 2. Compounds 
2 and 2′ appear to be diamagnetic, and no signal was observed by EPR.

Theoretical and spectroscopic analysis
On the basis of the crystal structures, the geometric structure of the 
cationic moiety in 2 was optimized without constraints using the ORCA 
5.042 program suite together with the B3LYP functional43, the D3(BJ) 
dispersion correction44 and the def2-TZVP basis set with associated 
effective core potentials45. The obtained stationary point was confirmed 
to be a minimum through the calculation of harmonics frequencies. 
The calculated Bi1/3–Bi2 distance of 2.912 Å and the Bi1/3‒CAr distance 
of 2.295 Å (average) are in overall agreement with the SC-XRD data of 
2.93361(12) Å and 2.2851(16) Å, respectively. Given the strong sensitivity 
of the Bi‒Bi distance to the bond order between the two atoms, these 
results provide evidence for the notion that the electronic situation 

Common intermediate in synthesis
Well-established

Non-integer bond order between carbons

Heaviest analogue of π-allyl cation
π-conjugation through Bi(I)

Non-integer bond order between HMGEs

Two σ bonds
One π bond across three p orbitals

3c–2e bond

π-allyl cation π-bismallyl cation

Electronic features

Fig. 1 | The allyl cation system. Carbon-based π-allyl cation (left) and its heaviest stable analogue based on bismuth (right).
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Reactivity
The rich optical spectrum with all transitions having the same LUMO 
as acceptor points to the (Bi)3

+ core being electrophilic, and hence, 
facile single-electron transfer reduction should be within reach. 
Indeed, cyclic voltammetry of 2 in dichloromethane (DCM) reveals a 
reversible reduction wave at E1/2 = −0.95 versus Fc0/+, which we ascribed 
to the facile reduction to the corresponding fleeting π-allyl radical 
(Fig. 4b and Supplementary Figs. 19–23). Unfortunately, our attempts 
to isolate this paramagnetic congener of the starting complex 2 via 
chemical reduction have proven unsuccessful so far. The very low-lying 
LUMO and a highly electrophilic (Bi)3

+ core led us to explore complex 
2 as a potential electrophilic source of Bi(I) cations. Recently, some 
main-group-based complexes have been used as transfer agents to 
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Fig. 2 | Preparation of a trimetallic Bi(I)-based allyl cation and structure analysis. a, Synthesis of 2 and 2′. b, Solid-state structure of 2 at 100 K in two orientations 
(anisotropic displacement ellipsoids are displayed at a probability level of 50%; hydrogen atoms, anions and solvent molecules are omitted for clarity). c, Comparison 
of Bi‒Bi bond length and formal bond orders.
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Fig. 3 | Valence electronic structure of 2. a, Lewis structure representing the 
(Bi)3

+ core and the electrons involved in bonding. b, Calculated highest occupied 
molecular orbital (HOMO) containing the delocalized electron pair (purple, 6s 
orbitals; red, π orbital (above nodal plane); yellow, π orbital (below nodal plane).
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easily transfer pnictogen atoms52,53. When 2 was treated with a solution 
of organolithium reagent 5, N,C,N-bismuthinidene 6 was obtained in 
80% yield, with partial recovery of 1 (Fig. 4c). Such atom-transfer reacti
vity was also tested on the synthesis of an elusive tridentate polynitro-
genated Bi(I) complex, currently inaccessible due to chemoselectivity 
issues arising from the forcing reducing conditions required from the 
parent Bi(III). Indeed, 2′ reacts with 7 at 90 °C to forge compound 8 in 
35% yield as a blue crystalline solid. Complex 8 was isolated and com-
pletely characterized by NMR and high-resolution mass spectrometry 
(HRMS), and its connectivity confirmed by SC-XRD crystallography. 
The ability to shuttle Bi(I) atoms between two molecules represents 
a blueprint of reactivity that opens new avenues for the synthesis of 
low-valent bismuth-based compounds37,54.

Conclusions
We have synthesized genuine analogues of the π-allyl cation by replac-
ing the typical carbon-based framework with three contiguous bismuth 
atoms. The synthesis of these complexes demonstrates the ability 
of very diffuse and large frontier p orbitals of HMGEs to effectively 
overlap, similarly to their lighter congeners, thus allowing effective 
π-delocalization electrons. Intriguingly, the molecular architecture  
of the bismallyl cation is characterized by two Bi‒Bi bonds formally  
possessing a non-integer bond order. However, as expected when 
HMGEs are involved, the electronic description becomes more entan-
gled due to SOC and relativistic effects. Indeed, according to our inter-
pretation of the absorption spectrum, the intensity in the red region of 
the spectrum (∼700–900 nm) originates from triplet states that borrow 
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direction of the potential sweep. c, Reaction of 2 or 2′ as transfer reagent of Bi(I) 
cations. Yield and distribution of products 6 and 1 were determined by 1H NMR 
analysis of the crude mixture using 1,3,5-trimethoxybenzene as the internal 
standard. d, Reaction of 2′ as transfer reagent of Bi(I) cations towards the synthesis 
of a tridentate cationic Bi(I) complex 8 and its solid-state structure (SC-XRD at 
100 K where atomic displacement parameters are shown at a probability level of 
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intensity from their singlet counterparts by strong SOC mixing. This 
situation is highly characteristic of the heavy element bismuth which 
tends to break the established spin- and space-selection rules that 
govern the properties of most complexes bearing lighter main-group 
elements. In addition, due to the electrophilicity of the highly reduced 
(Bi)3

+ core, the compound can be used to effectively transfer a Bi(I) 
atom, providing a blueprint of reactivity for assembling materials and 
molecular architectures based on low-valent bismuth compounds. 
Overall, this complex expands the understanding of chemical bond-
ing in this area of the periodic table and sets novel boundaries in the 
chemistry of main-group elements towards conjugated systems.
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Methods
Synthesis of 2
In an argon-filled glovebox, 1 (80 mg, 0.085 mmol, 1.5 equiv.) and 
monohydrated tris(pentafluorophenyl)borane (BCF) (30 mg, 0.056, 
1.0 equiv.) were weighed in an oven-dried 12 mL vial, followed by the 
addition of 4.5 mL of anhydrous toluene. Upon stirring at 25 °C, a 
dark-brown precipitate is formed. The mixture is stirred for 1 h and 
diluted with 2.0 mL of anhydrous pentane. The heterogeneous mixture 
is transferred to a glass-fritted filter (porosity IV) and the solid mate-
rial is washed several times with anhydrous pentane (total amount 
15 mL). The dark-brown solid is dried under high vacuum to obtain 
2 (70 mg, 79%). 1H NMR (600 MHz, DCM-d2, 298 K): δ (ppm) 7.35 (d, 
J = 1.8 Hz, 8H, Ar-H), 7.21 (d, J = 7.9 Hz, 8H, Ar-H), 7.12 (dd, J = 7.9, 1.8 Hz, 
8H, Ar-H), 6.82 (s, 2H, H-1, Ar-H), 6.63 (bs, 1H, H-100, O-H), 2.11 (s, 8H, 
H-6, CH2), 1.50 (s, 24H, H-16, C(CH3)2), 1.23 (s, 72H, H-15, C(CH3)3). 13C 
NMR (151 MHz, DCM-d2, 298 K): δ (ppm) 157.6, 156.6, 156.4, 152.9, 148.0 
(dm, J = 240.3 Hz), 146.6, 140.0, 139.8 (dm, J = 248.2 Hz), 137.0 (dm, 
J = 247.7 Hz), 126.2, 125.0, 123.1, 122.2, 66.6, 58.4, 44.1, 35.1, 32.2, 32.1. 
The signal of C-101 (119.5 ppm) was only visible in a 13C{19F} NMR spec-
trum. 19F NMR (564 MHz, DCM-d2, 298 K): δ (ppm) ‒133.51 (bs), ‒159.74 
(t, J = 19.9 Hz), ‒165.79 (t, J = 20.2 Hz). The compound melts at 295 °C 
in a flame-sealed argon-filled capillary. HRMS (electrospray ioniza-
tion, positive (ESI pos)): calc. for C112H130Bi3

+ [M]+: 2101.95790; found: 
2101.9602. Anal. calc. for 2·toluene-d8 (C162H131D16B2Bi3F30O): C, 58.18; H, 
4.91; D, –; B, 0.65; Bi, 18.75; F, 17.04; O, 0.48; found: C, 58.30; H, 4.09; B, 
0.63; Bi, 18.58; F, 16.87. Deuterium and oxygen could not be measured.

Synthesis of 2′
In an argon-filled glovebox, 1 (126 mg, 0.133 mmol, 3.00 equiv.) and 
HBArF·2Et2O (45.0 mg, 0.044 mmol, 1.00 equiv.) were weighed in an 
oven-dried 25.0 mL Schlenk tube, followed by the addition of 4.00 mL 
of anhydrous toluene. Upon stirring at 25 °C, a dark-brown precipitate 
is formed. The mixture is stirred for 15 min and diluted with 2.00 mL 
of anhydrous pentane. The heterogeneous mixture is transferred to a 
glass-fritted filter (porosity IV) and the solid material is washed several 
times with anhydrous pentane (total amount, 20.0 mL). The dark-brown 
solid is dried under high vacuum to obtain 2′ (112 mg, 0.038 mmol, 
85%). 1H NMR (600 MHz, DCM-d2, 298 K): δ (ppm) 7.74–7.70 (m, 8H, 
Ar-H), 7.56 (s, 4H, Ar-H), 7.35 (d, J = 1.8 Hz, 8H, Ar-H), 7.22 (dd, J = 7.9, 
0.5 Hz, 8H, Ar-H), 7.12 (dd, J = 7.9, 1.8 Hz, 8H, Ar-H), 6.82 (s, 2H, Ar-H), 
2.11 (s, 8H, CH2), 1.49 (s, 24H, C(CH3)2), 1.23 (s, 72H, C(CH3)3). 13C NMR 
(151 MHz, DCM-d2, 298 K): δ (ppm) 162.2 (q, J = 49.8 Hz), 157.6, 156.6, 
156.39, 152.9, 146.6, 140.0, 135.4–134.8 (m), 129.3 (qq, J = 31.5, 3.0 Hz), 
126.2, 125.0 (q, J = 272.2 Hz), 124.9, 123.1, 122.2, 118.0–117.8 (m), 66.6, 
58.0, 44.1, 35.2, 32.2, 32.1. 11B (192 MHz, DCM-d2, 298 K) δ (ppm) ‒6.6. 19F 
NMR (564 MHz, DCM-d2, 298 K): δ (ppm) ‒62.9. The compound melts 
at 310 °C in a flame-sealed argon-filled capillary. HRMS (ESI pos) calc. 
for C112H130Bi3

+ [M]+: 2,101.95747; found: 2,101.95790.

Synthesis of 8
In an argon-filled glovebox, an oven-dried Schlenk tube is charged 
with 2′ (15 mg, 0.0044 mmol, 1 equiv.), and 7 (2.5 mg, 0.0052 mmol, 
1.2 equiv). Finally, anhydrous 1,2-dichloroethane (0.22 mL) is added 
and the tube is placed in an oil bath at 90 °C. After 20 h, the mixture is 
cooled to 25 °C and the volatiles are evaporated under high vacuum. 
The crude material is treated under an inert atmosphere with a 1:1 
mixture of toluene/pentane (3 mL in total) and the blue liquid phase is 
place into a vial at –35 °C. After 10 d blue crystals could be obtained in 
35% yield (2.4 mg, 0.0020 mmol) after washing the material with anhy-
drous pentane and drying it under high vacuum. 1H NMR (600 MHz, 
DCM-d2) δ (ppm) 9.11 (d, J = 7.8 Hz, 2H, Ar-H(pyridine)), 7.74–7.69 (m, 
8H, Ar-H(BArF)), 7.55 (s, 4H, Ar-H(BArF)), 7.43–7.35 (m, 6H, Ar-H), 7.07 
(t, J = 7.9 Hz, 1H, Ar-H(pyridine)), 3.99 (s, 6H, CH3), 2.42 (hep, J = 6.9 Hz, 

4H, CH(CH3)2), 1.17 (d, J = 6.9 Hz, 12H, CH(CH3)2), 1.09 (d, J = 6.8 Hz, 
12H, CH(CH3)2). 13C NMR (151 MHz, DCM-d2, 298 K) δ (ppm)168.8, 162.1 
(q, J = 49.8 Hz), 154.8, 141.7, 138.4, 135.9, 135.6–134.5 (m), 129.5, 129.3 
(qq, J = 31.5, 3.0 Hz), 125.0 (q, J = 272.4 Hz), 124.8, 118.0–117.8 (m), 29.4, 
25.6, 24.0, 19.7. 11B (192 MHz, DCM-d2, 298 K) δ (ppm) −6.7. 19F NMR 
(282 MHz, DCM-d2, 298 K) −62.8. The compound melts at 280 °C in a 
flame-sealed argon-filled capillary. HRMS (ESI pos) calc. for C33H43Bi1N3

+ 
[M]+: 690.32552; found: 690.32555. Anal. calc. for 8·toluene (C72H63B-
BiF24N3): C, 52.54; H, 3.86; B, 0.66; Bi, 12.70; F, 27.70; N, 2.55; found: C, 
52.46; H, 3.84; B, 0.67; Bi, 12.67; F, 27.64; N, 2.53.
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