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Summary
Background Transthoracic echocardiography (TTE) is the primary modality for diagnosing aortic stenosis (AS), yet it
requires skilled operators and can be resource-intensive. We developed and validated an artificial intelligence (AI)-
based system for evaluating AS that is effective in both resource-limited and advanced settings.

Methods We created a dual-pathway AI system for AS evaluation using a nationwide echocardiographic dataset
(developmental dataset, n = 8427): 1) a deep learning (DL)-based AS continuum assessment algorithm using
limited 2D TTE videos, and 2) automating conventional AS evaluation. We performed internal (internal test
dataset [ITDS], n = 841) and external validation (distinct hospital dataset [DHDS], n = 1696; temporally distinct
dataset [TDDS], n = 772) for diagnostic value across various stages of AS and prognostic value for composite
endpoints (cardiovascular death, heart failure, and aortic valve replacement).

Findings The DL index for the AS continuum (DLi-ASc, range 0–100) increased with worsening AS severity and
demonstrated excellent discrimination for any AS (AUC 0.91–0.99), significant AS (0.95–0.98), and severe AS
(0.97–0.99). DLi-ASc was independent predictor for composite endpoint (adjusted hazard ratios 2.19, 1.64, and 1.61
per 10-point increase in ITDS, DHDS, and TDDS, respectively). Automatic measurement of conventional AS
parameters demonstrated excellent correlation with manual measurement, resulting in high accuracy for
AS staging (98.2% for ITDS, 82.1% for DHDS, and 96.8% for TDDS) and comparable prognostic value to
manually-derived parameters.

Interpretation The AI-based system provides accurate and prognostically valuable AS assessment, suitable for various
clinical settings. Further validation studies are planned to confirm its effectiveness across diverse environments.
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Research in context

Evidence before this study
We screened all English-based research articles in PubMed up
to December 2023 using the keywords “artificial intelligence,”
“echocardiography,” “aortic stenosis,” and “aortic valve
stenosis.” While some studies have used artificial intelligence
(AI) to evaluate aortic stenosis (AS) in echocardiography,
these efforts were typically focused on either predicting
significant AS or automating conventional measurements,
not both. For instance, Wesler BS et al. trained a deep learning
model on 338 patients and validated it with 119 patients,
achieving an area under the receiver operating characteristic
curve (AUC) of 0.86 for distinguishing significant AS from
non-significant AS. In a larger-scale study, Holste G. et al.
trained a deep learning model on 5257 studies and validated
it using two external datasets (4226 and 3072 studies),
achieving high accuracy in detecting severe AS (AUC:
0.942–0.952). However, both models were limited to the
parasternal long-axis view and did not provide conventional
quantitative analysis. In contrast, Krishna H. et al. automated
conventional AS evaluation, demonstrating that AI could
accurately measure AS parameters like aortic valve maximal
velocity, mean pressure gradient, and aortic valve area in 256
patients, comparable to human measurements, but did not
perform qualitative assessment of AS. Additionally, while
Strange G et al. identified AI-based AS phenotypes linked to
mortality risk using data from echocardiographic reports, this
approach was based on tabular data rather than direct image
analysis, thus lacking the capability to assess AS severity from
imaging data.

Added value of this study
In this study, we developed a comprehensive AI-based system
to evaluate AS through a dual pathway: 1) assessing AS

presence and severity by deriving a DL index for the AS
continuum (DLi-ASc) from parasternal long and/or short axis
videos only, and 2) automatically measuring AS parameters
and providing conventional quantitative AS evaluation if
additional images are available. The system was validated
internally and in two independent external datasets, where
DLi-ASc increased with AS severity and demonstrated
excellent discrimination for any AS (AUC 0.91–0.99),
significant AS (0.95–0.98), and severe AS (0.97–0.99).
Additionally, DLi-ASc independently predicted adverse
cardiovascular events. The automatic measurement of
conventional AS parameters showed a strong correlation with
manual measurement, resulting in high accuracy for AS
staging (98.2% for internal test set, 81.0%, and 96.8% for
external test sets) and offered prognostic value comparable to
manually-derived parameters.

Implications of all the available evidence
AI-enhanced echocardiographic evaluation of AS allows for
accurate diagnosis of significant AS and prediction of severity
using only parasternal long or short axis views, typically
obtained in the first step of echocardiographic evaluation.
This capability can enhance AS assessment in resource-limited
settings and provide novices with guidance on when
quantitative analysis is necessary. If additional views are
appropriately acquired, the system automatically analyses
them, potentially enabling conventional quantitative
evaluation, thereby saving time and effort while ensuring
accurate assessment. However, further comparative
prospective studies are necessary to assess whether this AI-
based approach ensures these efficiencies without
inadvertently increasing diagnostic errors or adverse cardiac
outcomes compared to conventional, manual AS evaluation.
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Introduction
With the global increase in ageing populations, the
prevalence of degenerative disease like aortic stenosis
(AS) is rising, necessitating timely detection and man-
agement to prevent severe outcomes.1,2 Transthoracic
echocardiography (TTE) is the primary imaging modal-
ity for assessing AS, offering generally reliable results.
However, accurate AS staging requires advanced
equipment and expertise, particularly for assessment
with multiple measurements and Doppler analyses. In
non-specialised settings, such as those limited to point-
of-care ultrasound (POCUS), even Doppler acquisition
is not feasible, highlighting the potential of AI to assess
AS using limited images. Even in tertiary care centres,
the process remains labour-intensive, underscoring the
need for automated solutions that streamline AS eval-
uation by handling measurements and simplifying the
interpretation process.

Previous studies have typically focused on classifying
significant or severe AS using limited TTE image-most
commonly a single parasternal long (PLAX) axis view3,4

– or have proposed AI-based automation of conven-
tional quantitative analyses, assuming access to
advanced imaging setups.5 In contrast, we developed a
comprehensive artificial intelligence (AI)-based system
designed for applicability in both resource-limited and
advanced settings. Leveraging deep learning (DL), our
system assesses AS using only limited 2-dimensional
(2D) TTE videos – PLAX and/or parasternal short-axis
(PSAX) views. Unlike previous models that focus
solely on the classification of significant or severe AS,
our system is designed to reflect the full severity
continuum of AS. Simultaneously, it also automates
the measurements of a broad range of structural and
haemodynamic parameters, enabling the conventional
calculation of the aortic valve area (AVA) for a quanti-
tative assessment of AS. This paper details the devel-
opment of our AI-based system and demonstrates
its diagnostic and prognostic capabilities in AS
assessment.
www.thelancet.com Vol 112 February, 2025
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Classification Definition

Normal Vmax < 2 m/s without AV calcification

AV sclerosis Vmax < 2 m/s with AV calcification

Mild AS AV Vmax 2–2.9 m/s or mPG < 20 mmHg with AVA
> 1.5 cm2

Moderate AS AV Vmax 3–3.9 m/s or mPG 20–39 mmHg with 1 cm2

< AVA ≤ 1.5 cm2

Severe AS AV Vmax ≥ 4 m/s or mPG ≥40 mmHg with AVA
≤ 1 cm2

AV, aortic valve; AVA aortic valve area; AS, aortic stenosis; mPG, mean pressure
gradient; Vmax, peak aortic valve velocity.

Table 1: Definition of AV staging.
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Methods
Study population and data sources
The AI-based frameworks utilised in this study were
developed and validated using the Open AI Dataset
Project (AI-Hub) dataset, an initiative supported by the
South Korean government’s Ministry of Science and
ICT.6 This dataset consists of 30,000 echocardiographic
examinations retrospectively collected from five tertiary
hospitals between 2012 and 2021, covering a wide range
of cardiovascular diseases (Supplemental Methods 1).
The AI-based frameworks introduced here were all
developed using data extracted from the AI-Hub
dataset.7–9 To develop the DL-based AS continuum
assessment algorithm, a key focus of this study, we
assembled the Developmental Dataset (DDS) by delib-
erately excluding Severance Hospital data among five
hospitals. Instead, data from Severance Hospital were
used exclusively for external validation (Distinct Hospi-
tal Dataset, DHDS). Further external validation was
conducted using data collected from Seoul National
University Bundang Hospital in 2022 (Temporally
Distinct Dataset, TDDS). Detailed methodologies for
data utilisation in developing and validating the AI-
based system are in Supplemental Methods 1. As a
result, the DDS comprised TTE images from 8427 pa-
tients, while the DHDS included 1696 patients, and the
TDDS included 772 patients. The study followed the
Declaration of Helsinki (as revised in 2013). The insti-
tutional review board of each hospital approved this
study and waived the requirement for informed consent
because of the retrospective and observational nature of
the study design (2021-0147-003/CNUH 2021-04-032/
HYUH 2021-03-026-003/SCHBC 2021-03-007-001/B-
2104/677-004). Additionally, to establish and utilise the
TDDS, further IRB approval was obtained from Seoul
National University Bundang Hospital (approved no. B-
2305-827-002). All clinical and echocardiographic data
were fully anonymised before data analysis.

Echocardiogram acquisition and interpretation
All echocardiographic studies were conducted by trained
echocardiographers or cardiologists and interpreted by
board-certified cardiologists specialised in echocardiog-
raphy, following recent guidelines10,11 as part of routine
clinical care. To reflect actual clinical practice, parame-
ters were not re-measured for the study; instead, the
values from the clinical reports were used as ground
truth (GT) labels. AS presence and severity were deter-
mined in the DDS using the standard clinical criteria to
ensure appropriate training (Table 1).10 Cases with
discordant classifications – such as those where Vmax
and mPG fell into different severity categories (e.g.,
mild-to-moderate or moderate-to-severe AS) or low-flow
low-gradient (LFLG) severe AS cases with AVA < 1 cm2

but without severe-range Vmax or mPG – were excluded
from training to provide more consistent GT labelling
(Supplemental Methods 1). These cases were later used
www.thelancet.com Vol 112 February, 2025
to evaluate the performance of DLi-ASc. For the DHDS
and TDDS, the prior clinician’s decision regarding AS
severity in the clinical report was used as is, to better
reflect actual clinical practice. Consequently, cases like
LFLG severe AS were classified as severe AS based on
the clinician’s judgement. These cases were subse-
quently utilised to validate the discriminative power of
DLi-ASc.

AI-based system
We have developed a fully automated AI-based frame-
work that addresses AS evaluation through the dual
pathway, leveraging innovative and conventional meth-
odologies (Fig. 1). The operational sequence of this
system begins by automatically selecting the necessary
views, including the parasternal long-axis (PLAX), par-
asternal short-axis (PSAX) at the aortic valve (AV) level,
AV continuous wave (CW) and pulsed wave (PW)
Doppler, and left ventricular outflow tract (LVOT) PW
Doppler. In the DL-based AS continuum assessment
pathway, the algorithm evaluates AS using only the
PLAX and/or PSAX videos. Concurrently, the DL seg-
mentation network generates masks for each view in the
automated conventional AS assessment pathway. These
masks facilitate the measurement of LVOT diameter
from the PLAX view and analyse spectral Doppler im-
ages to ascertain key indicators such as AV peak velocity
(Vmax), AV velocity time integral (VTI), AV mean pres-
sure gradient (mPG), and LVOT VTI. Then, the system
calculates AVA, enabling quantitative evaluation of AS.
This AI framework represents the latest advancements
in our AI-driven valve evaluation module (USfeat_val-
ve.ai, Ontact Health, Korea), which integrates rigorously
validated features such as view classification and auto-
matic measurement capabilities.7,9,12 The following sec-
tions provide a detailed description of its component
and functionality.

View classification
To assess AS, we improved our preexisting view classi-
fication algorithm.7 The algorithm could already identify
the PLAX view, PSAX at the AV level, AV CW Doppler
from apical views, AV PW Doppler, and LVOT PW
3
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Fig. 1: AI-enhanced echocardiographic assessment of AS continuum. The illustration depicts a dual-pathway AI system for evaluating AS.
The top row illustrates the DL-based assessment of the AS continuum using limited views, providing a unique DL index for the AS continuum,
termed DLi-ASc. The bottom row demonstrates the automated AS assessment, which derives conventional echocardiographic AS parameters.
By integrating both pathways, our AI system enables accurate AS diagnosis and prognostication, making it broadly applicable in advanced and
resource-limited settings. AS, aortic stenosis; DL, deep-learning; DLi-ASc, DL index for the AS continuum.
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Doppler. We augmented it to recognise the PLAX-AV
zoomed views and the AV CW Doppler obtained from
the right parasternal view. Detailed information about
this development is in Supplemental Methods 2.

DL-based AS continuum assessment algorithm
Our objective was to develop a network that classifies AS
severity in a way that reflects its continuum nature
rather than just discrete categories. We used 3-
dimensional (3D) convolutional neural networks
(CNNs; r2plus1d18) as a backbone to separate spatial
and temporal filters (Supplemental Methods 3).13 This
network processes TTE videos - PLAX and/or PSAX at
the AV level - to output a score predicting the AS
severity, termed the DL index for the AS continuum
(DLi-ASc).

To achieve accurate classification reflecting the AS
continuum, we implemented bi-modal strategies: 1)
continuous mapping with ordered labels and 2) multi-
task learning with auxiliary tasks that predict numeric
parameters indicative of the AS continuum, such as AV
Vmax, mPG, and AVA. Conventional multi-class classi-
fication with cross-entropy loss was unsuitable for
reflecting the AS continuum as it fails to capture the
disease’s progressive nature due to equidistance be-
tween one-hot encoded severity levels. Instead, the
continuous approach assigns each severity level a value
between 0 and 1 (e.g., Normal: 0, Sclerosis: 0.25, Mild:
0.5, Moderate: 0.75, and Severe: 1) and trains the model
by minimising negative Bernoulli likelihood LBernoulli.
While this method reflects AS progression, it primarily
converts discrete labels into continuous values. To truly
capture the continuum and enable nuanced transitions
within and between severity levels, we incorporated
three auxiliary tasks predicting TTE parameters based
solely on 2D TTE videos. These tasks, predicting Vmax,
mPG, and AVA, provide rich information content,
allowing the network to learn anatomical features and
the motion of the AV. The loss function for each
auxiliary task is the mean squared error (MSE) between
the predicted and actual TTE parameter values: LVmax

MSE ,
LmPG
MSE , L

AVA
MSE . Training the network to predict continuous

TTE parameters allows it to capture both discrete tran-
sitions and subtle variations within each severity cate-
gory. For instance, it can distinguish between cases
classified as “moderate” closer to mild AS and those
nearing severe AS. The combined loss function in-
tegrates the negative Bernoulli likelihood and the MSE
losses for the auxiliary tasks Lcombined =
LBernoulli+λ(LVmax

MSE +LmPG
MSE +LAVAMSE), where λ is a weighting

parameter balancing the contributions of the classifica-
tion and regression tasks. Detailed network configura-
tions and implementation details are in Supplemental
Methods 3.

Finally, to determine the patient-level DLi-ASc, if
multiple PLAX or PSAX videos were available for a
www.thelancet.com Vol 112 February, 2025
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single patient, the DLi-ASc was extracted from each
video individually. Scores from PLAX and PSAX videos
were averaged separately. If only one view type (either
PLAX or PSAX) was available, its average score was used
directly. If both views were available, the final DLi-ASc
was calculated by averaging the scores from both
PLAX and PSAX views.

To develop and validate the model, we curated a DDS
consisting of TTE data from 8427 individuals. This
dataset was divided in an 8:1:1 ratio for training, vali-
dation, and internal testing purposes. Both the training
and validation sets contributed to model training,
parameter tuning, and early stopping (Supplemental
Methods 3).

While the DLi-ASc was designed to capture the
continuous nature of AS severity, establishing specific
cutoffs is essential for clinical decision-making. To
determine these cutoffs, we calculated the midpoint
between the mean values of each consecutive AS
severity category within the validation dataset
(Supplemental Methods 4). This yielded the following
DLi-ASc cutoffs: 24.6 for AV sclerosis, 45.4 for mild AS,
53.7 for moderate AS, and 69.7 for severe AS.

Automated conventional AS assessment algorithm
Our AI-based system also automates the conventional
method to calculate AVA and assess AS severity. It
segments anatomical structures and spectral Doppler
envelopes, followed by post-processing algorithms to
extract clinical measurements from the segmentation
masks. Additionally, the system integrates uncertainty
quantification to assess the confidence of the predicted
segmentation masks, ensuring the reliability of auto-
mated measurements.

We had previously developed and validated algo-
rithms to segment Doppler envelope capturing velocity
profiles and automatically measuring AV Vmax, AV VTI,
and LVOT VTI across all analysable cycles and images.8,9

Detailed information is provided in Supplemental
Methods 5.1.

In this study, to quantify AVA, we required addi-
tional functionality of automated LVOT diameter mea-
surement. To achieve this, we further developed a DL
network based on the SegFormer transformer architec-
ture to segment anatomical structures in the PLAX
view.14 This model can segment all anatomical struc-
tures visible in the PLAX view, including the left
ventricle (LV), LV septum and posterior wall, left atrium,
right ventricle, aorta, and even the mitral valve and AV,
enabling precise identification of the LVOT. Detailed
information is provided in Supplemental Methods 5.2
and Videos S1.

To ensure the reliability of automated measure-
ments, the system incorporates uncertainty quantifica-
tion by evaluating predictive entropy from the
segmentation network’s probability map, which com-
bines two sources of uncertainty: lack of knowledge in
www.thelancet.com Vol 112 February, 2025
DL (epistemic uncertainty) and poor data quality (alea-
toric uncertainty).15 The system identified cases that
require manual review due to poor image quality or
model uncertainty, at which point the automatic mea-
surement process was halted. Detailed methodologies
are provided in Supplemental Methods 6 and Videos S2.

Further technical details and performance informa-
tion for post-processing algorithms are provided in
Supplemental Methods 7 and Videos S1.

Ascertainment of clinical information and outcome
definition
The clinical data were acquired through a dedicated re-
view of electronic health records at the study in-
stitutions, including demographics (age, self-reported
sex, and body mass index), comorbidities (hypertension,
and diabetes), and the occurrence of clinical outcomes.
The primary clinical outcome was defined as a com-
posite endpoint of cardiovascular death, hospitalization
for heart failure, and AV replacement via surgical or
transcatheter approaches. Patients were censored at the
occurrence of any outcome event, or at the last date of
the follow-up or transferred to other institutions.

Validation of AI-based AS evaluation system and
statistical analysis
The performance of each stage in our AI-based framework
was validated using an internal test dataset (ITDS) and two
external datasets (DHDS and TDDS). Additionally, we
evaluated the execution time of each module, including the
DLi-ASc computation, PLAX auto-measurement, and
Spectral Doppler auto-measurement, across 20 repeated
runs. This analysis was conducted under the following
conditions: OS Windows 10, CPU Intel i7-8565U
@1.80 GHz, Memory 16 GB, and no GPU.

The view classification algorithm, which serves as the
shared initial step, was evaluated against human expert
labels. Precision, recall, and F1 scores were calculated
for each view, with overall accuracy determined by the
ratio of correctly classified images to the total number of
images. Following a manual review process, any mis-
classifications were corrected to ensure that subsequent
analyses were performed on accurately classified views.

The performance of the DL-based AS continuum
assessment algorithm was evaluated by examining the
distribution of the DLi-ASc across various stages using
violin plots. To verify that DLi-ASc accurately reflects the
continuum of AS progression, we used Uniform
Manifold Approximation and Projection (UMAP) to
visualise this relationship,16 projecting the data into a 2D
space, using 15 nearest neighbours, a minimum dis-
tance of 0.1, and the Euclidean distance. To highlight
the areas with the greatest influence on the model’s
prediction, we generated saliency maps using the
Gradient-weighted Class Activation Mapping (Grad-
CAM).17 We present representative samples for each
severity level in both PLAX and PSAX views.
5
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The conventional AS assessment algorithm was
validated by comparing AI-derived parameters with
manual measurements. Since these parameters are not
typically measured in normal or AV sclerosis groups,
the comparison was limited to the AS group. Moreover,
as manual measurements were not always available for
all AS cases, details on GT measurements availability
and the success rate of automatic measurements are
provided in Supplemental Methods 8. The failure of
auto-measurements was defined as instances where the
AI system was unable to estimate the target AS
parameter despite the availability of corresponding GT
values. The association between automated and manual
measurements was assessed using the Spearman cor-
relation analysis (r) and mean absolute error (MAE). The
AS severity determined from the automatic measure-
ments was also compared to the ground truth label
made by the clinician’s prior decision.

We also evaluated the discrimination ability of the
DLi-ASc and other AI-derived conventional parameters
for various stages of AS, including mild or greater AS
(any AS), moderate or greater AS (significant AS), and
severe AS. This evaluation was conducted through
receiver operating characteristic (ROC) curve analysis,
from which we calculated the area under the curve
(AUC).

Lastly, we assessed the prognostic capability of AI-
derived parameters for composite endpoints. Specif-
ically, we conducted a spline curve analysis for our DL
index, the DLi-ASc, to visualise its predictive power.
Additionally, we applied Cox regression analysis to
validate the prognostic relevance of the DLi-ASc and
other AI-derived AS parameters, with adjustment for
clinical risk factors (age, sex, body mass index, hyper-
tension, and diabetes).

Role of the funders
The study was supported by a grant from the Institute of
Information & communications Technology Planning &
Evaluation (IITP) funded by the Korea government
(Ministry of Science and ICT); and the Medical AI Clinic
Program through the NIPA funded by the MSIT. The
funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the
manuscript.
Results
Baseline characteristics
Baseline clinical characteristics and the distribution of
AS severity across three datasets is shown in Table 2:
ITDS (n = 841), DHDS (n = 1696), and TDDS (n = 772).
ITDS and TDDS exhibited a higher prevalence of mild
AS (28% and 41%, respectively), with fewer moderate
and severe cases. Conversely, DHDS displayed a more
balanced severity distribution (12% mild, 15% moder-
ate, and 12% severe, respectively).
View classification
Our view classification algorithm accurately identified
the required images for assessing AS across all datasets.
The overall accuracy rates were 99.6% for ITDS, 99.5%
for DHDS, and 99.4% for TDDS. Detailed metrics are in
Supplemental Results 1.

Performance of DL-based AS continuum assessment
algorithm
The DLi-ASc was calculated with an average processing
time of less than 2 s (1.8 ± 0.05 s). The distribution of
the DLi-ASc, produced by the DL-based AS severity
continuum assessment algorithm, exhibited a consis-
tent trend of increasing scores with the severity of AS
across all datasets (Fig. 2a). Interestingly, at the AV
sclerosis stage, the DLi-ASc already significantly
increased compared to the normal stage, indicating the
algorithm’s ability to detect early changes. The DLi-ASc
demonstrated an increasing trend as conventional pa-
rameters assessing AS severity, such as AV Vmax, mPG,
and AVA, worsened (Supplemental Results 2). Using
the stage-specific cutoffs derived from the validation
dataset, we evaluated the diagnostic performance for
identifying any AS, significant AS, and severe AS, with
results summarised in Table 3.

When discordant cases excluded from the training
dataset were reintroduced in the ITDS, DLi-ASc for
mild-to-moderate and LFLG moderate AS cases were
positioned between mild and moderate AS, while
moderate-to-severe and LFLG severe AS were distrib-
uted between moderate and severe AS (Supplemental
Results 3). Evaluating DLi-ASc’s ability to differenti-
ates LFLG severe AS cases from milder stages in DHDS
and TDDS showed strong discriminatory performance.
In DHDS, the AUC for distinguishing LFLG severe AS
from normal to mild AS was 0.97, and from normal to
moderate AS was 0.93. Similarly, in TDDS, the AUCs
were 0.97 and 0.94, respectively, for these comparisons
(Supplemental Results 4).

Furthermore, when we utilised UMAP to verify that
the DLi-ASc accurately represents the AS continuum,
the DLi-ASc, derived from the approach incorporating
both ordered labels and multi-task learning, displayed a
distinct continuous gradient from normal through AV
sclerosis to advancing AS stages, consistently evident in
ITDS and both external datasets (Fig. 2b). In contrast, a
conventional multi-class classification approach using 5-
class cross-entropy loss resulted in the stage-based
grouping but lacked the continuous progression seen
in our approach. The continuous mapping with ordered
labels approach, but without additional multi-task
learning to predict key TTE parameters, appeared
somewhat linear but did not accurately reflect the
severity progression (Supplemental Results 5).

For each severity level, we present representative
samples with Grad-CAM saliency maps overlaid on both
PLAX and PSAX views, specifically localising the AV
www.thelancet.com Vol 112 February, 2025
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Classification Developmental dataset (DDS) Distinct
hospital
dataset
(DHDS)
(n = 1696)

Temporally
distinct
dataset
(TDDS)
(n = 772)

Training
(n = 6743)

Validation
(n = 843)

Internal test
dataset (ITDS)
(n = 841)

AV staging

Normal 2627 (39%) 353 (41%) 310 (37%) 1037 (61%) 55 (7%)

AV sclerosis 1396 (21%) 148 (18%) 203 (24%) 0 (0%) 274 (35%)

Mild AS 2000 (29%) 263 (31%) 237 (28%) 209 (12%) 313 (41%)

Moderate AS 416 (6%) 50 (6%) 50 (6%) 251 (15%) 75 (10%)

Severe AS 304 (5%) 29 (3%) 41 (5%) 199 (12%) 55 (7%)

Age, years 68 (47–79) 68 (46–78) 69 (47–79) 57 (41–70) 77 (49–83)

Sex

Male 3401 (50%) 415 (49%) 424 (50%) 842 (50%) 390 (51%)

Female 3342 (50%) 428 (51%) 417 (50%) 854 (50%) 382 (49%)

Ethnicity

Asians 6743 (100%) 843 (100%) 841 (100%) 1696 (100%) 772 (100%)

Body mass
index, kg/m2

24 (22–26) 24 (22–26) 24 (22–26) 23 (21–25) 25 (22–27)

LVEF, % 64 (60–67) 64 (60–68) 64 (59–68) 66 (62–71) 63 (59–67)

Hypertension 726 (27%) 77 (23%) 87 (27%) 412 (64%) 96 (22%)

Diabetes 527 (19%) 81 (24%) 51 (16%) 179 (28%) 78 (18%)

AV, aortic valve; AVA aortic valve area; AS, aortic stenosis; LVEF, left ventricular ejection fraction. Values are
given as numbers (percentage) or median (interquartile range).

Table 2: Baseline characteristics.

Articles
(Fig. 3 and Supplemental Videos S3). These results
demonstrate that our model accurately identifies the
relevant regions for evaluating AS across all severity
levels and views without supervision.

Performance of automated conventional
assessment algorithm
For conventional AS evaluation, measurements of
spectral Doppler, including AV CW Doppler and LVOT
PW Doppler, as well as LVOT diameter, are required.
On average, each of these measurements took less than
0.5 s (0.2 ± 0.02 s) and less than 2.0 s (1.4 ± 0.13 s),
respectively. Among patients with AS and available GT
values, while some cases did not undergo automatic
measurement due to high uncertainty, in most in-
stances, our algorithm successfully performed auto-
matic measurements of AV Vmax (100% success rate)
and mPG (99.3–100% success rate) (Supplemental
Methods 8). These measurements demonstrated
strong correlations with the GT values for AV Vmax (r
0.962–0.974; MAE 0.08–0.14 m/s) and mPG (r
0.958–0.971; MAE 1.23–2.82 mmHg) (Fig. 4a). Besides,
the algorithm successfully measured the LVOT diam-
eter from PLAX videos, demonstrating robust concor-
dance with manual measurement (r 0.618–0.738; MAE
Fig. 2: The distribution of DLi-ASc according to AS severity and UMAP visualization. (a) The DLi-ASc, generated by the DL-based AS
continuum algorithm, showed a consistent trend of increasing scores with the progression of AS severity observed across both internal and
external datasets. (b) The UMAP plot demonstrates a continuous nonlinear gradient transition from the normal state (grey) through AV
sclerosis (yellow) to advanced AS stages (red), visually underscoring the DLi-ASc accurately representing the AS continuum. Abbreviations as in
Fig. 1: DHDS, distinct hospital dataset; ITDS, internal test dataset; TDDS, temporally distinct dataset; UMAP, uniform manifold approximation
and projection.
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AUC Accuracy F1 score Sensitivity Specificity PPV NPV

Any AS

ITDS 0.958 0.887 0.887 0.875 0.895 0.842 0.918

DHDS 0.996 0.970 0.970 0.929 0.996 0.994 0.957

TDDS 0.905 0.821 0.816 0.937 0.666 0.790 0.887

Significant AS

ITDS 0.979 0.948 0.949 0.802 0.965 0.737 0.976

DHDS 0.969 0.898 0.895 0.722 0.962 0.871 0.906

TDDS 0.949 0.912 0.912 0.746 0.945 0.735 0.948

Severe AS

ITDS 0.985 0.968 0.966 0.537 0.990 0.733 0.977

DHDS 0.969 0.943 0.939 0.603 0.989 0.876 0.949

TDDS 0.980 0.962 0.960 0.600 0.990 0.825 0.970

AUC, area under the curve; AS, aortic stenosis; NPV, negative predictive value; PPV, positive predictive value.

Table 3: Diagnostic performance of DLi-ASc cutoffs for identifying any AS, significant AS, and
severe AS.
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0.10–0.11 cm). The correlation for AVA, calculated from
these measurements, was also good (r 0.807–0.859;
MAE 0.18–0.18 cm2) but relatively lower than Vmax and
mPG, due to its dependence on multiple measure-
ments. Missing GT values resulted in fewer comparison
cases (Supplemental Methods 8), and accumulated dif-
ferences affected the overall accuracy. Nonetheless, the
accuracy of AS severity classification based on these
automated measurements remained strong (98.2% for
ITDS, 82.1% for DHDS, and 96.8% for TDDS) (Fig. 4b).
We reviewed cases where there were large discrepancies
between the GT and automatic measurements, and we
have provided representative cases in Supplemental
Results 6.

Comparison of diagnostic performance of two
different AI-based approach
The discrimination performance of DLi-ASc for various
stages of AS was generally excellent: AUC 0.91–0.99 for
any AS, 0.95–0.98 for significant AS, and 0.97–0.99 for
severe AS (Fig. 5). When compared to automatically
measured conventional parameters, in ITDS, the
discrimination performance of DLi-ASc was lower than
that of automatically measured Vmax and mPG but
comparable to AVA. In DHDS, the performance of DLi-
ASc surpassed AVA in diagnosing all stages of AS, while
in TDDS, it was comparable to AVA in diagnosing all
stages of AS. Furthermore, when comparing DLi-ASc’s
diagnostic performance with those of algorithms from
previous studies on AS evaluation, DLi-ASc showed
consistently superior accuracy in detecting any AS, sig-
nificant AS, and severe AS across all datasets. The
comprehensive results are available in Supplemental
Results 7.

Prognostic value of AI-based AS assessment
Across median follow-up period [ITDS: 956 (278–1730)
days, DHDS: 1435 (356–2140) days, and TDDS: 449
(174–563) days], 48 (15%), 349 (53%), 38 (9%) events
were observed for ITDS, DHDS, TDDS, respectively.
Analysis of spline curves across the ITDS, DHDS, and
TDDS showed that an increase in DLi-ASc correlated
with a rising risk of adverse clinical outcomes (Fig. 6).
The multivariable Cox regression analysis affirmed the
strong and independent prognostic value of DLi-ASc. A
10-point increase in DLi-ASc from limited TTE videos
was associated with hazard ratio (95% confidence in-
terval) of 2.19 (1.77–2.71) in ITDS, and 1.64 (1.52–1.78)
and 1.61 (1.31–1.99) in DHDS and TDDS, respectively
(Fig. 7). Moreover, the AI-derived parameters, such as
Vmax, mPG, and AVA, demonstrated prognostic values
comparable to those of manually-derived parameters
(Fig. 7).
Discussion
We have developed and validated a comprehensive AI-
based system to evaluate AS through a dual pathway:
1) assessing the presence and severity of AS using only
the PLAX and/or PSAX videos typically acquired early
during TTE, and 2) automatically analysing additional
views for conventional quantitative AS evaluation if ob-
tained. This dual approach enables accurate AS evalua-
tion across various settings, with internal and external
validation demonstrating excellent diagnostic accuracy
and strong prognostic capabilities.

While our AI-based system is not the first to evaluate
AS, it stands apart from previous studies in several key
aspects. First, our system provides both AS evaluation
using limited 2D TTE videos and automation of con-
ventional measurements. Prior research has typically
focused on one of these aspects. For instance, Krishna
et al. developed an AI model to automate quantitative AS
evaluation.5 However, their model did not include the
crucial initial visual analysis of the AV from 2D TTE
videos, which is essential for initiating conventional
quantitative AS analysis. Several studies used CNNs to
extract AS-related features from 2D TTE videos through
end-to-end learning without requiring Doppler
information.3,4,18,19 Although these studies achieved
decent performance in classifying AS severity, they lack
conventional evaluation of AS, compromising trust-
worthiness, explainability, and interpretation. In
contrast, our system integrates both approaches, iden-
tifying the potential for significant AS using parasternal
views typically acquired early in TTE, guiding the
acquisition of additional images for conventional AS
evaluation, and providing automated analysis of these
views. This approach not only predicts AS presence and
severity from parasternal views, as human experts do,
but also reduces workload by automating the subse-
quent conventional evaluation.

Another key strength of our study is that, unlike
previous research, it reflects the continuous nature of
AS progression. For instance, Wessler et al. trained
www.thelancet.com Vol 112 February, 2025

http://www.thelancet.com


Fig. 3: Explainability analysis using saliency map. The figure displays representative PLAX and PSAX views alongside their corresponding
Grad-CAM saliency maps during DLi-ASc calculation. The saliency maps highlight that the DL model accurately focuses on the AV. As AS severity
progresses from normal to severe AS, the model produces increasingly higher DLi-ASc scores, corresponding worsening AS. Abbreviations as in
Fig. 1: AV, aortic valve; PLAX parasternal long-axis view; PSAX, parasternal short-axis view.
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CNNs to classify AS severity into three categories (no,
early, and significant AS) using limited 2D images.4

Similarly, Ahmadi et al. proposed a transformer-based
spatiotemporal architecture to classify AS into four cat-
egories (normal, mild, moderate, and severe AS) by
capturing anatomical features and AV motion.18 Vaseli
www.thelancet.com Vol 112 February, 2025
et al. focused on model explainability in AS severity
classification, incorporating uncertainty estimation and
classifying AS severity into three classes (no, early, and
significant AS).19 However, these classifiers discretise
AS severity, losing the continuum information of AS.
Recently, Holste et al. proposed a binary classifier based
9
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Fig. 4: Concordance in AS diagnosis between DL-based automated assessment and conventional evaluation. (a) Across all datasets, the
auto-measured AS parameters (AV maximal velocity, mean pressure gradient, and valve area) strongly correlated with those obtained from
manual measurements. (b) Consequently, AS gradings from both methods exhibited a high concordance rate, ranging from 82.1% to 96.8%.
Abbreviations as in Figs. 2–4: AVA, aortic valve area; LVOT, left ventricular outflow tract; MAE, mean absolute error; mPG, mean pressure
gradient; r, Spearman Correlation Coefficient; Vmax, maximal velocity.
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on the 3D-ResNet18 architecture to detect severe AS,
observing that model probabilities generated increase
with AS severity.3 However, this model focused only on
a binary classification task (e.g., non-severe vs. severe),
not capturing the full range of AS severity levels in the
training stage. In contrast, our framework employs
continuous mapping with ordered labels, providing a
more nuanced representation of AS severity. Impor-
tantly, we use multi-task learning with auxiliary tasks to
predict continuous AS-related TTE parameters. This
approach not only transitions from discrete labels to
continuous values but also captures the underlying
continuum of the disease more effectively. In UMAP
visualizations, our model demonstrates a clear contin-
uous gradient from normal to severe AS, unlike other
classification models. Additionally, the appropriate dis-
tribution of DLi-ASc in discordant classification cases
further supports for our framework: for instance, the
DLi-ASc for mild-to-moderate AS cases was distributed
between mild and moderate AS categories, while
moderate-to-severe AS cases displayed DLi-ASc values
between moderate and severe AS categories. This
graded distribution aligns with the expected AS severity
continuum, underscoring the algorithm’s ability to
accurately assess AS severity even in discordant cases.
Our comparative analysis with prior AI algorithms for
AS evaluation,3,4 which primarily employed binary or
limited-category classifications, further supports the
superiority or our approach, underscoring its robustness
and potential clinical applicability.

Another value of this study lies in demonstrating the
independent prognostic potential of the DL-derived AS
severity index. While Strange G. et al. identified AS
phenotypes linked to mortality, their model relied on
tabular data from echocardiographic reports rather than
direct image analysis.20 Conversely, Oikonomou EK
et al. developed a video-based AI biomarker, the Digital
AS Severity index (DASSi), similar to our study.21 DASSi
(range 0–1) primarily predicted AV Vmax change per
year and AVR risk, showing a 4–5-fold increased AVR
risk for scores ≥0.2. Our study, however, derived the
DLi-ASc (range 0–100), reflecting the AV severity con-
tinuum, where a 10-point increase in DLi-ASc corre-
sponded to a 1.6–2.2-fold rise in the composite endpoint
risk, including mortality, HF admission, and AVR.
These findings reinforce the potential of image-based
digital markers for prognostication in AS management.

The implications of our AI-based system extend
beyond the reliable detection of significant AS; it also
can provide guidance for less experienced operators and
opportunities to identify and correct potential errors.
This functionality mirrors the role of human expert’s
visual evaluation in real-world practice. For example, the
system can accurately predict the presence and severity
of significant AS using only PLAX or PSAX videos,
guiding operators to acquire additional necessary im-
ages, which can then be used for automatic quantitative
AS evaluation. If image acquisition is suboptimal, as in
the case of improperly acquired AV CW Doppler, the AS
severity may be underestimated. Additionally, even
when AV CW Doppler is properly acquired, inexperi-
enced operators may struggle with the accurate inter-
pretation of LFLG severe AS. In such cases, a high DLi-
ASc could prompt a re-evaluation, accounting for
www.thelancet.com Vol 112 February, 2025
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Fig. 5: Diagnostic performances of DLi-ASc and other AI-derived conventional AS parameters across various stages. The discriminative
ability of DLi-ASc and other conventional AS parameters was consistently excellent for diagnosing any AS, significant AS (moderate to severe),
and severe AS across all datasets: (a) ITDS, (b) DHDS, and (c) TDDS. Abbreviations as in Fig. 2 and 4: AUC, the area under the curve; DLi-ASc, DL
index for the AS continuum.
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potential errors in image acquisition or analysis. This
expectation shaped our design of DLi-ASc to function
similarly to a human expert’s initial visual assessment;
thus, it provides assessment for all images regardless of
image quality. In contrast, the automatic measurement
process halts when high uncertainty or poor image
quality is detected to prevent inaccurate automatic
measurement. Despite these operational differences,
DLi-ASc demonstrated high discriminatory perfor-
mance, even for discrimination of LFLG severe AS.
Nevertheless, further well-designed prospective studies
are necessary to confirm whether DLi-ASc can reliably
aid in cases where measurements are challenging or
less dependable in clinical practices. Moreover, we
www.thelancet.com Vol 112 February, 2025
found that the DLi-ASc increases significantly from
normal levels at AV sclerosis and mild AS stages before
significant AS progression, which provides additional
value of our AI-based system. DLi-ASc is poised to
effectively monitor AS progression from preclinical
stages as a score-based tool. We anticipate the clinical
utility of our system becoming prominent, especially as
new pharmacological treatments are investigated for AS
prevention are explored.22,23 If such treatments become
available, our algorithm’s sensitivity in detecting early AS
stages will be highly advantageous. For sure, further
studies are needed to confirm whether DLi-ASc consis-
tently increases in tandem with AS progression, which
will be essential to expanding its clinical application.
11
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Fig. 6: Spline curves for composite outcomes associated with DLi-ASc. The risk of composite outcome gradually increased with higher DLi-
ASc across all datasets: (a) ITDS, (b) DHDS, and (c) TDDS. The solid lines represent the hazard ratio, and the blue shaded area represents the 95%
confidence interval. Abbreviations as in Fig. 2 and 4.
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The present study has some limitations. Although we
developed and thoroughly validated our AI-based system
using data from multiple centres, including internal and
external validation, all the data were retrospectively ob-
tained from tertiary centres in South Korea. Thus,
caution is needed in its interpretation and clinical
application. For instance, the diagnostic performance of
DLi-ASc observed in this study may vary in cohorts with
different pre-test probabilities. While the cut-off values
presented here may serve as reference points, additional
studies across diverse populations are essential before
clinical application. Furthermore, all echocardiographic
data used in this study were obtained from tertiary in-
stitutions, where skilled operators acquired TTE ac-
cording to the standard guidelines. However, minor
variations in echocardiographic image acquisition may
exist across institutions, which could introduce site-
specific biases in the underlying imaging data used for
Fig. 7: Prognostic value of DLi-ASc and AS parameters. The DLi-ASc sho
other AI-derived AS parameters were significant predictors for composite o
in Figs. 2–4: HR, hazard ratio.
the model development. Therefore, future validation
studies are necessary to ensure that the AI system
performs consistently on echocardiographic data
collected from different institutions. Especially, it re-
mains to be seen if the DLi-ASc will perform well on
TTE videos acquired in truly resource-limited and
novice settings. However, this also suggests that if
PLAX or PSAX videos are adequately acquired, the
DLi-ASc could potentially evaluate AS as accurately as
in advanced settings. Additionally, for the clinical
outcome analysis, the observational study design led
to some patients being lost to follow-up, which could
introduce selection bias related to incomplete follow-
up duration. Therefore, further studies are required
to confirm its diagnostic and prognostic performance
in various clinical environments and among different
populations and AS subtypes. We are planning addi-
tional validation studies in primary clinics and a
wed independent predictive value for composite outcomes. Similarly,
utcomes as well as manually-derived AS parameters. Abbreviations as
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multi-national study to address these concerns.
Additionally, although we designed the DLi-ASc to
reflect the AS severity continuum, it needs to be
verified whether the DLi-ASc increases progressively
with the natural progression of AS. This issue will be
addressed in future studies.

We developed and validated a comprehensive AI-
based system for evaluating AS. This system operates
through a dual pathway: it assesses the presence and
severity of AS using limited TTE videos and simulta-
neously automates conventional quantitative AS evalu-
ation. Internal and external validations demonstrated
excellent diagnostic accuracy and strong prognostic ca-
pabilities. While further validation in diverse clinical
settings is necessary, our system is expected to enhance
AS detection and evaluation in resource-limited settings
or by novices, while simultaneously reducing workload
in advanced settings.
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