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The mechanical properties and fracture behavior of concrete are controlled by aggregate 
characteristics, and the distribution of aggregates is uncertain. Traditional studies on concrete crack 
propagation mainly conduct deterministic analysis based on the position and size of the aggregates, 
rarely considering the uncertainty of aggregate distribution. Based on the Peridynamics (PD) theory, 
random distribution functions are introduced to describe the geometric characteristics and positional 
parameters of concrete aggregates. Simulating the effect of random distribution of aggregates on 
concrete crack propagation by presetting random aggregates. For the first time, the Boundary Damage 
Ratio (BDR) is proposed to quantitatively describe the influence of cement mortar and aggregate on 
crack propagation, revealing the influence rules of random aggregate parameters on concrete damage 
provides a new method for studying concrete crack propagation. The research results show that the 
size and position of aggregates determine the crack propagation path during concrete failure. The BDR 
can indicate the quality of the concrete grading and the intensity of the aggregate’s guiding effect on 
crack propagation. It was found that the aggregate size and the BDR follow a Weibull distribution; the 
larger the aggregate size, the smaller the shape parameter.
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The presence of cracks reduces the integrity of concrete structures, leading to a degradation of material 
performance. Aggregates, as a crucial component of concrete mix, form the skeleton of the concrete1–3. During the 
manufacturing and service life of concrete materials, the size, position, and mechanical properties of aggregates 
introduce significant uncertainties in the crack propagation process. Therefore, studying the initiation and 
propagation of cracks in concrete under random aggregate conditions holds significant engineering practical 
importance. Exploring the influence of cement mortar and aggregates on the crack propagation in concrete is a 
crucial issue in the field of concrete research.

Conventional analysis methodologies predominantly employ the finite element method (FEM)4,5 or extended 
finite element method (XFEM)6,7 to simulate the crack expansion of concrete. The FEM, as a simulation method 
based on the theory of continuous medium mechanics, requires constant mesh reconstruction during the 
crack extension process of the concrete model. The meshless method8 eliminates this mesh dependence, but 
it is difficult to use it as a desirable method to simulate crack extension due to the fact that its higher-order 
continuum approximation function nature is not applicable to solving the discontinuity problem when in the 
crack extension condition9. Extended finite element method, cohesive zone model (CZM)10 and lattice model11 
simulation methods are also commonly used in the numerical simulation of concrete models. However, the 
theoretical basis of the above methods is based on the spatial partial differential equations and continuity 
assumptions of the traditional theory of fracture mechanics. Cracks lead to discontinuities in the displacement 
field at the tip of the cracks, the partial derivatives do not exist, and the spatial derivatives of the partial differential 
equations lose their significance.

In 2000, Dr. Silling from the Sandia National Laboratories in the United States proposed the PD theory12. In 
2010, Huang, Zhang, et al.13 introduced it to China. The early PD theory was named "bond-based peridynamics." 
In 2007, Silling introduced more general equations to create "state-based peridynamics"14. PD theory, based 
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on its unique non-local numerical calculation methods, solves spatial integral equations to describe the 
forces on material points without requiring displacement derivatives. This makes it well-suited for addressing 
discontinuities, overcoming the limitations of traditional methods in dealing with such issues, and offering 
inherent advantages in simulating crack propagation15–19.

Due to the inherent advantages of PD theory in studying crack propagation, an increasing number of scholars 
have used PD theory to investigate the crack propagation process in concrete in recent years. Yang, Dong, et 
al.20 proposed a new damage model within the bond-based peridynamics (BBPD) framework to quantitatively 
study type I crack propagation in concrete. Huang, Kong, et al.21 conducted numerical studies on the dynamic 
tensile failure of concrete, proposing a PD-based model for this phenomenon. These research achievements have 
provided new methods for exploring the crack propagation process in concrete using PD theory but focused only 
on specific types of concrete without considering the role of aggregates in practical engineering. Wu, Huang, et 
al.17 used PD theory to simulate the dynamic fracture and failure of three-dimensional concrete structures. 
Zhang, Hou, and others22 studied the macroscopic mechanical properties and fracture processes of concrete 
under uniaxial tension. The research outcomes of Wu, Zhang, et al.23 incorporated the effects of cement mortar, 
aggregates, and the interfacial transition zone (ITZ) in the concrete model, aligning more closely with actual 
engineering concrete. However, considering the uncertainty and unpredictability of aggregate distribution in 
concrete, adopting non-deterministic analytical methods and computational approaches is necessary.

In conclusion, this paper considers the randomness of aggregate gradation, geometric parameters, and 
positions, and conducts numerical simulations of concrete fracture failure based on the Monte Carlo method. It 
introduces the BDR to describe the impact of aggregates on cement mortar during concrete failure, revealing the 
influence of aggregates on the macroscopic crack propagation of concrete.

Peridynamics theory
Basic principles of Peridynamics
In 2000, Silling et al.14 proposed the non-local Peridynamics (PD) theory to address the discontinuity issues 
inherent in both classical local and non-local continuum mechanics theories. Compared to classical continuum 
mechanics, PD is more suitable for describing fracture and material behavior, especially in the presence of 
significant cracks or damage.

Classical continuum mechanics theory, as a local theory, only assumes that a given material point interacts 
solely with its directly adjacent material points. The PD equation uses an integral equation form, allowing damage 
to occur at multiple locations within the material without the need for specific crack propagation criteria, and it 
can propagate along any path. The PD theory studies the physical phenomena involving the interactions between 
a material point and all other material points within its range of influence. As shown in Fig. 1, the influence range 
of a particle x(k) is defined by the horizon δ. The x(k) within the δ of x(k) is referred to as its family Hx(k) . The 
interaction between material points is controlled by the micropotential energy (a function of the deformation 
and the material’s intrinsic properties), and the localization of the interaction depends on the size of the horizon 
δ. The smaller δ is, the more localized the interaction is. Therefore, the classical elasticity theory can be regarded 
as the limiting case of the PD theory where the near-field range tends to zero23.

In classical continuum mechanics, the equations governing the motion of a material point or cell in the 
computational domain are usually expressed as23:

	 ρü(x) = ∇ · σ(x) + b(x)� (1)

where: ρ is the material density;u is the displacement vector;b is the body force vector.

The fundamental expression for the motion equations of the PD theory model is given by23:

	

ρ(x)ü(x, t) =
∫

H

[T(u′ − u, x′ − x, t) − T′(u − u′, x − x′, t)]dH + b(x, t)� (2)

Fig. 1.  Interaction among PD particles.
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where:ρ is the material mass density; u is the displacement vector of particle x;u′ is the displacement vector of 
particle x′;b is the body force density of external loads; T is the force density vector of particle x; T′ is the force 
density vector of particle x′;

The force density vector T represents the interaction forces between particles in the bond-based PD model. 
The force density vectors can be equal in magnitude and parallel in direction to the relative site vectors in the 
deformed configuration, as shown in Fig. 2, to satisfy the law of conservation of angular momentum.

This can be expressed as23:

	
T(u′ − u, x′ − x, t) = 1

2C
y′ − y

|y′ − y| � (3)

Where:y′ − y is the relative displacement;C  is an undetermined auxiliary parameter.
Combining Eqs. (2) and (3), we can derive the bond-based PD motion equation for particle x23:

	

ρ(x)ü(x, t) =
∫

H

f(u′ − u, x′ − x, t)dH + b(x, t)� (4)

where: f(u′ − u, x′ − x) is the point force response function, representing the force vector exerted by particle 
x′ on particle x per unit volume squared. Using µ to represent the relative displacement u′ − u between 
particles, and ξ to represent the relative position x′ − x, we obtain23:

	
f(η,ξ) = η + ξ

|η + ξ|csµ(t,ξ)� (5)

where:c is the micro-modulus function, for one-dimensional problems: c = 2E/Aδ2; for two-dimensional 
plane strain problems: c = 12E/πδ3(1 + v);for two-dimensional plane stress problems: c = 6E/πδ3(1 − v)
; for three-dimensional problems: c = 12E/πµ4;s is the relative elongation rate between particles; E is the 
tensile elastic modulus;v is the Poisson’s ratio.

During the PD solving process, it is necessary to compute the displacement of each particle and the elongation 
rate s0 between each pair of particles. When the elongation rate between a pair of particles exceeds the critical 
elongation rate, damage occurs. At this point, the value of the time-history scalar function µ is set to 0. 
Consequently, the corresponding interaction force density vector also disappears, and no force will act between 
them anymore. This process can be described using a scalar-valued function µ(η,ξ, t)23:

	
µ(η,ξ, t) =

{ 1, s < s0
0, other � (6)

The scalar-valued function s0 represents the critical elongation rate of the "bond," which is related to the fracture 
energy release rate in classical linear elastic fracture mechanics. s0 can be expressed in PD as23:

Fig. 2.  Deformation of PD particles x and x′ and the resulting paired force density vectors of equal magnitude 
and opposite directions.
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s0 =




√
4πG

9Eδ
, for two - dimensional problems

√
5G

6Eδ
, for three - dimensional problems

� (7)

where:G is the material fracture energy release rate;E is the elastic modulus;δ is the neighborhood radius.

Silling, Askari, et al.23 defined PD damage as the ratio of the number of broken bonds to the total number of 
bonds in the horizon δ of the material point φ(x, t) to describe the crack extension path with the expression:

	

φ(x, t) = 1 −

∫
H

µ(x′ − x, t)dV ′

∫
H

dV ′
� (8)

where: 0 ≤ φ ≤ 1,φ = 0 indicates no damage occurring to the material point, and φ = 1 indicates complete 
damage to that material point.

Numerical methods
The PD theory postulates that a family Hx(k)  of a particular material point is composed of countless material 
points, each possessing fundamental physical properties. For computational purposes, the material can be 
discretized as finite, uniformly shaped, and regularly arranged cubes. The length of the cube’s edge is denoted by 
∆x, and the volume of the cube is denoted by (∆x)3. These small cubes combine to form the basic structural 
model of the analyzed object. Compared to finite element methods, this discretization approach does not require 
complex meshing like finite element methods do. The resulting structure is simple and regular23.

The motion equations of the Peridynamics theory, considering the interactions between material point xi 
and other material points within its neighborhood δ, can be expressed in a discrete form23:

	
ρiui =

∑
j

f(un
j − un

i , xj − xi)Vj + bn
i � (9)

where:n is the time step number; ρi is the mass density of material point i;un
j  is the displacement of material 

point xi at time step n Vj  is the volume of the cube at material point j;bn
i  is the body force density exerted on 

material point xi at time step n.

Material points at the domain boundary contain portions that are both within and outside the horizon δ. 
Therefore, a volume correction factor is introduced. The volume of material point j is represented as23:

	
Vj =

{
(∆x)3, |ξ| ≤ δ − r
δ+r−|ξ|

2r
(∆x)3, δ − r < |ξ| ≤ δ

0, other
� (10)

In numerical simulation computations, it is necessary to set up boundaries as virtual boundary layers to impose 
different velocity boundary conditions. Therefore, setting boundary 3∆x as a virtual boundary layer, the time 
step ∆t satisfies the stability requirement according to the following equation 23:

	
∆t <

√
2ρ∑

Vk |C(xk − xi)|
� (11)

where: Vk  is the volume at material point k;C  is the stiffness matrix.

Establishment of random aggregates concrete model
There are various scales of aggregates within concrete, and existing analysis methods cannot fully encompass 
and predict this uncertainty. Therefore, based on the PD theory and the Monte Carlo statistical principle, this 
paper adopts a large-sample Monte Carlo random simulation method. By randomly generating aggregate 
models under different gradation conditions, it conducts large-sample PD simulations of concrete structures. 
This approach intuitively reproduces the failure paths of concrete under the uncertainty of aggregate size and 
distribution. Additionally, it establishes the BDR to statistically characterize concrete fracture and failure, 
achieving a transition from deterministic to non-deterministic analysis of concrete crack propagation.
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Model establishment
The 2D computational model of random aggregate concrete in this paper is shown in Fig. 3. The model has 
a length and width of 100  mm, with a pre-set circular opening of 7  mm radius at the center. The model is 
discretized into 200 material points along both the horizontal and vertical directions, excluding the circular 
opening at the center, resulting in a final model with a total of 40,584 material points.

Random aggregate model parameter definition
In the model, any material point x(k) has three possible relationships with other material points in its family 
Hx(k) : (1) cement mortar to cement mortar; (2) cement mortar to aggregate; (3) aggregate to aggregate. Therefore, 
the mechanical parameters of three materials need to be defined: cement mortar, aggregate, and the interface 
between cement mortar and aggregate. The parameter definitions24 for the random aggregate model are shown 
in Table 1. In this paper, the random aggregate concrete model considers only coarse aggregates, which account 
for approximately 40% of the overall model, while fine aggregates are negligible and can be considered as the 
same material as cement mortar. The coarse aggregates have a minimum particle size of 4.8 mm and a maximum 
particle size of 19 mm. Three gradations are designed: 4.8–10 mm, 10–15 mm, 15–19 mm, and a control group 
with unfavorable gradation of 4.8–19 mm. The random aggregate generation process is shown in Fig. 4.

For example, a random aggregate concrete model with a gradation of 4.8 mm-10 mm is generated, as shown 
in Fig. 5.

Boundary damage ratio (BDR)
The formula of boundary damage ratio
In concrete, coarse aggregates, often pebbles or crushed stones, are essential components of high-strength 
concrete and are not easily damaged. Investigating how the position and size of these aggregates affect the 
propagation of cracks in concrete is a challenging task. Traditional methods usually study the crack propagation 
in concrete with aggregates at fixed positions, but they fall short when it comes to studying crack propagation 
in concrete with aggregates at uncertain positions. To address these limitations, this paper, based on PD theory 
and the concept of Material Point Failure Probability Factor (PFP)25, introduces the novel BDR to quantitatively 
describe the influence of aggregates on crack propagation during concrete failure.

Material type Elastic modulus (GPa) Critical elongation (s0) Poisson’s ratio Density (kg/m3)

Cement mortar 27.8 0.02 1/3 1500

Aggregate 55.3 0.04 1/3 2500

Interface 25 0.01 1/3 1200

Table 1.  Mechanical Parameters of the Model.

 

Fig. 3.  Model Establishment.
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As shown in Eq. (8), crack propagation in PD theory can be described using the factor φ(x, t). When the 
initial value of φ(x, t) is 0, it indicates that no damage occurs at the material point x. When φ(x, t) is greater 
than 0, it indicates that damage has occurred at the material point x. In the random aggregate model used in this 
study, due to the high strength of the aggregates, any damaged material point will consist of either the aggregate-
cement interface or the cement mortar.

Therefore, the BDR can be calculated using the following equation:

	
γCAi=

1
ni

n∑
k=1

Na

Nc + Na
� (12)

where: γCAi represents the BDR for the gradation i, and ni represents the total number of samples calculated 
for the gradation i using large samples.k = (1,⋯, n).In the random aggregate concrete model, Na represents 
the number of material points where damage occurs at the aggregate boundary interface when the concrete 
is completely fractured. Similarly, Nc represents the number of material points where damage occurs in the 

Fig. 5.  Random Aggregate Model Diagram.

 

Fig. 4.  Schematic Diagram of Random Aggregate Model.
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cement mortar when the concrete is completely fractured. The calculation method of γCA under a single sample 
is shown in Fig. 6.

Through Eq. (12), the ratio of the total number of material points destroyed at the aggregate boundary to the 
total number of material points destroyed as a whole when the random aggregate model of concrete is completely 
destroyed under a certain level of mixing conditions can be calculated, i.e., the γCA. And in the destruction of 
the random aggregate model of concrete, due to the difference in the strength of the different materials, there 
is only the destruction at the boundary of the aggregate material points, and it is inevitable to drive the cement 
mortar material point damage, i.e., the γCA < 1.

Peridynamics method based on Monte Carlo simulation
The Monte Carlo method, also known as the statistical simulation method, is a numerical simulation approach 
based on probability and statistical theory. For complex problems such as investigating the influence of aggregates 
on concrete crack propagation, which are difficult to solve analytically, the Monte Carlo method proves to be an 
effective approach. The specific application steps in this paper are as follows:

	(1)	� Initialize the matrix and parameters in Fig. 4, generate material points in the random aggregate concrete 
model, and determine the horizon δ, boundary conditions, and other specifications in the PD theory.

	(2)	� Determine Monte Carlo random numbers based on the involved gradations.
	(3)	� Use the PD method to calculate the crack propagation and material point displacement in the concrete 

model, and compute the values for different gradations under large sample sizes. The algorithm flowchart 
in this paper is shown in Fig. 7.

Results and discussion
Method validation
In order to verify the validity of this approach, a comparative validation was carried out using the finite element 
software LS-DYNA R8.0.0 (https://lsdyna.ansys.com). A 100 × 100 mm two-dimensional concrete model was 
constructed with LS-DYNA software, featuring a pre-set circular hole with a diameter of 14 mm in the center 
and four circular aggregates with a diameter of 15 mm placed at different positions. The model includes three 
materials: cement mortar, aggregate, and the interface between them. The parameters such as density, elastic 
modulus, Poisson’s ratio, and critical stretch rate were set to be consistent with those listed in Table 1 of this paper. 
The comparison results between this method and the finite element software are shown in Fig. 8, demonstrating 
that the crack propagation results are essentially consistent, thereby effectively validating the correctness of this 
method.

By comparing with traditional deterministic methods, the effectiveness of this computational method has 
been demonstrated. Considering the uncertainty in aggregate gradation and distribution, this method has 
significant advantages over traditional methods, as shown in Fig. 9.

Results and discussion
As shown in Fig. 9, the PD method was used to simulate the uniaxial tensile failure behavior of concrete random 
aggregate models under four different gradations. A tensile crack propagation scenario was simulated for an 
aggregate-containing concrete model with impurities present in a certain cross-section (the white area in the 
model in Fig. 10). The model setup is shown in Fig. 10. The parameter settings are consistent with the initial 
settings and those described in section “Random aggregate model parameter definition”. This study investigates 
the crack propagation process and patterns of concrete tensile fracture failure behavior under different gradation 
conditions.

The influence of aggregates on concrete crack propagation
To study the influence of aggregate on concrete crack propagation, uniaxial tensile fracture simulations were 
conducted on models with four different gradations. The adaptive dynamic relaxation method is employed, with 

Fig. 6.  Calculation rules for γCA under a single sample.
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a time step size of 1 and a total of 2200 time steps for a single sample. The results are shown in Fig. 11. When 
the time step is 1200, each gradation begins to experience damage, and by the time step 2200, each gradation 
is fully damaged. When there are impurities in the central region of the aggregate-containing concrete model, 
stress concentration occurs in the central region, initiating damage there, accompanied by crack formation.
Comparing Fig. 10a with Fig. 11a, Fig. 10b with Fig. 11b, and Fig. 10d with Fig. 11d, it is evident that due to 
the weak bonding between the aggregate and concrete, cracks propagate rapidly along the aggregates near the 
central region during model failure, causing damage to the cement mortar material around the aggregate edges. 
In contrast, comparing Fig. 10c with Fig. 11c, when there are no aggregates in the small central region of the 
model, i.e., only cement mortar damage occurs, the failure rate is significantly slower than in the other three 
gradation models, and fewer cracks are produced.

According to Fig. 12, at 2200 time steps, all gradation models have been completely damaged. The aggregates 
in each gradation play a guiding role in crack propagation. After the model is damaged, the cracks rapidly 
propagate along the boundaries of the aggregates, leading to the failure of the cement mortar until the model is 
completely damaged.

Fig. 7.  Monte Carlo Process Flowchart Based on PD Method.
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The influence of aggregates on concrete crack propagation in different gradations
To further study the impact of aggregates on concrete crack propagation, Monte Carlo simulations were 
conducted for different gradation conditions. With a sample size of 1500, the results for the four gradation 
groups stabilized, as shown in Fig. 13.

The results of Na calculated using the PD method based on Monte Carlo simulations are shown in Table 2.
The results of Nc calculated using the PD method based on Monte Carlo simulations are shown in Table 3.
According to Table 2, the total number of material points damaged at the aggregate boundary Na in the 10–

15 mm and 15–19 mm gradation models remains relatively stable across different sample sizes, with the average 
value of Na showing no significant fluctuations and being relatively small. This indicates that the influence of 
aggregates in the 10–15 mm and 15–19 mm gradations is very stable, and the random distribution of aggregates 

Fig. 9.  Comparison between the Proposed Method and Traditional Methods.

 

Fig. 8.  Comparison between the proposed method and the LS-DYNA method.
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in the model has a minimal impact on crack propagation. In contrast, the Na value in the 4.8–10 mm gradation is 
significantly higher than in the 10–15 mm and 15–19 mm gradations, and the fluctuations are more pronounced.

According to Table 3, the total number of damaged material points in the cement mortar Nc is the lowest in 
the 15–19 mm gradation model under uniaxial tensile failure, followed by the 10–15 mm gradation, while the 
4.8–19 mm gradation has the highest Nc value after 1500 sample calculations. The γCA was calculated according 
to Eq. (12), and the results are shown in Table 4.

It can be seen that the γCA value for the 4.8–10 mm gradation is relatively larger compared to the 10–15 mm 
and 15–19 mm gradations, while the γCA value for the 4.8–19 mm control group shows a significant increase. 
The γCA value reflects the extent to which aggregate size and position influence crack propagation at the point 
of complete failure of the model. The results indicate that, with a reasonable gradation, larger aggregate sizes 
have a smaller effect on crack propagation. The following sections will further investigate the control effect of 
aggregates on crack propagation.

Based on the Monte Carlo large sample calculation of the γCA, the frequency distribution histogram is 
shown in Fig. 14. The results show that the γCA values of each gradation exhibit the highest frequency near their 
respective mean values. Additionally, the frequency distribution histograms for each gradation show that the 
number of samples with γCA values relatively smaller than the mean is significantly higher than the number of 
samples with larger γCA values.

By comparing the results of any two sets from the 15–19 mm graded model, as shown in Fig. 15, it can 
be observed that the presence of impurities in the central region of the model causes the crack propagation 
direction to tend toward horizontal expansion under tensile stress. When more aggregates are present in the 
horizontal direction of the model’s central position, the guiding effect of the aggregates on crack propagation 
becomes more apparent, resulting in more cracks generated by the model’s failure. Furthermore, due to the 
fewer number of aggregates in the 15–19 mm graded model and their relatively uniform distribution, the crack 
propagation process becomes more regular, the number of interface failures remains within a predictable range, 
and is relatively fewer compared to other gradations. Consequently, the concrete damage induced by aggregate 
failure is also less.

Fig. 10.  Random Aggregate Models under Four Different Gradations.
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As shown in Fig.  16, comparing two sets of 15–19  mm graded models with significantly different γCA 
values and their crack contour maps, we see that in Fig. 16a γCA is 0.1849, while in Fig. 16b γCA is 0.4468. 
The results indicate that in Fig. 16a, the crack propagation is less influenced by the aggregates, with only two 
boundary damages at range AB and CD. Conversely, in Fig. 16b, the crack propagation is strongly influenced by 
the aggregates, with only range EF showing cement mortar damage. From the comparison in Fig. 16, it is clear 
that in such a model with impurities in a specific cross-section, cracks tend to rapidly propagate horizontally 
along the nearby aggregate-cement mortar interface after being subjected to tensile stress, continuing to expand 
to the next aggregate-cement mortar interface. In the same gradation, when there are more aggregates near the 
central impurity area or in the horizontal direction, the crack propagation path depends on the driving effect of 
the aggregates, causing the γCA value to significantly increase compared to the average. Conversely, when there 
are fewer aggregates near the central impurity area or in the horizontal direction, the crack propagation extends 
in a straight line horizontally, causing the γCA value to significantly decrease compared to the average.

Comparing two sets of results from the 4.8–19 mm grading model control group, as shown in Fig. 17, it can 
be seen that when the number of aggregates in the model increases significantly, the crack propagation becomes 
more unpredictable during the model’s failure. Similarly, comparing Fig. 17a,b, when there are fewer aggregates 
in the horizontal direction at the center of different grading models, the crack propagation process in the central 
area is relatively similar. Figure 17b reveals that when the aggregate size disparity is too large and the aggregate 
positions are more concentrated in a certain model, the aggregates can cause extensive cracking in multiple 
locations within the model, significantly increasing the guiding effect of the aggregates, leading to a quicker total 
failure of the model. Therefore, in the case of poorly graded control groups, the aggregates completely dominate 
the formation of cracks and the subsequent concrete damage. The value of γCA is significantly higher than in 
models with proper grading, and due to the differences in aggregate size and quantity, the fluctuations in γCA 
across different samples are also more severe.

Therefore, when the concrete model containing impurities in the center undergoes failure under uniaxial 
tension, due to the weakness of the central area, the cracks tend to propagate rapidly in the horizontal direction 
from the impurity region. Because of the weak bond between the aggregates and the concrete at the interface, 
the aggregates play an important guiding role in crack propagation. In the 4.8–10 mm gradation and the control 
group of 4.8–19 mm gradation, where the aggregate size is small and the quantity is large, the guiding effect of 
the aggregates is stronger, resulting in a larger γCA value and a faster model failure. Conversely, in the 10–15 
mm and 15–19 mm gradations, the number of aggregates decreases, and the probability of aggregates near the 
impurity region also decreases. As a result, the guiding effect of the aggregates on crack propagation decreases, 
leading to a decrease in γCA value and a slower model failure rate.

Fig. 11.  Crack propagation cloud maps at 1200 time steps for four different gradations.
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To further investigate the relationship between the γCA value and different gradations, we fitted the histogram 
in Fig. 14. Based on the fitting results, the Weibull distribution conforms to the characteristics of the frequency 
distribution histogram. The Weibull distribution can be expressed by the following formula:

	
f(x) = b

a

(
x

a

)b−1
e−(x/a)b

, x ≥ 0� (14)

Fig. 13.  Mean of the BDR under a sample size of 1500 in the Monte Carlo method.

 

Fig. 12.  Crack propagation cloud maps at 2200 time steps for four different gradations.
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In the equation, a is the scale parameter, and b is the shape parameter. The fitting results are shown in Fig. 18.
From Fig. 18, it can be seen that the standard errors for the three gradations are 0.2318, 0.1851, and 0.1775, 

respectively. The frequency histograms of the three benign gradations conform to the Weibull distribution. 
According to the fitting results, the larger the gradation size, the smaller the shape parameter in the Weibull 
distribution, and the more stable the graph becomes. The results indicate that the crack propagation results 
are most stable under the 10–15 mm and 15–19 mm gradations, with the highest frequency of γCA around 
the mean value of 0.35. For the 4.8–10 mm gradation, due to the higher number of aggregates, the influence 
of the aggregates on crack propagation increases significantly, and the stability of the mean in the histogram 
distribution further decreases compared to the 10–15 mm and 15–19 mm gradations. For the control group with 
a 4.8–19 mm gradation, γCA is the largest, and the influence of aggregates on crack propagation is the greatest. 
The frequency distribution in the histogram clearly shows that this group has the poorest stability.

Conclusion
The present study utilizes the PD method, as outlined in Monte Carlo simulations, to examine the impact of 
randomly dispersed aggregates on the propagation of cracks in concrete with a central void impurity under 
varying gradations. The following conclusions were derived from the study:

	(1)	� A stochastic PD analysis method for concrete crack propagation that considers the random distribution 
characteristics of aggregates is proposed. By assigning random sizes and positions to the aggregates, the 
failure and damage paths of concrete can be more comprehensively represented.

	(2)	� The "Material Point Boundary Damage Ratio (BDR)" is a novel concept that has been introduced to quanti-
tatively analyze the influence of cement mortar and coarse aggregates on crack propagation during concrete 
failure. This approach offers a novel methodology for examining the uncertainty and crack propagation in 
concrete with random aggregates. Utilizing the Monte Carlo simulation PD method, frequency histograms 
were plotted for substantial samples, and the fitting outcomes were found to align with the Weibull distri-
bution.

Gradation type
Average value of γCA  for 300 
samples

Average value of γCA  for 
600 samples

Average value of γCA  for 
900 samples

Average value of γCA  for 
1200 samples

Average 
value of 
γCA  
for 1500 
samples

4.8–10 mm 0.3576 0.3579 0.3581 0.3577 0.3568

10–15 mm 0.3492 0.3519 0.3530 0.3523 0.3515

15–19 mm 0.3494 0.3515 0.3528 0.3533 0.3530

4.8–19 mm 0.3639 0.3626 0.3615 0.3616 0.3614

Table 4.  BDR γCA Calculated for Different Sample Sizes.

 

Gradation type
Average value of Nc  for 300 
samples

Average value of Nc  for 600 
samples

Average value of Nc  for 900 
samples

Average value of Nc  for 
1200 samples

Average 
value of 
Nc  for 
1500 
samples

4.8–10 mm 1701 1735 1753 1747 1746

10–15 mm 1645 1672 1668 1679 1675

15–19 mm 1663 1658 1652 1654 1659

4.8–19 mm 1701 1714 1702 1708 1710

Table 3.  Average values of Nc different gradations under different sample sizes.

 

Gradation type
Average value of Na  for 300 
samples

Average value of Na  for 600 
samples

Average value of Na  for 900 
samples

Average value of Na  for 
1200 samples

Average 
value of 
Na  for 
1500 
samples

4.8–10 mm 955 974 986 980 976

10–15 mm 895 922 924 927 923

15–19 mm 918 922 924 928 927

4.8–19 mm 989 991 980 982 984

Table 2.  Average values of Na different gradations under different sample sizes.
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	(3)	� A highly efficient parallel computing program for large Monte Carlo samples has been developed, enabling 
the study of concrete crack propagation patterns under uncertain aggregate conditions. This program has 
been demonstrated to achieve high computational accuracy while concomitantly enhancing efficiency.

	(4)	� Due to the weak adhesion between aggregates and cement mortar, cracks extend continuously along the 
edges of nearby aggregates during concrete failure. The location of the aggregates determines the crack 
propagation path. Concrete failure begins in the weak regions of the concrete (such as the central impurity 

Fig. 14.  Histogram of the Frequency Distribution of BDR γCA under the Monte Carlo Method with a Sample 
Size of 1500.
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area in this study). When aggregates are near these weak areas, the crack propagation speed increases, 
rapidly extending to the boundaries of other nearby aggregates. Additionally, both overly large or small ag-
gregate sizes enhance the guiding effect of aggregates on crack propagation. Smaller aggregate sizes increase 
the number of aggregates, leading to a dense model where cracks consistently develop along the aggregates. 
Larger aggregate sizes increase the circumference of the aggregates in the cross-section, lengthening the 
guiding distance and intensifying the guiding effect on crack propagation.

	(5)	� Due to the high strength of the aggregates themselves, concrete containing aggregates meets the material 
strength requirements and enhances stability. However, the weak adhesion between aggregates and cement 
mortar also causes crack propagation in concrete to be more severe under the guidance of aggregates. Im-
proving the adhesion between cement mortar and aggregates is an important issue for future research.

Fig. 15.  Cloud maps of complete fracture propagation in two groups of 15-19 mm gradation.
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Fig. 16.  Cloud maps of complete destruction cracks under different γCA values for two groups of 15–19 mm 
gradation.
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Fig. 17.  Complete fracture cloud maps for two sets of 4.8–19 mm gradation.
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Data availability
The datasets generated during and analysed during the current study are available from the corresponding au-
thor on reasonable request.
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