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Identifying neurobiological heterogeneity in clinical high-risk
psychosis: a data-driven biotyping approach using resting-state
functional connectivity
Xiaochen Tang 1,2,6, Yanyan Wei1,6, Jiaoyan Pang3, Lihua Xu 1, Huiru Cui1, Xu Liu1, Yegang Hu1, Mingliang Ju1, Yingying Tang1,
Bin Long1, Wei Liu2, Min Su4✉, Tianhong Zhang 1✉ and Jijun Wang 1,5✉

To explore the neurobiological heterogeneity within the Clinical High-Risk (CHR) for psychosis population, this study aimed to
identify and characterize distinct neurobiological biotypes within CHR using features from resting-state functional networks. A total
of 239 participants from the Shanghai At Risk for Psychosis (SHARP) program were enrolled, consisting of 151 CHR individuals and
88 matched healthy controls (HCs). Functional connectivity (FC) features that were correlated with symptom severity were
subjected to the single-cell interpretation through multikernel learning (SIMLR) algorithm in order to identify latent homogeneous
subgroups. The cognitive function, clinical symptoms, FC patterns, and correlation with neurotransmitter systems of biotype profiles
were compared. Three distinct CHR biotypes were identified based on 646 significant ROI-ROI connectivity features, comprising
29.8%, 19.2%, and 51.0% of the CHR sample, respectively. Despite the absence of overall FC differences between CHR and HC
groups, each CHR biotype demonstrated unique FC abnormalities. Biotype 1 displayed augmented somatomotor connection,
Biotype 2 shown compromised working memory with heightened subcortical and network-specific connectivity, and Biotype 3,
characterized by significant negative symptoms, revealed extensive connectivity reductions along with increased limbic-subcortical
connectivity. The neurotransmitter correlates differed across biotypes. Biotype 2 revealed an inverse trend to Biotype 3, as increased
neurotransmitter concentrations improved functional connectivity in Biotype 2 but reduced it in Biotype 3. The identification of
CHR biotypes provides compelling evidence for the early manifestation of heterogeneity within the psychosis spectrum, suggesting
that distinct pathophysiological mechanisms may underlie these subgroups.

Schizophrenia           (2025) 11:13 ; https://doi.org/10.1038/s41537-025-00565-6

INTRODUCTION
Psychiatric disorders, particularly schizophrenia, demonstrate
considerable heterogeneity across various dimensions, including
symptomatology, illness duration, and treatment response1,2. This
heterogeneity poses a significant challenge in understanding and
treating psychiatric disorders effectively, for example, existing
pharmaceutical treatments for schizophrenia achieve effective-
ness in only around fifty percent of patients3,4. The wide range of
outcomes—from complete recovery to persistent disability—
underscores the urgent need to resolve this heterogeneity. For
instance, Zhang et al. (2020) employed canonical correlation
analysis to identify three subtypes within the CHR population, with
one subtype defined by pervasive negative symptoms and
marked cognitive deficits carried a significantly elevated risk
(nearly 40%) of progressing to schizophrenia. Such a stark
difference in conversion rates reveals that not all CHR individuals
follow the same trajectory, and that specific subgroups may
benefit from intensified clinical monitoring and earlier interven-
tions. Therefore, by dissecting the psychosis into more homo-
geneous subgroups, clinicians and researchers can better predict
outcomes, allocate resources, and formulate targeted treatment
approaches.
Historically, the categorization of schizophrenia into subgroups

based on cognitive functions or symptomatic similarities has been

an attempt to address this heterogeneity5. Notable categories
include Type I and Type II schizophrenia, with Type I is associated
with positive symptoms like hallucinations and delusions, and
Type II is characterized by negative symptoms such as emotional
flatness and diminished motivation6. Additional categories, such
as deficit and non-deficit schizophrenia, aim to establish more
clinically homogeneous subgroups, often linked to severe
negative symptoms and poor functional outcomes7,8. These
categories emphasize the fact that schizophrenia’s heterogeneity
can be defined by both its etiology and symptomatology.
The advent of neuroimaging technology and machine learning

has revolutionized the identification of psychiatric subgroups.
These developments have made it possible for high-dimensional
brain imaging biomarkers to be used for data-driven research,
therefore allowing the segmentation of patient populations into
more physiologically homogenous groups. For example,
Planchuelo-Gomez et al.9 identified two MRI-based psychosis
subtypes varying in structural abnormalities, while Sun et al.10

discovered a subgroup of first-episode schizophrenia patients with
significant white matter damage and persistent negative symp-
toms. Moreover, studies by Dwyer et al.11 and Chand et al.12 have
further validated these findings by confirming the presence of
these subgroups at the onset of psychosis and highlighting their
clinical relevance in terms of symptom profiles and treatment
responses. Jiang et al.13,14 employed the SuStaIn algorithm on a
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large, multi-cohort dataset to identify two reproducible neuro-
structural subtypes in schizophrenia, one with early cortical loss
and another with early subcortical changes. Furthermore, Clem-
entz et al.15 used cognitive and electrophysiological data to
identify three biotypes with different degrees of neurocognitive
impairment. Later researches have validated these findings; for
example, compared to healthy controls, individuals from Biotype 1
exhibited the most severe impairment, whereas Biotype 3 showed
no significant differences16,17. This converging body of evidence
demonstrates the feasibility of data-driven subtyping in psychia-
try, highlighting diverse biological pathways within ostensibly
unitary diagnoses.
Nevertheless, some identified subtypes may reflect graded

impairments (e.g., volume loss or symptom severity) influenced by
factors like illness duration and antipsychotic exposure, especially
in chronic samples18,19. This has prompted a shift toward studying
Clinical High-Risk (CHR) psychosis20, where milder symptoms and
preserved reality testing enable the identification of early
neurobiological changes before chronicity and treatment effects
confound results. Despite minimal effects from medications or
disease progression, the CHR group exhibits considerable
variability in clinical outcomes, ranging from full recovery to the
development of severe psychiatric conditions21–24. To better
understand this variability, data-driven approaches have been
used to find possible clinical categories within the CHR population
depending on symptoms and cognitive function. For example,
Valmaggia et al. identified four clinical subtypes within a high-risk
cohort, with one subtype showing severe negative symptoms and
high rates of psychosis conversion (41.2%)25. Healey et al.
expanded on this by incorporating cognitive variables, further
validating the link between cognitive impairments and negative
symptom subtypes26. Notwithstanding this understanding, the
complexity of psychiatric disorders continues to pose challenges.
Grouping patients based just on clinical symptoms usually fails to
capture the underlying neurobiological processes, as evidenced
by conflicting findings regarding clinical conversion rates in
subtype of CHR2,27. Moreover, the model proposed by Cornblatt
et al.28 for predicting clinical conversion rates cannot be strictly
applied to similar samples in the CHR population with attenuated
positive symptoms29.
Existing subtyping studies of CHR and schizophrenia often rely

on clinical symptoms or structural MRI, which may not fully
capture the dynamic functional interactions within the brain. The
resting-state functional networks captures spontaneous brain
activity patterns, reflecting the functional organization of brain
networks30–32, which is crucial for understanding complex
psychiatric conditions like psychosis33–35. To so separate the
neurobiological variability of the psychosis spectrum, we present a
data-driven method employing machine learning and high-
dimensional biomarkers from resting-state functional networks.
The Single-cell Interpretation via Multi-kernel LeaRning (SIMLR)
algorithm, specifically designed for single-cell data analysis (which
shares similar high-dimensionality challenges), integrates multiple
data representations, capturing both local and global similarities
between individuals, leading to more accurate and stable subtype
identification36,37. We hypothesize that this approach will identify
and validate distinct neurobiological biotypes of CHR, suggesting
that biological heterogeneity precedes the onset of psychiatric
disorders. Unlike schizophrenia biotypes that differ along a
singular dimension, CHR biotypes are expected to exhibit distinct
neurobiological patterns, providing deeper insights into the
pathophysiology of psychiatric disorders.

METHODS AND MATERIALS
The study received approval from the Institutional Review Board
of the Shanghai Mental Health Center, which also serves as the
recruitment site for the Shanghai At Risk for Psychosis (SHARP)

program (Ethical No.2020-100). Written informed consent was
obtained from all participants or their legal guardians.

Participants
This study recruited 239 participants from the SHARP program,
comprising 151 CHR subjects and 88 age, sex, and education-
matched healthy controls (HCs)38. Initial screening involved the
self-report Prodromal Questionnaire-Brief version (PQ-B)39. Pro-
spective participants qualified if they met at least one criterion of
the prodromal syndrome during the Structured Interview for
Prodromal Symptoms/Scale of Prodromal Syndromes (SIPS/SOPS)
in a face-to-face interview40. Additional inclusion criteria were an
age range of 13–45 years and a minimum of 6 years of education.
Exclusion criteria included severe somatic diseases and substance
dependence. Over 95% of the CHR subjects were drug-naive at
the time of enrollment.
Neurocognitive assessments for both CHR and HC subjects were

conducted using the Chinese version of the Measurement and
Treatment Research to Improve Cognition in Schizophrenia
(MATRICS) Consensus Cognitive Battery (MCCB)41. This battery
included the Trail Making Test: Part A (TMT), Brief Assessment of
Cognition in Schizophrenia: Symbol Coding (BACS_SC), Hopkins
Verbal Learning Test-Revised (HVLT-R), Wechsler Memory Scale-
Third Edition (WMS-III): Spatial Span, Neuropsychological Assess-
ment Battery (NAB): Mazes, Brief Visuospatial Memory Test-
Revised (BVMT-R), Category Fluency Test: Animal naming (Fluency)
and Continuous Performance Test-Identical Pairs version (CPT_IP).
Overall functioning was assessed using the global assessment of
functioning (GAF). The other inclusion criteria included an age
range of 13–45 years and ≥6 years of education, while the
exclusion criteria included severe somatic diseases and substance
dependence.

Image acquisition and preprocessing
Neuroimaging data were acquired using a 3 T Siemens MR B17
(Verio) system equipped with a 32-channel head coil. For the T1-
weighted images, a magnetization-prepared rapid gradient echo
(MP-RAGE) sequence was used with the following parameters: TR,
2500ms; TE, 2.96 ms; FA, 9°; 256 × 240 matrix; voxel size, 1 mm3,
and 192 slices. For resting-state functional MRI (rs-fMRI) scans, a
gradient echo planar imaging sequence was used with the
following parameters: TR, 2500 ms; TE, 30ms; FA, 90°; field of view
(FOV), 224 mm× 224mm, 64 × 64 matrix; slice thickness, 3.5 mm;
and 37 interleaved axial slices. A total of 149 volumes of 2.5-s TR
each (total duration ~6min) were collected during the eyes-open
and awake resting states. Participants were instructed to maintain
fixation on a white cross displayed at the center of a black screen
during the scan. If any excessive head movement or signs of sleep
were observed, the scan would be repeated.
Functional connectome reconstruction was performed using

Conn (v21b)42 and SPM1243 software, using a flexible preproces-
sing pipeline including realignment, slice-timing correction, outlier
detection, segmentation of gray matter, WM, and cerebral spinal
fluid (CSF), normalization to the Montreal Neurological Institute
space, and smoothing using an 8mm full width at half maximum
Gaussian filter44. Potential outlier scans were identified using
ART45 as acquisitions with framewise displacement above 0.9 mm
or global BOLD signal changes above 5 standard deviations46, and
a reference BOLD image was computed for each subject by
averaging all scans excluding outliers.
Additionally, functional data were denoised using a standard

denoising pipeline44, which included regression of potential
confounding effects characterized by white matter timeseries (5
CompCor noise components), CSF timeseries (5 CompCor noise
components), motion parameters and their first order derivatives
(12 factors)47, outlier scans (below 41 factors) session effects and
their first order derivatives (2 factors), and linear trends (2 factors)
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within each functional run. Following the regression of motion
covariates, WM, and CSF signals, the residual time signals were
band-pass filtered with a 0.008–0.09 Hz range. To account for
possible transient magnetization effects at the beginning of each
run, individual scans were weighted by a step function convolved
with an SPM canonical hemodynamic response function and
rectified. ROI-to-ROI functional connectivity was computed
between each region of the Chinese Brain Atlas48 at the individual
level, resulting in a 246 × 246 correlation matrix with Fisher-
transformed bivariate correlation coefficients.

Biotype construction and validation
To identify the latent homogeneous subgroup of CHR subjects,
the single-cell interpretation through multikernel learning (SIMLR)
algorithm was performed based on FC features correlated with
symptom severity. SIMLR represents a novel unsupervised
clustering method that utilizes multiple kernels to uncover the
inherent low-dimensional statistical representations of high-order
data37. Unlike hierarchical clustering methods and the self-
organizing map (SOM) approach, SIMLR employs a data-driven
heuristic to estimate the optimal number of clusters, thus
reducing the subjectivity and arbitrariness in user-defined
methods.
The primary steps in biotype construction involve optimizing

hyperparameters and conducting final cluster analysis. These
steps encompass feature selection, clustering via SIMLR, and
cluster quality evaluation. Hyperparameter optimization is repeat-
edly conducted to determine the most robust number of clusters
through a loop operation involving a random subset of 90% of the
subjects. During each of the 500 iterations, clinical symptom
scores are analyzed in conjunction with FC strengths to identify
features significantly associated with at least three symptoms
(p < 0.005). These selected connectivity features are then pro-
cessed through SIMLR’s internal heuristic cost function to estimate
the optimal number of clusters and corresponding cluster labels.
The results, including the number of features selected, are logged
for subsequent validation. To assess the reproducibility of the
clusters across iterations, a multiclass support vector machine
(SVM) model, specifically using the “fitcecoc” function in Matlab, is
trained on the selected connectivity features49. This model uses
tenfold stratified cross-validation to differentiate between
biotypes.
Throughout the process of random subsampling, the estimated

optimal number of clusters was consistently three in 390 out of
the 500 iterations. Given this strong evidence, the final clustering
analysis was conducted on all CHR samples using three clusters as
the predetermined number of categories. The stability of this final
clustering solution was evaluated using the Normalized Mutual
Information (NMI) index50, a measure that quantifies the similarity
between two sets of cluster assignments and assesses the stability
of our final clustering relative to the iterative process. Further-
more, a multiclass Support Vector Machine (SVM) was employed
to learn and predict the cluster labels. This process involved
tenfold cross-validation and was repeated 500 times with random
sampling to ensure the robustness and accuracy of the
predictions.

Statistical validation
The comparative analysis of biotype profiles in terms of cognitive
function and clinical symptoms was conducted using SPSS
(version 16.0, SPSS Inc., Chicago, IL, USA). Demographic and
clinical characteristics were evaluated using suitable statistical
methods, including independent t-tests or one-way analysis of
variance (ANOVA) for continuous variables, and chi-square tests
for categorical variables. Differences in FC between the three
identified biotypes and the healthy control (HC) group were
assessed using cluster-based parametric multivariate statistical

analysis, with adjustments for gender, age, and education level. A
connection threshold was set at an uncorrected p-value of less
than 0.005, and cluster-level significance was corrected for false
discovery rate (FDR) at a p-value of less than 0.05.
To elucidate the neurochemical underpinnings of observed FC

differences, we implemented a series of correlation analyses
between the connectivity patterns and neurotransmitter distribu-
tion. Specifically, the differential connectivity patterns between
each biotype and HC were binarized at a significance threshold of
p < 0.005. The resulting binary matrices were summed along the
ROI dimension, separately for positive and negative difference
relative to HCs for each biotype. This process yielded a
representation of node abnormality across the Brain Atlas with
246 ROIs. Next, the neuromaps.parcellate.Parcellater class was
employed to transform and parcellate neurotransmitter image
files, extracting the mean value within each region of the 246
ROIs51. Finally, we computed correlations between these con-
nectivity patterns and mean neurotransmitter distribution for the
39 mean receptor distribution maps52 https://github.com/
netneurolab/hansen_receptors/tree/main/data/PET_nifti_images,
producing a correlation matrix and corresponding p-values. To
mitigate the risk of false positives due to multiple comparisons,
the p-values were adjusted using the mafdr function in Matlab
with BHFDR parameter.

RESULTS
Demographic, clinical, and cognitive profiles of CHR biotypes
The demographic, clinical, and neurocognitive characteristics of
the participants are detailed in Table 1. The CHR group was
comparable to the HC group in terms of demographic character-
istics such as sex, age, and education. While the CHR group
exhibited more pronounced symptoms than the HC group, there
were no significant differences among the three CHR biotypes in
this regard. It is important to note that negative symptoms were
marginally significant (p= 0.091), but post-hoc comparisons
indicated that Biotype 3 exhibited greater symptom severity
compared to Biotype 1 (p= 0.040, Fig. 2A). Performance on MCCB
tests was significantly poorer in the CHR group compared to
controls (p < 0.002, Fig. 2C), with the exception of the CPT-IP,
which had a p-value of 0.090. Among the three biotypes, only the
WMS-III_SS test showed statistical significance (p= 0.023), and
post hoc comparisons revealed that Biotype 2 was significantly
worse than Biotypes 1 and 3 (p= 0.017 and 0.045, respectively) in
spatial working memory performance (Fig. 2B).

Identification and stability evaluation of CHR biotypes
Among 30,135 pairs of ROI-ROI features, 646 pairs exhibited a
significant correlation with SIPS symptoms (p < 0.005) among 151
CHR subjects who underwent subsequent clustering (Fig. 1A, B).
These connectivity features were distributed among the subcortical,
somatomotor, ventral attention, and visual networks (Fig. 1C). Three
clusters were identified based on the search procedure implemented
in the SIMLR algorithm, and the optimal number of three clusters was
consistent with previous biotype studies, particularly the B-SNIP
project. The identified biotypes comprised 29.8%, 19.2%, and 51.0%
of the CHR samples, respectively.
To assess cluster stability, a multiclass model of the Support

Vector Machine (SVM) classifier was trained to recognize the
distinctive patterns of FC in the training subset using tenfold
cross-validation. The optimized classifier achieved overall accuracy
rates of 98.45% and 84.54% for the training and testing sets,
respectively. For individual biotypes, the predicted accuracies
were 97.86%, 98.29%, and 98.68% for training, and 82.18%,
85.60%, and 85.56% for testing across Biotypes 1, 2, and 3
respectively (Fig. 1D). As illustrated in Fig. 1E, the SIMLR clustering
consistently shows higher NMI values, with the majority falling
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between 0.3 and 0.6, indicating stable and reliable cluster
assignments. In contrast, the random shuffling of labels results
in significantly lower NMI values, predominantly below 0.1,
demonstrating poor clustering stability. The NMI results thus
suggests that the clustering solution produced by SIMLR is robust
and not due to random chance.

Functional connectivity patterns across biotype
As depicted in Fig. 2, each biotype exhibited distinct patterns of
FC (FC) abnormalities when compared with HC (Supplementary
Table B123 vs HCs Stats Table). For Biotype 1, there were
enhanced connections within the bilateral somatomotor networks
(Fig. 2D) and reduced connections between the visual and
subcortical networks (Fig. 2E). Biotype 2 showed pronounced
increases in connectivity among bilateral subcortical networks,
including the nodes of the thalamus (45%), striatum (44%),
amygdala (6%), and hippocampus (3%). This biotype also
demonstrated increased connectivity between the visual, dorsal
attention, and somatomotor networks. Notably, there were clear
reductions in connectivity observed between bilateral visual
networks and between the somatomotor and subcortical net-
works. In Biotype 3, the pattern was primarily characterized by
increased connectivity between limbic and subcortical networks,
as well as between limbic and somatomotor networks. There was
a broad distribution of reduced connectivity across various
networks, with the exception of the visual and dorsal attention
networks. The most significant reductions in connectivity were
noted cross-hemispherically, involving bilateral subcortical and
somatomotor networks. The biotype-specific abnormalities fol-
lowed a progressive pattern, where Biotype 1 exhibited the

mildest abnormalities and Biotype 3 the most severe. Further-
more, contrasting patterns of connectivity were observed
between the bilateral somatomotor networks (Biotype 1 vs.
Biotype 2, Biotype 3) and within subcortical areas, including the
thalamus and striatum (Biotype 2 vs. Biotype 3, Fig. 2F).

Neurotransmitter correlates of abnormal functional
connectivity
The results of correlation analyses offer an exploratory
examination of the relationship between aberrant across
CHR biotypes and various neurotransmitter systems, including
serotonin, acetylcholine, norepinephrine, dopamine, and opioid
systems (Fig. 3). Regarding the increased functional connectivity
relative to HC, B2 demonstrated the most extensive correlations with
neurotransmitter systems, including serotonin transporters (5-HTT;
r≈ 0.62–0.74), dopamine D1 and D2 receptors (r ≈ 0.54–0.70),
dopamine transporter (DAT; r≈ 0.62–0.66), and vesicular acetylcho-
line transporter (VAChT; r ≈ 0.72–0.74). B1 had limited associations,
with only a positive correlation of norepinephrine transporter
(NET; r= 0.246), while B3 showed no significant correlations after
Bonferroni correction. Regarding the decreased functional connec-
tivity, B3 exhibited moderate to strong correlations with serotonin
transporters (r ≈ 0.49–0.53), dopamine systems (D1, D2, DAT;
r≈ 0.13–0.32), norepinephrine transporter (r≈ 0.29–0.43) and other
receptor systems such as M1, CB1, and MOR (r ≈ 0.20–0.52).
Moreover, the pattern of associations between enhanced functional
connectivity in B2 and neurotransmitter concentration distributions
follows an overall opposite tendency to the pattern identified in
regions with lower functional connectivity in B3. Further details of the
correlation results can be found in the supplementary materials.

Table 1. Demographic, clinical and neurocognitive variables.

Variables CHR HC t/χ2 p Biotype 1 Biotype 2 Biotype 3 F/χ2 p

Cases (N) 151 88 – – 45 29 77 – –

Demographic variables

Age (year) 19.05 (5.45) 18.63 (4.71) 0.605 0.546 18.42 (0.81) 18.96 (1.03) 19.33 (0.62) 0.391 0.677

Gender (F/M) 79/72 40/48 1.048 0.306 27/18 16/13 36/41 2.115 0.347

Education (year) 11.04 (2.67) 11.61 (2.38) −0.609 0.543 11.24 (0.4) 11.11 (0.51) 11.64 (0.31) 0.538 0.585

SIPS

Positive 9.87 (3.61) 0.44 (0.84) 168.395 <0.001 9.71 (0.53) 9.54 (0.68) 9.99 (0.41) 0.193 0.824

Negative 11.76 (5.9) 0.3 (0.76) 169.167 <0.001 10.78 (0.87) 10.32 (1.1) 12.73 (0.66) 2.566 0.091

Disorganization 6.22 (2.98) 0.3 (0.48) 165.118 <0.001 6.13 (0.44) 5.5 (0.56) 6.46 (0.34) 1.083 0.341

General 8.91 (2.87) 0.61 (0.96) 164.452 <0.001 8.87 (0.42) 8.43 (0.53) 9.03 (0.32) 0.459 0.633

Before GAF 78.34 (7.36) 80.74 (1.91) −2.990 0.003 77.16 (1.1) 78.86 (1.4) 78.83 (0.84) 0.816 0.444

Now GAF 56.82 (7.77) 80.3 (2.2) −27.675 <0.001 56.22 (1.16) 58.21 (1.47) 56.75 (0.89) 0.580 0.561

MCCB

TMT 33.93 (16.3) 28.18 (8.63) 3.064 0.002 32.31 (2.32) 32.5 (2.94) 34.57 (1.78) 0.313 0.732

BACS_SC 56.75 (10.48) 66.22 (9.49) −6.971 <0.001 58.18 (1.57) 57.14 (1.99) 55.87 (1.2) 0.688 0.504

HVLT-R 22.99 (4.75) 26.34 (3.61) −5.719 <0.001 23.82 (0.7) 23.25 (0.89) 22.53 (0.54) 1.052 0.352

WMS-III_SS 15.97 (3.23) 17.43 (3.01) −3.452 0.001 16.58 (0.47) 14.75 (0.59) 16.16 (0.36) 3.864 0.023

NAB_Mazes 16.77 (6.55) 19.5 (4.9) −3.397 0.001 18.09 (0.97) 16.43 (1.23) 16.23 (0.74) 1.169 0.313

BVMT-R 26.37 (6.54) 29.91 (4.71) −4.447 <0.001 27.96 (0.97) 26.29 (1.23) 25.56 (0.74) 1.686 0.189

Fluency 19.4 (4.88) 23.14 (5.02) −5.650 <0.001 19.73 (0.73) 19.18 (0.93) 19.33 (0.56) 0.179 0.837

CPT_IP 2.4 (0.76) 2.58 (0.7) −1.701 0.090 2.5 (0.11) 2.27 (0.14) 2.4 (0.09) 0.788 0.457

CHR Clinical high-risk for psychosis, HC Healthy control, F Female, M Male, GAF Global Assessment of Functioning, SIPS Structured Interview for Prodromal
Symptoms, MCCB the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Consensus Cognitive Battery, TMT Trail Making
Test: Part A, BACS_SC Brief Assessment of Cognition in Schizophrenia: Symbol Coding, HVLT-R Hopkins Verbal Learning Test-Revised, WMS-III_SS Wechsler
Memory Scale-Third Edition: Spatial Span, NAB Neuropsychological Assessment Battery: Mazes, BVMT-R Brief Visuospatial Memory Test-Revised, Fluency
Category Fluency Test: Animal naming, CPT-IP Continuous Performance Test, Identical Pairs version. The bold values in the p-value column indicate statistically
significant differences.
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DISCUSSION
The present study aimed to establish distinct biotypes based
on FC patterns and evaluate their correlations with clinical
symptoms, cognitive performance, and neurotransmitter sys-
tems, thereby clarifying the neurobiological heterogeneity with
clinical high-risk (CHR) states for psychosis. Our findings
provide compelling evidence for the existence of three distinct
CHR biotypes, which vary not only in their FC profiles but also
in their degrees of symptom severity and cognitive deficits,
particularly the pronounced negative symptoms in Biotype 3
and the impaired working memory in Biotype 2. Biotype 1
showed enhanced somatomotor connectivity, Biotype 2
displayed increased subcortical and cross-network connectiv-
ity, and Biotype 3 had widespread connectivity reductions
except for increased limbic-subcortical connections. These
differences are not merely statistical artifacts but potentially
reflect different pathophysiological pathways leading to
psychosis.
Although the CHR group was demographically similar to the

healthy control (HC) group, it exhibited severe symptoms and
inferior performance on neurocognitive assessments, including
the MCCB tests, with exceptions like the CPT-IP. The overall poorer
performance on MCCB tests underscores the presence of cognitive
deficits as a core feature of psychosis risk53–56. Among the three

identified biotypes, the analysis of cognitive profiles revealed
significant differences only in working memory tasks, in that
Biotype 2 showed poorer performance in the WMS-III_SS test
compared to both Biotype 1 and 3. The CHR group’s cognitive
heterogeneity may be subtle, as evidenced by the relative lack of
significant differences in other cognitive domains. This empha-
sizes the need for more sensitive cognitive measures and
longitudinal assessments to fully characterize the cognitive
trajectories of different CHR biotypes.

Identification of CHR biotypes
While there are notable cognitive function differences and
symptom presentation between the CHR and HC groups, the
resting-state FC does not show significant differences when these
groups are compared. However, when examining each CHR
biotype separately, distinct patterns of FC alterations emerged in
comparison to HC, and the relationships between FC and
neurotransmitter concentrations also varied between biotypes.
This apparent discrepancy highlights the importance of consider-
ing the neurobiological heterogeneity within the CHR population.
It also underscores the value of subtyping approaches in
uncovering neurobiological differences, which may be masked
when treating CHR as a homogeneous group57.

Fig. 1 Construction of biotype through functional connectivity (FC) features. A Selection process of FC features. Correlations were
calculated between 19 SIPS items, two GAF scores, and FC measures. Features significantly correlated (p < 0.005) with at least two clinical
symptoms were selected. Red indicates significant positive correlations, blue indicates significant negative correlations, and white indicates
non-significant correlations. B Bar graph summarizing the sum of significant correlations between connectivity and SIPS/GAF items. The
horizontal axis shows the total number of correlations, and the vertical axis lists the items. C Visualization of the significantly correlated
functional connections, displaying only those with correlations in more than 12 items. Node colors represent different resting-state brain
networks, and node sizes, as well as line thicknesses, are proportional to the number and proportion of functional connections. D Biotype
prediction accuracy with 3 biotypes in 390 out of the 500 iterations. The green bars represent training accuracy, while the pink bars represent
test accuracy. E Histogram of Normalized Mutual Information (NMI) distribution with 3 biotypes in 390 out of the 500 iterations in blue and
randomly shuffling the sample labels in red.
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Fig. 2 Clinical, neuropsychological and functional connectivity profiles of CHR biotypes. A Post-hoc comparison of SIPS negative symptom
scores across biotypes, showing that Biotype 3 has significantly higher negative symptom scores than Biotype 1 (p= 0.040). B Comparison of
WMS-III_SS (Working Memory) scores across biotypes and HC. HC group demonstrates significantly better working memory performance than
CHR groups (p= 0.001). Among CHR biotypes, Biotypes 1 and 3 show superior performance compared to Biotype 2 (p= 0.017 and 0.045,
respectively). C Performance in various cognitive function tests of the MCCB, demonstrating that the CHR group exhibits significant functional
impairment, with no significant differences among subtypes except for the WMS-II_SS mentioned in (B). D Enhanced FC in each biotype
compared to HC, with line color corresponding to the magnitude of statistical differences. Node colors represent resting-state brain networks.
E Reduced FC in biotypes compared to HC, similar to (D) but showing decreased connectivity. F The circos plot visualizes abnormal FC
between different resting-state brain networks among biotypes. Red indicates enhanced connectivity in biotypes than in HC, while blue
indicates reduced connectivity in biotypes compared to HC. CHR Clinical High Risks for Psychosis, HC health control, SIPS Structured Interview
for Prodromal Symptoms, WMS-III_SS Wechsler Memory Scale-Third Edition: Spatial Span, SM Somatomotor, DAN Dorsal attention, VAN
ventral attention, FP Frontoparietal.
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Previous research has highlighted the presence of clinical
subtypes in CHR57–59 and biological biotypes in schizophrenia60–63.
However, these studies were often conducted on individuals who
had been exposed to long-term medication or were in more
advanced stages of the illness. By highlighting the advantages of
CHR being free from the effects of medicine and disease course, our
findings extend previous research in that heterogeneity in psychosis
can occur as early as when individuals are in the prodromal phase of
schizophrenia and other psychotic disorders. The SIMLR clustering
algorithm’s revelation of the stability of three CHR biotypes was
verified through rigorous cross-validation and normalized mutual
information (NMI) analyses, indicating that the clustering solution is
robust and not the result of coincidence. These finding challenges
previous notions that heterogeneity might primarily arise from
factors related to long-term illness or medication exposure.

Distinct functional connectivity patterns across biotypes
When the CHR group is stratified into distinct biotypes, the picture
becomes much clearer. Each biotype exhibits unique patterns of
FC alterations that were not apparent in the overall CHR versus HC
comparison. Biotype 1, which shows the mildest cognitive
impairments and the least severe connectivity disruptions,
exhibited only subtle FC abnormalities. The enhanced connectivity
within the somatomotor network might reflect compensatory
mechanisms or heightened sensorimotor integration, which has
been observed in early stages of psychosis64,65. The reduced
visual-subcortical connection may indicate early disruptions in
sensory processing pathways, which are recognized as essential in
the pathophysiology of psychosis66–68. Despite these abnormal-
ities, Biotype 1 had the slightest correlations with neurotransmitter
systems, indicating that neurochemical alterations are not as
pronounced in this subgroup.

Fig. 3 Correlation between functional connectivity abnormalities and neurotransmitter concentrations. A Correlation matrix between FC
abnormalities and neurotransmitter templates under different comparison conditions. Red indicates that as neurotransmitter concentration
increases, FC abnormalities become more severe. Blue indicates the opposite relationship. B Scatter plots showing the correlation between
neurotransmitter concentrations and FC abnormalities for each subtype. The title of each scatter plot denotes the comparison with HC. The
horizontal axis represents the number of abnormal functional connections, and the vertical axis lists the corresponding neurotransmitter and
its source. All neurotransmitter concentration templates are derived from the built-in data of the Neuromap toolbox (https://github.com/
netneurolab/neuromaps). α4β2, a subtype of Nicotinic Acetylcholine Receptor. VAChT Vesicular Acetylcholine Transporter, NET Norepinephrine
Transporter, D2 Dopamine Transporter, MOR Mu Opioid Receptor.
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Biotype 2 demonstrated significant enhancements in connec-
tion among bilateral subcortical networks, especially concerning
the thalamus and striatum, as well as increased connectivity
between visual, dorsal attention, and somatomotor networks.
These rsFC alterations are likely connected to the marked working
memory deficits observed in this subgroup. The thalamus, a key
relay station in the brain, plays a critical role in filtering and gating
information flow to the cortex69–71 The hyperconnectivity
observed in Biotype 2 could be indicative of heightened
thalamocortical dysregulation, potentially impairing the neural
synchronization required for working memory maintenance. This
aligns with other studies associating thalamo-cortical dysconnec-
tivity with working memory deficits in schizophrenia72,73. Further-
more, the observed increased connectivity between visual,
attentional, and somatomotor networks in Biotype 2 may indicate
compensatory mechanisms or heightened sensitivity to external
stimuli, aligned with previous findings linking aberrant salience to
psychosis risk33,74.
Conversely, Biotype 3 had the most severe connectivity

abnormalities, characterized by widespread decreases in con-
nectivity across several networks, particularly in cross-hemispheric
connections involving the subcortical and somatomotor net-
works. This biotype also demonstrated increased connectivity
between limbic and subcortical networks, as well as between
limbic and somatomotor networks. These abnormalities likely
contribute to the profound negative symptoms and cognitive
impairments characteristic of this biotype. On the one hand, the
extensive connectivity reductions in Biotype 3 suggest a break-
down in the integrative functions of these networks, which are
critical for maintaining coherent cognitive and emotional
processes. On the other hand, the limbic system’s involvement
is particularly noteworthy, as it plays a crucial role in emotion
regulation and has been repeatedly implicated in the develop-
ment of psychosis75.

Neurotransmitter correlates and mechanistic insights
The correlation analyses between FC abnormalities and neuro-
transmitter systems provide crucial insights into the potential
neurochemical underpinnings of the identified biotypes. The
distinct patterns of correlations across biotypes indicate that the
pathophysiology of each subgroup may be influenced by distinct
neurotransmitter systems. Biotype 1, which exhibited the
weakest correlations overall, showed significant but subtle
associations with the serotonin transporter (5-HTT) and norepi-
nephrine transporter (NET). The serotonin system has been
implicated in the modulation of mood and cognition, and its
disruption is a well-known feature in a variety of psychiatric
disorders, including psychosis76,77. In Biotype 2, the strongest
correlations were observed across neurotransmitter systems,
including the serotonin transporter (5-HTT), dopamine (D2
receptors), and acetylcholine (VAChT). These results suggest that
a pervasive disruption of enhance FC as a compensatory
response to increased neurotransmitter activity. This aligns with
findings that heightened neurotransmitter activity may lead to
enhanced neural synchronization and thus result in overloading
of cognitive systems32,78,79. In contrast, Biotype 3’s negative
correlations with neurotransmitter systems indicate an alter-
native process, maybe involving neurochemical deficiency or
receptor desensitization. The opioid system’s involvement,
especially the significant correlations of MOR, suggests a
potential role in regulating the intense negative symptoms seen
in this biotype. This corresponds with findings from several
studies that have associated MOR activity with anhedonia and
social disengagement in psychosis80,81.
Furthermore, one of the most notable differences is the

opposing trends in neurotransmitter-connectivity relationships
between Biotype 2 and Biotype 3, highlighting the heterogeneity

in neurochemical underpinnings of the CHR population. The
opposing pattern might explain some of the inconsistencies
reported in previous studies regarding neurotransmitter changes
in psychosis. For example, some studies report increased
dopamine activity linked to hyperconnectivity82, but others find
the opposite, particularly in schizophrenia that responds to first-
line antipsychotic drugs83.
While our study provides valuable insights into the neurobio-

logical heterogeneity of CHR states, several methodological
considerations and limitations should be acknowledged. Firstly,
the cross-sectional nature of the data restricts our capacity to
ascertain the temporal stability of these biotypes over time and
their prognostic significance for clinical outcomes. Longitudinal
studies are needed to address these questions and to examine
how biotype membership may change with disease progression
or intervention. Secondly, the sample size, although sufficient for
the clustering analyses performed, may limit the generalizability of
our findings. Larger multi-site studies would be beneficial to
corroborate these findings and explore potential sub-biotypes or
rare neurobiological profiles. Thirdly, future research should
examine direct indicators of neurotransmitter activity, such as
magnetic resonance spectroscopy (MRS) or positron emission
tomography (PET) imaging, as the correlation analyses between
FC and neurotransmitter systems were exploratory in nature.
Finally, just as Siddiqi et al. demonstrated the convergence of
lesion, TMS, and DBS effects on a common circuit for depression84,
future research could identify specific circuits associated with
distinct CHR biotypes and develop targeted neuromodulation
strategies for each.
In conclusion, this study emphasizes the importance of

recognizing and addressing the heterogeneity within the CHR
population. The distinct cognitive, symptomatic, and FC profiles of
the biotypes underscore the complexity of psychosis risk states
and suggest that different pathophysiological mechanisms may
contribute to the risk of psychosis. The identification of these
biotypes represents a significant step towards a more precise
understanding of psychosis risk and may inform the development
of personalized prevention and intervention strategies.
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