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Abstract

Mutational signatures are characteristic patterns of mutations caused by endogenous mutational processes or by exogenous mutational
exposures. There has been little benchmarking of approaches for determining which signatures are present in a sample and estimating
the number of mutations due to each signature. This problem is referred to as “signature attribution.” We show that there are often
many combinations of signatures that can reconstruct the patterns of mutations in a sample reasonably well, even after encouraging
sparse solutions. We benchmarked 13 approaches to signature attribution, including a new approach called Presence Attribute Signature
Activity (PASA), on large synthetic data sets (2700 synthetic samples in total). These data sets recapitulated the single-base, insertion–
deletion, and doublet-base mutational signature repertoires of nine cancer types. For single-base substitution mutations, PASA and
MuSiCal outperformed other approaches on all the cancer types combined. However, the ranking of approaches varied by cancer type.
For doublet-base substitutions and small insertions and deletions, while PASA outperformed the other approaches in most of the nine
cancer types, the ranking of approaches again varied by cancer type. We believe that this variation reflects inherent difficulties in
signature attribution. These difficulties stem from the fact that there are often many attributions that can reasonably explain the
pattern of mutations in a sample and from the combinatorial search space due to the need to impose sparsity. Tables herein can
provide guidance on the selection of mutational signature attribution approaches that are best suited to particular cancer types and
study objectives.

Keywords: mutational signature attribution; software benchmarking; mutational signature exposure; mutational signature analysis;
mSigAct; mutational signature activity

Introduction
Different mutational processes can generate characteristic pat-
terns of mutations; these are termed mutational signatures [1].
The causes of mutations can be endogenous, e.g. deamination of
genomic 5-methyl cytosines [2] or defective polymerase epsilon
proofreading [3], or exogenous, e.g. exposure to aristolochic acid
[4, 5] or tobacco smoke [6]. Mutational signatures can provide
insight into disease processes that stem from mutagenesis and
into the exposures or biological processes, including aging, that
lead to mutations. For cancer, mutational signatures can serve as
biomarkers for mutagenic exposures that increase cancer risk and
can shed light on cancer causes, prognosis, and prevention [5, 7–9].
Mutational signature analysis can also provide insights into the
mechanisms of DNA damage and repair [10–13].

This study is set in the broader context of the computational
analysis of mutational signatures in general. One aspect of this
analysis is the use of machine learning methods to discover
mutational signatures in large databases of somatic mutations
from tumors [1, 14]. This process is often referred to as ‘signature
extraction’. This analysis depends on the model that a mutational
spectrum can be explained as a linear combination of muta-
tions generated by mutational signatures (Fig. 1). The number

of mutations due to a particular signature is referred to as the
signature’s ‘activity’. Signature extraction discovers mutational
signatures as latent variables that can parsimoniously explain
sets of mutational spectra [15–17]. In many cases, the broader goal
is to identify the mutagens or mutagenic processes that generate
the mutational signatures. Several benchmarking studies have
systematically examined the accuracy of different approaches
to signature extraction [17–20]. To-date, experimental methods
and in silico signature extraction together have identified >100
reference mutational signatures [21].

In addition to the discovery of mutational signatures, another
important task is to estimate the presence of existing mutational
signatures and their activities in a mutational spectrum, a task
that is commonly called ‘signature attribution’. Absent critical
review of output, signature attribution can generate results that
are useless for understanding the underlying biology of mutage-
nesis and its consequences. For example, one study reported that
nearly 50% of lung tumors in never smokers (mostly adenocar-
cinomas) have the SBS3 signature (Fig. 4 in reference [22]). SBS3
is the result of deficient homologous-recombination-based DNA
damage repair, and the same study (contradictorily) reported that
HRDetect [12] detected homologous recombination deficiency in
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Figure 1. The task of mutational signature attribution is to find signatures that can reconstruct the mutational spectrum well. (A) Example of an SBS
spectrum that can be reconstructed with a cosine similarity of 0.988 from four signatures. The bar at the left shows that mutational signature SBS4
contributed the most mutations to this spectrum. This signature is associated with tobacco smoking. (B) The DBS spectrum from the same tumor can be
reconstructed with a cosine similarity of 0.989 from two signatures. The bar at the left shows that mutational signature DBS2, which is also associated
with tobacco smoking, contributed the most mutations to this spectrum. (C) The ID spectrum from the same tumor can be reconstructed with a cosine
similarity of 0.982 from three signatures. The bar at the left shows that mutational signature ID3 contributed the most mutations to this spectrum. Like
the SBS signature SBS4, this ID signature is also associated with tobacco smoking. Spectra from Lung-AdenoCA::SP52667 [1]. The x axes of all panels
follow the conventions described at https://cancer.sanger.ac.uk/signatures/.

only 16% of the tumors (Extended Data Fig. 8a in reference [22]). If
indeed SBS3 is caused by homologous recombination deficiency
and is not a purely mathematical construct, then the presence
of SBS3 and HRDetect’s determination of homologous recombi-
nation deficiency should be mostly concordant. However, in this
case, the SBS3 attributions and HRDetect’s determinations are
highly discordant. There are more than three times as many
tumors with purported SBS3 activity than are estimated to have
homologous recombination deficiency by HRDetect. Furthermore,
Alexandrov et al. [1] detected SBS3 in only 8% of lung adenocar-
cinomas. SBS3 is especially prone to this kind of error, which is
also shown in Extended Data Fig. 3a in reference [23], in which
high proportions of tumors of almost all cancer types have SBS3,
an implausible result in light of the actual prevalences of homol-
ogous recombination deficiency across cancer types. A related
issue is that signature attribution software often includes small
activities of signatures due to implausible exposures. For example,
one study reported the signature of UV exposure not only in cells
from skin melanomas and in skin fibroblasts but also in cells from

every tissue, including kidney, liver, and skeletal muscle (Fig. 3b
in reference [24]). Furthermore, beyond these sorts of implausible
results, challenges remain. We show below that it is often possible
to reconstruct the mutational spectrum of a sample using dozens
or more different combinations of signatures, all of which yield
reasonably good reconstructions.

Despite the importance of mutational signature attribution,
there has been little benchmarking of software for this task
[18, 25, 26]. In addition, previous studies of which we are aware
studied only single-base substitution (SBS) mutational signatures
and neglected doublet-base substitution (DBS) signatures and
insertion–deletion (ID) signatures.

Here, we present benchmarking results for 13 mutational sig-
nature attribution tools [14, 25, 27–36], including PASA (Presence
Attribution of Signature Activity), a new, statistically grounded
algorithm for signature attribution. Table 1 lists the 13 tools and
their input arguments. We present benchmarking results based
on synthetic SBS, DBS, and ID data from 900 tumors representing
nine cancer types, for a total of 2700 synthetic spectra. We have

https://cancer.sanger.ac.uk/signatures/
https://cancer.sanger.ac.uk/signatures/
https://cancer.sanger.ac.uk/signatures/
https://cancer.sanger.ac.uk/signatures/
https://cancer.sanger.ac.uk/signatures/
https://cancer.sanger.ac.uk/signatures/


Benchmarking 13 tools for mutational signature attribution | 3

Table 1. Software that was benchmarked.

Software Abbreviation Main function or main
execution file

Arguments Source of code Version

deconstructSigs DeconSig deconstructSigs::
whichSignatures

signature.cutoff = 0.06 https://github.com/
raerose01/deconstructSigs

1.9.0

FitMS FitMS signa-
ture.tools.lib::FitMS

Defaults; we
considered signatures
with prevalence
<0.01 "rare”

https://github.com/Nik-
Zainal-Group/signature.
tools.lib

signature.tools. Lib
2.4.5 according to
GitHub tag
(DESCRIPTION file
has 2.4.4)

Mutational Signature
Calculator

MuSiCal musical.refit.refit thresh = 0.001 https://github.com/
parklab/MuSiCal

1.0.0

Mutational Signature
Attribution

MSA Invoked by running
nextflow on file
run_auto_optimised_
analysis.nf

Defaults; we report
“pruned” output
based on a reviewer’s
suggestion, which
generated much
better results than
the unpruned option

https://gitlab.com/s.
senkin/MSA

GitLab tag 2.2 (note
that Dockerfile and
nextflow.config file
show 2.1)

MutationalPatterns MutPat MutationalPatterns::
fit_to_signatures_strict

Defaults Bioconductor 3.14.0

mutSignatures mutSig mutSignatures::
resolveMutSignatures

Defaults CRAN 2.1.1

PASA PASA mSigAct:: PresenceAt-
tributeSigActivity

Defaults https://github.com/
steverozen/mSigAct

3.0.1

sigfit sigfit sigfit::fit_signatures Defaults https://github.com/kgori/
sigfit

2.2.0

sigLASSO sigLASSO siglasso::siglasso (can
only analyze SBS
signatures)

Defaults https://github.com/
gersteinlab/siglasso

1.1

SignatureEstimation SigEstQP SignatureEstimation::
decomposeQP

Defaults https://www.ncbi.nlm.nih.
gov/CBBresearch/
Przytycka/software/
signatureestimation/
SignatureEstimation.tar.gz

1.0.0 according to
DESCRIPTION file

SigProfilerAssign-
ment

SigPro SigProfilerAssignment.
cosmic_fit

Defaults https://github.com/
AlexandrovLab/
SigProfilerAssignment

0.1.7

SigsPack SigsPack SigsPack::
signature_exposure

Defaults Bioconductor 1.18.0

YAPSA YAPSA YAPSA::LCD in_per_sample_
cutoff = 0.06

Bioconductor 1.30.0

released the synthetic data on which the benchmarking was
based as well as the code for generating the synthetic data.

Materials and methods
Preliminary definitions
The ‘mutational spectrum’ of one sample (tumor) is a one-
column matrix, D ∈ Nk×1

≥0 = [d1 d2 . . . dk]T, where k is the number
of mutation types and each dk is the number of mutations
of that type. For example, for the common case of single-
base substitutions in the context of preceding and following
bases, the mutation types are ACA�AAA, ACC�AAC, . . . ,
CCA�CAA, . . . , TTT�TGT. By convention, a mutated base is
represented by the pyrimidine of the Watson–Crick base pair,
and therefore, there are six substitution subtypes: C�A, C�G,
C�T, T�A, T�C, and T�G. There are altogether 96 types
of single-base substitutions in the context of preceding and
following bases (6 types of substitutions × 4 types of preceding
base × 4 types of following base). The term “SBS signature”

is usually understood to mean the signature of single-base
substitutions in the context of preceding and following bases.
The classification of DBSs is detailed at https://cancer.sanger.
ac.uk/signatures/documents/3/DBS-doublet-base-substitution-
classification.xlsx. For small IDs, the classification is described at
https://cancer.sanger.ac.uk/signatures/documents/4/PCAWG7_
indel_classification_2021_08_31.xlsx.

A ‘mutational signature’ is a multinomial probability vector−→
h ∈ Rk

≥0, i.e. a real, non-negative vector of length k, and with
∑k

i=1hi = 1. Elements of
−→
h represent the characteristic proportions

of the corresponding mutation types that are generated by one

mutational process. Each element inside
−→
h is the probability of

observing one mutation of that particular mutation type. In this
model, each mutational process generates mutations of different
mutation types by sampling from the multinomial distribution
that is the signature of the process. Since, in general, multiple
mutational processes generate mutations in a tumor, in this
model, the spectrum, D, is the sum of mutations in each mutation
type generated by different processes.
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Given a matrix H ∈ Rk×g
≥0 =

[ −→
h1

−→
h2 . . .

−→
hg

]
of g mutational

signatures, the task of signature attribution is to find a nonnega-
tive activity matrix A ∈ Rg×1

≥0 = [
a1 a2 . . . ag

]Tthat approximately
reconstructs the original tumor spectrum using input signatures
H, i.e. such that D ≈ H × A. Many approaches seek to minimize
the L2 norm of D − (H × A), sometimes under some constraints to
promote sparsity in A. However, the PASA method, detailed below,
seeks to find an attribution, A, that maximizes P (D| (H × A)),
under some regularization constraints that depend on likelihood
ratio tests, as detailed below.

Running approaches to signature attribution
The code for benchmarking all approaches to signature attri-
bution and all raw outputs are available at https://github.com/
Rozen-Lab/sig_attribution_paper_code/tree/master/analysis/.
Importantly, for every approach and every cancer type, we allowed
attribution with only the set of signatures previously observed in
that cancer type as reported in reference [1]. Table 1 lists the
software versions and input arguments used for each approach.

Generation of synthetic mutation data
We used COSMIC [21] v3.4 (https://cancer.sanger.ac.uk/signatu
res/) reference mutational signatures and the signature activities
estimated by Alexandrov et al. [1] to generate synthetic SBS, DBS,
and ID mutational spectra. Detailed methods are described in our
previous publication [17]. Briefly, for each of the SBS, DBS, and ID
mutation types, we generated 100 synthetic spectra for each of
nine cancer types. To generate one synthetic spectrum of a par-
ticular cancer type, the code first selects the signatures present in
the spectrum and the ground-truth activities of each signature as
random draws from the distributions of these estimated from [1].
The distribution of exposures for each cancer type was modeled
as a negative-binomial distribution with parameters matching
the distribution in [1], as computed by the R package fitdistrplus
[37], and described in [17]. Once the activities of a signature are
selected, the numbers of each mutation type due to that signature
are selected from a negative binomial distribution that is centered
on the overall number of mutations due to the signature times the
proportion of mutations of that mutation type in the signature.
For each signature we selected a negative-binomial dispersion
parameter “that resulted in spectrum-reconstruction accuracies
similar to those seen in real data” [17]. For example, for SBSs,
the actual data and the synthetic data have median spectrum-
reconstruction cosine similarities of 0.969 and 0.974, respectively
(Tables S1 and S2). Given the slightly higher cosine similarities
of the synthetic data, we believe these do not overestimate the
sampling variance in the actual data, and we take them as our
best estimate of this variance. At the suggestion of a reviewer,
we also generated a data set with a negative-binomial dispersion
parameter that generated substantially less sampling variance,
resulting in a median cosine similarity of 0.986 (Table S2).

Table S3 shows the mean, median, and standard deviations of
mutation counts for each mutation type in each cancer type. For
the synthetic data set based on our best estimate of sampling
variance, for all cancer types together, means and SDs were
43,353, 140,140, 571, 1471, 3566, and 15,964 for SBS, DBS, and ID
mutation types.

Code to generate the synthetic mutational spectra and the
synthetic spectra themselves is at https://github.com/Rozen-Lab/
sig_attribution_paper_code/tree/master/synthetic_data/ and,
for synthetic spectra with underestimated sampling variance,

at https://github.com/Rozen-Lab/sig_attribution_low_variance/
tree/main/synthetic_data/SBS/.

Definition of evaluation measures
For a given synthetic spectrum with given ground truth activities,
let P be the number of signatures which have activity >0. Let
TP (true positive) be the number of signatures with activity >0
that also have estimated activities >0. Let FP (false positive) be
the number of signatures with 0 activity, but that have estimated
activity >0.

The evaluation measures for attribution of signatures for a
synthetic spectrum of a given cancer type are:

Precision = TP/ (TP + FP)

Recall = Sensitivity = TP/P
Scaled Manhattan distance =

∑
i |Xi − Yi| /M, where the Xi are

the ground truth activities of all signatures, i, known to occur in
the given cancer type, the Yi are the estimated activities, and M is
the number of mutations in the sample

Combined Score = (1 – Scaled Manhattan distance) + Precision
+ Recall

Specificity = TN/ (TN + FP), where TN is the number of signa-
tures that were not present and were not selected for signature
attribution

Scaled L2 distance =
√∑

i |Xi − Yi|2/M, where i, Xi, Yi, and M are
as above

KL divergence =
∑

iXilog2 [Xi/ (Yi + ε)] where i, Xi, and Yi, are
the proportions of ground-truth and estimated activities, respec-
tively, and ε = 0.001, as implemented in the R function philen-
tropy::kullback_leibler_distance.

Presence Attribute Signature Activity algorithm
Motivated by the absence of statistical perspective in most exist-
ing approaches to mutational signature attribution, we sought
to develop an algorithm which used the statistical likelihoods of
possible attributions as a means to choose between them, includ-
ing, importantly, as a means to exclude attributions that are not
statistically needed to explain an observed mutational spectrum.
We are aware of only two other signature attribution approaches
that use likelihoods in mutational signature attribution: sigLASSO
and MuSiCal [33, 34]. Both use likelihoods in different ways, and
neither uses a likelihood ratio test. We describe the differences
between PASA and these other approaches in the Discussion.

Our work on PASA was inspired by concepts in the mSigAct
signature presence test, which uses a likelihood ratio test to assess
statistically whether one specific signature is needed to explain a
given mutational spectrum [8]. This is useful in cancer epidemi-
ology, for example, when deciding how often the signature of a
particular mutagen is present in a group of tumors. PASA extends
the likelihood ratio tests used in the signature presence test to
address the problem of estimating an entire set of signatures that
can parsimoniously and accurately explain a given mutational
spectrum, i.e. to the problem of signature attribution.

The likelihood ratio test in PASA takes a mutational spectrum,
D, and two attributions, A1 and A2, in which the signatures in A2
constitute a proper subset of those in A1. The null hypothesis
is that the likelihood of A1, P (D|A1), is the same as the likeli-
hood of A2, P (D|A2). The test then depends on the test statistic
λ = −2

(
log P (D|A2) − log P (D|A1)

)
, which follows a chi-square

distribution with degrees of freedom = | A1 | − | A2 |, where | A1 |
and | A2 | are the sizes of the two sets of signatures. A P-value can
be determined from this distribution [38]. If the P-value is below
the significance level, we reject the null hypothesis and consider
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that A1 provides a better reconstruction than A2, implying that
the signatures in A1–A2 are plausibly needed to explain D.

The PASA algorithm proceeds in two steps. In Step 1, the
likelihoods, P (D|A), are based on multinomial distributions, and,
in Step 2, they are based on negative binomial distributions.

Likelihoods under multinomial distributions are computed as
follows. Let −→c = H × A = [c1 c2 . . . ck]T be the vector of mutation
counts expected given an attribution, A, of the signatures, H, and
let D = [d1 d2 . . . dk]T be the observed mutational spectrum as
introduced above. We convert −→c to a multinomial distribution
parameter vector −→π = [π1 π2 . . . πk]T by dividing each element ci

by the total number of mutation counts
∑k

i=1ci, i.e. πi = ci∑k
i=1 ci

;

then, the log likelihood of D given A is computed as

log

⎡
⎣

(∑k
i=1di

)
!

d1! d2! . . . dk!
π

d1
1 π

d2
2 . . . π

dk
k

⎤
⎦ .

Likelihoods under negative binomial distributions are com-
puted as follows. Let −→c = H × A = [c1 c2 . . . ck]T again be
the vector of mutation counts expected given an attribution,
A, of the signatures, H,and let D = [d1 d2 . . . dk]T again be the
observed mutational spectrum. Then the log likelihood of D given
A is computed as

∑k
i=1 log P

(
di|ci

)
, where P

(
di|ci

)
is the probability

of the observed count, di, predicted by the attribution (model), A
by assuming that each di follows a negative binomial distribution
with mean ci and same dispersion parameter.

The PASA algorithm for signature attribution takes as input
a mutational spectrum, D, to be reconstructed from a set of g
possible signatures represented by a matrix H, as above. Also as
above, the algorithm returns a column matrix, A, of signature
activities that can reconstruct D. For signature attribution in a
given cancer, H in many use cases consists of the set of signatures
previously observed in that cancer type. Pragmatic issues arise
when the set of reference signatures is updated. We address
possible approaches to dealing with this and other pragmatic
issues in the Discussion.

The algorithm promotes sparsity in two ways. In STEP 1, it uses
signature presence tests to remove from consideration signatures
that are unlikely to be necessary for a statistically plausible
reconstruction of the target spectrum. In STEP 2, it starts with an
empty set of signatures, and then, in each iteration of an outer
FOR loop, it adds the signature that improves the reconstruction
the most. The algorithm stops when the reconstruction is “good
enough” as assessed by a likelihood ratio test, or when there are
no more signatures to be added.

The two steps of the PASA algorithm are as follows.

Step 1: Signature presence tests to remove candidate
signatures
In Step 1, PASA conducts a signature presence test for each signa-

ture
−→
hi ∈ H to exclude signatures that are not statistically likely

to be present in the tumor sample. The presence test consists of
a likelihood ratio test of (i) the attribution that gives the highest

likelihood using the full set minus
−→
hi [argmax

A
logP

(
D|A, H \ −→

hi

)
]

versus (ii) the attribution that gives the highest likelihood using
the full set of signatures [argmax

A
logP (D|A, H)]. If the P-value of

the likelihood ratio test is less than the significance level, the

algorithm considers that
−→
hi is necessary, and

−→
hi will be in the final

set of signatures passed to Step 2. Thus, the output of Step 1 is

the set of signatures, V =
[ −→v1

−→v2 . . .
−→vt

]
, t ≤ g, that survived the

signature presence test. Because each signature is tested against
all other signatures, V does not depend on the order of testing.

Step 2: Forward search from the empty set of signatures
See Algorithm Step 2 of PASA. Briefly, this step consists of a single
greedy forward search that adds signatures, starting with the
empty set of signatures, to find a minimal set of mutational sig-
natures to reconstruct a mutational spectrum. The set is minimal
in the sense that removing any signature results in a likelihood
ratio test giving a P-value < α, where α is the significance level.

We note that the algorithm does not depend on the order in
which signatures are considered in the outer or inner FOR loop,
since the inner loop always considers all remaining signatures,
and the outer loop always selects the signature that improves the
likelihood the most. The main stopping criterion is the statement
“IF pValues [index] > α.”

Results
Factors that make mutational signature
attribution difficult
The goal of this subsection is not to propose a practical method of
signature attribution but rather to illustrate, by concrete exam-
ple, the factors that make signature attribution difficult. The
example shows that one factor is that there are often many
different reasonable attributions that can reconstruct a spectrum.
Furthermore, simply adding more signatures to an attribution
usually improves the similarity of the reconstruction to the given
spectrum, but often, the numbers of mutations explained by these
additional signatures are implausibly small. Consequently, many
signature attribution algorithms impose various sparsity con-
straints. Indeed, many differences between approaches depend
on how they search the space of sparse solutions and the criteria
that enforce sparsity. Nevertheless, even with sparsity constraints,
there can be multiple attributions that can adequately recon-
struct a given spectrum. We use as examples the 75 stomach
cancer SBS spectra and signature attributions from [1].

Specifically, we investigated how many different attributions
can give a reasonable reconstruction of each spectrum. We con-
sider a reconstruction to be reasonable if its cosine similarity
to the spectrum is greater than the median cosine similarity
provided by the attributions in real mutational spectra in [1]. As
noted above, this threshold is 0.969 (Table S1).

There are 20 signatures attributed to stomach spectra in [1],
yielding 220 – 1 possible nonempty combinations of signatures.
For each of these, we optimized exposure using the quadratic
programming implementation of non-negative least squares from
[31] to minimize the Frobenius norm of the distance from the
reconstructed spectrum to the actual spectrum. Absent sparsity
constraints (other than the exclusion of attributions containing
signatures with no activity), the 75 spectra had a median of
11 189 distinct attributions that generated reconstructions with
similarity above the similarity threshold of 0.969 (Fig. 2A). One
possible sparsity constraint would be to omit attributions contain-
ing signatures responsible for fewer than a certain fraction of the
mutations, for example, 3%. However, even at this threshold, 61 of
75 tumors had >1 attribution, while 11 had 0 attributions meeting
the cosine similarity threshold. The mean number of attributions
meeting both constraints was 447.4.

For illustration, we use as an example the spectrum of one
stomach cancer, Stomach-AdenoCA::SP85251, from [1]. This
spectrum had 120 possible attributions with reconstructions
exceeding the cosine similarity threshold and with all signatures

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaf042#supplementary-data
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Figure 2. Many mutational spectra have numerous distinct attributions with cosine similarity >0.969. Shown here is the example of stomach
adenocarcinomas (Stomach-AdenoCA) from the pan cancer analysis of whole genomes mutation data analyzed in [1]. (A) The number of distinct
attributions with cosine similarity to the spectrum >0.969. The height of each bar indicates the number of spectra with the number of distinct
attributions indicated on the x axis. By distinct attributions we mean attributions with different sets of signatures with nonzero activity. (B) One
example spectrum from those analyzed in (A). The x axis of this and the following panels follow the conventions described at https://cancer.sanger.ac.
uk/signatures/. (C–F) Several example attributions that have cosine similarity to the spectrum in (B) >0.969. Code for this figure and the attributions are
available at https://github.com/Rozen-Lab/sig_attribution_paper_code/.
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.

accounting for ≥3% of the mutations (Table S4). Figure 2B–F
shows the spectrum and the four reconstructions from these
attributions with the highest similarity to the spectrum.

Perhaps one could simply take the attribution with the highest
similarity to a given spectrum as the most likely true attribution

for that spectrum. We explored this question by examining all
attributions for each of the 100 synthetic Stomach-AdenoCA spec-
tra in this study. For 99 of these spectra, the ground-truth attribu-
tion was inferior to the best alternative attribution before exclud-
ing any attributions with exposures accounting for <3% of the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaf042#supplementary-data
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mutations (Table S5). Restricting attention to alternative attribu-
tions in which all exposures accounted for ≥3% of the mutations,
the attribution generating the most similar reconstruction was
correct for only 13 spectra. Over the 100 spectra, the mean number
of false negative signatures was 1.17 and the mean number of
false-positive signatures was 0.82.

Alternative attributions superior to the ground-truth attribu-
tion can exist because, although the number of mutations due
to a given signature was known for each synthetic spectrum,
the distribution of counts due to that signature across different
mutation types (e.g. ACA � AAA, . . . , CTG � CAG, . . . , TTT �
TGT), was sampled randomly. This was designed to simulate a
model in which a mutational process generates a certain number
of mutations according to a fixed multinomial distribution across
mutation types, but the count of mutations of each mutation type
varies due to random sampling.

Accuracy on single-base substitution mutational
spectra
We assessed the accuracy of SBS mutational signature attribu-
tions produced by 13 approaches [14, 25, 27–36] (Table 1, Figs 3,
S1, and S2, and Tables S6–S9). The Combined Scores of PASA and
MuSiCal across all 900 synthetic SBS spectra were similar (means
2.64 and 2.62, respectively, P = .072, two-sided Wilcoxon rank-
sum test). The Combined Scores of both PASA and MuSiCal were
significantly higher than the Combined Score of FitMS (Table S6,
mean 2.57, P < 3.7×10−8 and P < 2.2×10−5, respectively, two-sided
Wilcoxon rank-sum tests). The Combined Scores of the remaining
approaches were lower still. In response to a reviewer’s request,
we assessed FitMS’s sensitivity to the threshold for rare signa-
tures. Its ranking was not affected by this threshold (Tables S6
and S10).

The Combined Score incorporates a scaled Manhattan distance
between the numbers of mutations ascribed to each mutational
signature in the attribution and in the ground truth of the syn-
thetic data. For some use cases, this may not be an important
consideration. Therefore, we also assessed the 13 approaches
according to F1 scores and the sums of recall and specificity
(Tables S6, S7, and S9). By these two measures, MuSiCal ranked
1st and PASA ranked 2nd. PASA had the 2nd lowest standard
deviation, after sigfit, which, however, ranked 12th by Combined
Score.

Of note, the rankings for the signature attribution approaches
varied across cancer type (Fig. S2, Table S8). PASA ranked first by
mean Combined Score in four of the nine cancer types, MuSiCal
ranked first in three cancer types, and FitMS ranked first in
two cancer types. As another example, the ranks of Mutation-
alPatterns ranged from 4 (Kidney-RCC and Ovary-AdenoCA) to
12 (Skin-Melanoma). Figures S1 and S2 and Tables S6–S8 show
all components of the Combined Score (1 – scaled Manhattan
distance, precision, and recall [sensitivity]) as well as specificity,
1 – scaled L2 distance, and Kullback–Leibler divergence of the
inferred signature activities from ground-truth signature activi-
ties.

We also observed that, across tumor types, 11 of the 13
approaches had the lowest or second-lowest Combined Scores for
Skin-Melanoma, mainly due to low recall (Fig. S2A, Table S7). We
originally hypothesized that presence of SBS7a might interfere
with detection of SBS7b, since both are dominated by C �
T mutations thought to be caused by exposure to ultraviolet
radiation. In fact, however, SBS5 and SBS1 were the most
common false negatives in Skin-Melanoma (Table S11). For 7
out of the 13 approaches, SBS1 was a false negative in over

half of the Skin-Melanoma spectra in which it was actually
present.

We also benchmarked the 13 approaches on synthetic data
with underestimated sampling variance (Tables S6–S9 and Fig. S3).
Benchmarked on these data, all approaches had Combined Scores
that were slightly higher than in the synthetic data with the best-
estimate sampling variance. On these data, MuSiCal ranked first
and PASA ranked second. The remaining tools had ranks similar
to their ranks in the synthetic data with best-estimate sampling
variance (Table S6).

Accuracy on doublet-base substitution
mutational spectra
Tables S12–S15 summarize results for DBS signatures. On syn-
thetic DBS spectra, PASA had the highest Combined Score, which
was significantly higher than that of FitMS, which had the next
highest (mean 2.78 versus 2.74, P < 9.9 × 10−9, 2-sided Wilcoxon
rank-sum test, Figs 4 and S5, Table S12). The Combined Scores
of the other approaches were much lower, with third-ranked
MuSiCal having a mean Combined Score of 2.57, significantly
lower that of FitMS (P < 3.9×10−44, two-sided Wilcoxon rank-sum
test). The sigLASSO approach cannot analyze DBS data.

Recall (sensitivity) for DBS attributions was significantly better
than for SBSs for 10 of the approaches (Benjamini–Hochberg
false discovery rates <0.1 based on two-sided paired Wilcoxon
signed-rank tests over recall in SBS versus recall in DBS.) While
SigProfilerAssignment (SigPro) performed well on synthetic SBS
data (Fig. 3), on synthetic DBS data, it had high precision but
lower recall than the other approaches, and its recall was signif-
icantly lower for DBS data (Benjamini–Hochberg false discovery
rate based on two-sided paired Wilcoxon signed-rank test, 1.2 ×
10−4).

As we did for SBS signatures, for DBS signatures we also
assessed the 13 approaches by F1 scores and by the sums of recall
and specificity (Tables S12, S13, and S15). As was the case for
ranking by Combined Score, by these two measures, PASA ranked
first and FitMS ranked second. As was the case for SBS signatures,
PASA had the second lowest SD, after sigfit, which again ranked
12th by Combined Score.

For DBS spectra, as was the case for SBS spectra, there was
variation in the ranking of the approaches across cancer types
(Fig. S5, Tables S13 and S14). Based on Combined Scores, PASA
ranked first in six of the nine cancer types and its lowest rank was
4 (in Breast-AdenoCA and Skin-Melanoma). As another example,
deconstructSigs and SigPro tied for 1st in Skin-Melanoma but were
both ranked 12th in several cancer types.

Figures 4, S4, and S5 and Tables S12–S14 show all components
of the Combined Score (1 – scaled Manhattan distance, precision,
and recall [sensitivity]) as well as specificity, 1 – scaled L2 distance,
and Kullback–Leibler divergence of the inferred signature activi-
ties from ground-truth signature activities.

Accuracy on insertion and deletion mutational
spectra
Tables S16–S19 summarize results for ID signatures. On synthetic
ID spectra, PASA had the largest Combined Score, which was
significantly higher than that of FitMS, which had the next highest
(Figs 5 and S6, Table S16, mean 2.81 versus 2.73, P < 3.5 × 10−11,
2-sided Wilcoxon rank-sum test). The Combined Scores of the
remaining tools were much lower. For example, the mean Com-
bined Score of the third-ranked approach, MuSiCal, at 2.68 was
significantly lower than that of FitMS (P < 3.8×10−8, by two-sided
Wilcoxon rank-sum test).
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Figure 3. Accuracy of mutational signature attribution approaches on synthetic SBS spectra. (A–D) Accuracy measures over all synthetic SBS spectra.
Combined score is the sum of (1 – scaled Manhattan distance), precision and recall. The scaled Manhattan distance is calculated by dividing the
Manhattan distance between the spectrum and the reconstructed spectrum by the total mutation count. Dark horizontal lines indicate medians, small
diamonds within the boxes indicate means. The attribution approaches are ordered by descending mean of the Combined Score for all cancer types
from highest to lowest. Abbreviations for attribution approaches are listed in Table 1.

As we did for SBS and DBS signatures, for ID signatures, we also
assessed the 13 approaches by F1 scores and by the sums of recall
and specificity (Tables S16, S17, and S19). By these two measures,
PASA still ranked first, and FitMS still ranked second. As was the
case for SBS and DBS signatures, PASA had the second lowest SD,
after sigfit, which again ranked 12th by Combined Score.

For ID spectra, as was the case for SBS and DBS spectra, there
was variation in the ranking of the approaches across cancer types
(Fig. S7, Tables S17 and S18). PASA ranked first in eight of the
nine cancer types by mean Combined Score and ranked second
in ColoRect-AdenoCA.

Figures 5, S6, and S7, and Tables S16 and S17 show all com-
ponents of the Combined Score (1 – scaled Manhattan distance,
precision, and recall [sensitivity]) as well as specificity, 1 – scaled
L2 distance, and Kullback–Leibler divergence of the inferred sig-
nature activities from ground-truth signature activities.

CPU usage
We calculated the total central processing unit (CPU) time used
by the process and its children when running each approach to
mutational signature attribution (Fig. 6 and Tables S20–S22). On
all three types of synthetic spectra (SBS, DBS, and ID), Mutational
Signature Attribution (MSA) required >5 orders of magnitude
more CPU time than the least resource-intensive approaches,
SignatureEstimation and SigsPack. This is mainly because the

MSA algorithm creates simulations of the input data and then
tests using each of four prespecified thresholds (program param-
eter “weak_thresholds”) to select the threshold for final signature
attribution. For each proposed threshold, MSA evaluates results
on at least 1000 simulated spectra. After a threshold is selected,
MSA calculates confidence intervals for signature attribution by
bootstrapping for each input spectrum. All these factors con-
tributed to the substantial CPU resources required by MSA.

PASA also required substantial CPU time, >4 orders of magni-
tude more than the least resource-intensive approaches. Of the
two most accurate approaches for SBS data, PASA and MuSi-
Cal, MuSiCal required approximately an order of magnitude less
CPU time.

The running times of most approaches seemed insensitive to
the number of possible signatures for a given cancer type (Figs S8–
S10, Table S23). The exceptions included MutationalPatterns and
MSA for DBS and ID signatures, as well as deconstructSigs, Sig-
natureEstimation, sigfit, and YAPSA for DBS signatures and FitMS
and PASA for ID signatures.

Discussion
We have presented the first (to our knowledge) systematic bench-
marking of signature attribution on all three of SBS, DBS, and ID
mutational signatures, and we have presented a new method that
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Figure 4. Accuracy of signature attribution approaches on synthetic DBS spectra. Abbreviations are as in Fig. 3.

is based on finding an attribution that maximizes the likelihood of
a target spectrum and that uses likelihood ratio tests to promote
sparsity. We assessed the accuracy of 13 approaches [14, 25, 27–
36], including the new method, PASA, on a total of 2700 synthetic
spectra encompassing SBS, DBS, and ID mutation types.

While some previous studies [18, 25, 26] benchmarked accuracy
on the SBS mutational signatures, we are not aware of any
that have benchmarked attribution accuracy for DBS or ID
signatures. We also point out that two of these studies did not
examine accuracy from the point of view of precision or recall
and instead used mean squared error [18] or a variation on the
scaled Manhattan distance [26] between the spectrum recon-
structed from the attribution and the target spectrum. These
reconstruction-accuracy measures are uninformative regarding
the numbers of false-positive or false-negative signatures in the
attribution. In fact, reconstruction-accuracy-based measures
tend to favor false positives because adding small exposures
to multiple signatures often improves reconstruction accuracy.
We propose that understanding the propensity of approaches
to include false positive signatures or exclude false negatives
is important for most applications of signature attribution.
These would include molecular cancer epidemiology, for which
one might want to determine with certainty whether the
signature of a particular mutagen is enriched in a particular
group of cancers [5, 7–9]. They would also include efforts to
understand the mutational exposures or processes responsible
for oncogenic mutations [8, 11]. In addition, the accuracy
measures in [18, 26] may have little power to distinguish the

accuracy of different signature attribution methods because
of the numerous alternative attributions that can generate
reasonable reconstructions of an observed spectrum. For
example, [18] stated that “[a]ll methods give almost identical
results”; see also Fig. 9 in [18].

We also demonstrated that attribution is a challenging task.
First, we showed that, for a given spectrum, there are often
multiple possible alternative attributions that yield reasonably
good similarity to the spectrum (Fig. 2, Table S4).

Second, we showed that, for a given synthetic spectrum,
there can be many incorrect attributions that provide more
similar reconstructions than the correct, ground-truth attribution
(Table S5). This explains the high recall (sensitivity) but low
precision in the results of three approaches that rely on non-
negative-least-squares (NNLS) optimization without any sparsity
constraints: SignatureEstimation, SigsPack, and mutSignatures.
For example, for SBS signatures these were recall (sensitivity)
of 0.943 and precision <0.615. Furthermore, we showed that
a uniform threshold requiring that a signature included in an
attribution must account for a minimum proportion of mutations
does not fully resolve this issue, and often results in false
negatives. In line with this, deconstructSigs, which relies on this
kind of threshold, ranks in the lower half among approaches for
all mutation types (Figs 3–5). This was in large part because of low
recall (sensitivity), which was also reported, for SBS only, in [25, 26].

For DBS and ID mutational signatures, across all cancer types
together, the new algorithm presented here, PASA, was more
accurate than the other 12 approaches [14, 25, 27–36] (Figs 4 and 5,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaf042#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaf042#supplementary-data
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Figure 5. Accuracy of signature attribution approaches on synthetic ID (small insertion and deletion) spectra. Abbreviations are as in Fig. 3.

Figure 6. Total CPU time for running approaches to signature attribution on synthetic (A) SBS, (B) DBS, and (C) ID mutational spectra. Abbreviations for
attribution approaches are as in Fig. 3.
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Table S6). This held true not only for the Combined Score but
also for measures such as the F1 score that did not include the
accuracy of the number of mutations ascribed to each signature
(the scaled Manhattan distance, Tables S15 and S19). For SBS
mutational signatures, PASA and MuSiCal were essentially tied
based on Combined Score, and MuSiCal scored higher on F1 score
and on the sum of recall and specificity. In addition, MuSiCal uses
substantially fewer computational resources (Fig. 6).

However, for all mutation types, the ranking of different
approaches varied by cancer type. For example, for SBS signatures,
PASA was the most accurate approach in four of the nine cancer
types (Fig. S2, Tables S7 and S8). We speculate that this is partly
because many incorrect attributions can yield more accurate
reconstructions than the correct, ground-truth attribution,
making it difficult to choose the correct attribution. However,
many approaches never ranked greater than fourth for any cancer
type. For SBS, the approaches that ranked greater than fourth for
at least one cancer type were FitMS, MSA, MuSiCal, PASA, and
SigPro. The ranks of approaches varied especially widely across
cancer types for DBS signatures, and, in fact, the ranks of three
approaches varied from 1st to 12th (Table S14).

Because the rankings of the approaches varied across cancer
types, users analyzing tumors from a single cancer type might
consider using an approach that ranked high for that cancer
type. We refer the reader to Tables S7 and S8 for SBS signatures,
Tables S12 and S13 for DBS signatures, and Tables S17 and S18
for ID signatures. These tables provide information on the perfor-
mance of approaches by various measures for each cancer type.
They are Excel tables that can be filtered to specific cancer types
and sorted by performance measure of interest. Alternatively,
many of the approaches have arguments that govern their output,
especially the balance between recall and precision (Table S24).
Thus, it may be possible to select arguments tuned to specific
cancer types.

Here, we restricted the benchmarking task to attributing signa-
tures previously observed in that cancer type, which is standard
practice for most use cases. This presents pragmatic issues when
the reference profiles of mutational signatures change over time,
with the split of SBS40 into SBS40a, SBS40b, and SBS40c as a recent
example [39]. Since there is no tissue distribution information
on the new, subdivided SBS40 signatures on the COSMIC website
(https://cancer.sanger.ac.uk/signatures/ [21]), an approach suit-
able for many purposes would be to continue to use the previous
signature, SBS40, rather than the new signatures. Alternatively, if
one were specifically interested in the presence or absence of one
of the new signatures SBS40a, SBS40b, or SBS40c, then, in tumor
types where SBS40 had previously been observed, one could offer
the three new signatures.

Three of the benchmarked approaches made use of the like-
lihoods of attributions in some way: PASA, sigLASSO, and MuSi-
Cal. More specifically, these approaches use the likelihood of an
observed spectrum given the reconstruction expected from an
attribution. However, these likelihoods are used differently by
each approach. PASA uses likelihoods as its objective function
and as part of the likelihood ratio tests that it uses to encour-
age sparsity. sigLASSO jointly optimizes a multinomial likelihood
and an NNLS fit that incorporates L2 regularization. MuSiCal
starts with NNLS optimization to generate an initial attribu-
tion. It then iteratively removes signatures until the decrease
in the multinomial likelihood exceeds a threshold. PASA and
MuSiCal were among the top-ranked approaches, which hints
that the use of likelihoods may be a promising direction for
future mutational-signature research. In this context, we also

note that [40] uses likelihoods in the discovery of mutational
signatures.

Signature attribution remains an open area, and advances
might depend partly on integrating data from all three mutation
types (SBS, DBS, ID) or on incorporating prior evidence on signa-
ture prevalence and activity in different cancer types.

Key Points

• The paper illustrates, by concrete example, factors that
make signature attribution difficult, including the fact
there are often many alternative attributions that gen-
erate reconstructions of the target spectrum with prac-
tically indistinguishable accuracy.

• The paper presents the Presence Attribute Signature
Activity (PASA) algorithm for signature attribution,
which aims to find an attribution with maximum like-
lihood given the target spectrum.

• The paper presents benchmarking results of 13
approaches to mutational signature attribution,
including PASA, on synthetic mutation data comprising
2700 synthetic spectra including SBS (single-base
substitution), DBS (doublet-base substitution), and ID
(insertion–deletion) mutation types.

• While PASA ranked first across all synthetic cancer types
together for SBS, DBS, and ID signatures, variation in
rankings of different benchmarked approaches across
cancer types suggests that mutational signature attribu-
tion requires more study.

• Tables herein can provide guidance on the selection of
mutational signature attribution approaches that are
best suited to particular cancer types and study objec-
tives.
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the V3.0.1-branch, which can be installed with the R call
remotes::install_github(repo = “steverozen/mSigAct,” ref = “v3.0.1-
branch”).

The PASA algorithm is implemented in the function mSi-
gAct::PresenceAttributeSigActivity. The mSigAct package provides
several other functions for analysis of mutational signature activ-
ity. These include the function mSigAct::SignaturePresenceTest,
first described in [8], which does not estimate signature attri-
butions, but instead estimates a P-value for the presence of one
specific mutational signature in the mutational spectrum of a
sample.

All other code and data for this paper are freely available
at https://github.com/Rozen-Lab/sig_attribution_paper_code and
https://github.com/Rozen-Lab/sig_attribution_low_variance.
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9. Dziubańska-Kusibab PJ, Berger H, Battistini F. et al. Colibactin
DNA-damage signature indicates mutational impact in col-
orectal cancer. Nat Med 2020;26:1063–9. https://doi.org/10.1038/
s41591-020-0908-2.

10. Volkova NV, Meier B, González-Huici V. et al. Mutational signa-
tures are jointly shaped by DNA damage and repair. Nat Commun
2020;11:2169. https://doi.org/10.1038/s41467-020-15912-7.

11. Boot A, Liu M, Stantial N. et al. Recurrent mutations in topoiso-
merase IIα cause a previously undescribed mutator phenotype
in human cancers. Proc Natl Acad Sci 2022;119:e2114024119.
https://doi.org/10.1073/pnas.2114024119.

12. Davies H, Glodzik D, Morganella S. et al. HRDetect is a predictor
of BRCA1 and BRCA2 deficiency based on mutational signatures.
Nat Med 2017;23:517–25. https://doi.org/10.1038/nm.4292.

13. Grolleman JE, De Voer RM, Elsayed FA. et al. Mutational signature
analysis reveals NTHL1 deficiency to cause a multi-tumor phe-
notype. Cancer Cell 2019;35:256–266.e5. https://doi.org/10.1016/j.
ccell.2018.12.011.

14. Degasperi A, Zou X, Dias Amarante T. et al. Substitution
mutational signatures in whole-genome–sequenced cancers
in the UK population. Science 2022;376:abl9283. https://doi.
org/10.1126/science.abl9283.

15. Alexandrov LB, Nik-Zainal S, Wedge DC. et al. Signatures of
mutational processes in human cancer. Nature 2013;500:415–21.
https://doi.org/10.1038/nature12477.

16. Roberts ND. Patterns of somatic genome rearrangement
in human cancer. PhD thesis 2018. https://doi.org/10.17863/
CAM.22674.

17. Liu M, Wu Y, Jiang N. et al. mSigHdp: Hierarchical Dirichlet pro-
cess mixture modeling for mutational signature discovery. NAR
Genom Bioinform 2023;5:lqad005. https://doi.org/10.1093/nargab/
lqad005.

18. Omichessan H, Severi G, Perduca V. Computational tools
to detect signatures of mutational processes in DNA from
tumours: A review and empirical comparison of performance.
PloS One 2019;14:e0221235. https://doi.org/10.1371/journal.pone.
0221235.

19. Wu Y, Chua EHZ, Ng AWT. et al. Accuracy of mutational sig-
nature software on correlated signatures. Sci Rep 2022;12:390.
https://doi.org/10.1038/s41598-021-04207-6.

20. Islam SMA, Díaz-Gay M, Wu Y. et al. Uncovering novel muta-
tional signatures by de novo extraction with SigProfilerEx-
tractor. Cell Genomics 2022;2:100179. https://doi.org/10.1016/j.
xgen.2022.100179.

21. Tate JG, Bamford S, Jubb HC. et al. COSMIC: The catalogue of
somatic mutations In cancer. Nucleic Acids Res 2019;47:D941–7.
https://doi.org/10.1093/nar/gky1015.

22. Zhang T, Joubert P, Ansari-Pour N. et al. Genomic and evo-
lutionary classification of lung cancer in never smokers. Nat
Genet 2021;53:1348–59. https://doi.org/10.1038/s41588-021-00
920-0.

23. Priestley P, Baber J, Lolkema MP. et al. Pan-cancer whole-genome
analyses of metastatic solid tumours. Nature 2019;575:210–6.
https://doi.org/10.1038/s41586-019-1689-y.

24. Franco I, Helgadottir HT, Moggio A. et al. Whole genome DNA
sequencing provides an atlas of somatic mutagenesis in healthy
human cells and identifies a tumor-prone cell type. Genome Biol
2019;20:285. https://doi.org/10.1186/s13059-019-1892-z.

25. Díaz-Gay M, Vangara R, Barnes M. et al. Assigning muta-
tional signatures to individual samples and individual somatic
mutations with SigProfilerAssignment. Bioinformatics 2023;39:
btad756. https://doi.org/10.1093/bioinformatics/btad756.

26. Medo M, Ng CKY, Medová M. A comprehensive compari-
son of tools for fitting mutational signatures. Nat Commun
2024;15:9467. https://doi.org/10.1038/s41467-024-53711-6.

27. Senkin S. MSA: Reproducible mutational signature attribu-
tion with confidence based on simulations. BMC Bioinformatics
2021;22:540. https://doi.org/10.1186/s12859-021-04450-8.

28. Manders F, Brandsma AM, de Kanter J. et al. Mutational-
Patterns: The one stop shop for the analysis of mutational
processes. BMC Genomics 2022;23:134. https://doi.org/10.1186/
s12864-022-08357-3.

29. Hübschmann D, Jopp-Saile L, Andresen C. et al. Analysis of
mutational signatures with yet another package for signature
analysis. Genes Chromosomes Cancer 2021;60:314–31. https://doi.
org/10.1002/gcc.22918.

30. Rosenthal R, McGranahan N, Herrero J. et al. deconstruct-
Sigs: Delineating mutational processes in single tumors dis-
tinguishes DNA repair deficiencies and patterns of carci-
noma evolution. Genome Biol 2016;17:31. https://doi.org/10.1186/
s13059-016-0893-4.

https://github.com/Rozen-Lab/sig_attribution_paper_code
https://github.com/Rozen-Lab/sig_attribution_paper_code
https://github.com/Rozen-Lab/sig_attribution_paper_code
https://github.com/Rozen-Lab/sig_attribution_paper_code
https://github.com/Rozen-Lab/sig_attribution_paper_code
https://github.com/Rozen-Lab/sig_attribution_paper_code
https://github.com/Rozen-Lab/sig_attribution_paper_code
https://github.com/Rozen-Lab/sig_attribution_paper_code
https://github.com/Rozen-Lab/sig_attribution_paper_code
https://github.com/Rozen-Lab/sig_attribution_low_variance
https://github.com/Rozen-Lab/sig_attribution_low_variance
https://github.com/Rozen-Lab/sig_attribution_low_variance
https://github.com/Rozen-Lab/sig_attribution_low_variance
https://github.com/Rozen-Lab/sig_attribution_low_variance
https://github.com/Rozen-Lab/sig_attribution_low_variance
https://github.com/Rozen-Lab/sig_attribution_low_variance
https://github.com/Rozen-Lab/sig_attribution_low_variance
https://github.com/Rozen-Lab/sig_attribution_low_variance
https://doi.org/10.1038/s41586-020-1943-3
https://doi.org/10.1038/s41586-020-1943-3
https://doi.org/10.1038/s41586-020-1943-3
https://doi.org/10.1038/s41586-020-1943-3
https://doi.org/10.1186/1479-7364-4-6-406
https://doi.org/10.1186/1479-7364-4-6-406
https://doi.org/10.1186/1479-7364-4-6-406
https://doi.org/10.1038/nrc.2015.12
https://doi.org/10.1038/nrc.2015.12
https://doi.org/10.1038/nrc.2015.12
https://doi.org/10.1038/nrc.2015.12
https://doi.org/10.1158/1055-9965.EPI-16-0219
https://doi.org/10.1158/1055-9965.EPI-16-0219
https://doi.org/10.1158/1055-9965.EPI-16-0219
https://doi.org/10.1158/1055-9965.EPI-16-0219
https://doi.org/10.1126/science.aag0299
https://doi.org/10.1126/science.aag0299
https://doi.org/10.1126/science.aag0299
https://doi.org/10.1126/science.aag0299
https://doi.org/10.1126/science.aag0299
https://doi.org/10.1101/gr.220038.116
https://doi.org/10.1101/gr.220038.116
https://doi.org/10.1101/gr.220038.116
https://doi.org/10.1101/gr.220038.116
https://doi.org/10.1126/scitranslmed.aan6446
https://doi.org/10.1126/scitranslmed.aan6446
https://doi.org/10.1126/scitranslmed.aan6446
https://doi.org/10.1126/scitranslmed.aan6446
https://doi.org/10.1126/scitranslmed.aan6446
https://doi.org/10.1038/s41591-020-0908-2
https://doi.org/10.1038/s41591-020-0908-2
https://doi.org/10.1038/s41591-020-0908-2
https://doi.org/10.1038/s41591-020-0908-2
https://doi.org/10.1038/s41467-020-15912-7
https://doi.org/10.1038/s41467-020-15912-7
https://doi.org/10.1038/s41467-020-15912-7
https://doi.org/10.1038/s41467-020-15912-7
https://doi.org/10.1073/pnas.2114024119
https://doi.org/10.1073/pnas.2114024119
https://doi.org/10.1073/pnas.2114024119
https://doi.org/10.1073/pnas.2114024119
https://doi.org/10.1038/nm.4292
https://doi.org/10.1038/nm.4292
https://doi.org/10.1038/nm.4292
https://doi.org/10.1038/nm.4292
https://doi.org/10.1016/j.ccell.2018.12.011
https://doi.org/10.1016/j.ccell.2018.12.011
https://doi.org/10.1016/j.ccell.2018.12.011
https://doi.org/10.1016/j.ccell.2018.12.011
https://doi.org/10.1016/j.ccell.2018.12.011
https://doi.org/10.1126/science.abl9283
https://doi.org/10.1126/science.abl9283
https://doi.org/10.1126/science.abl9283
https://doi.org/10.1126/science.abl9283
https://doi.org/10.1126/science.abl9283
https://doi.org/10.1038/nature12477
https://doi.org/10.1038/nature12477
https://doi.org/10.1038/nature12477
https://doi.org/10.1038/nature12477
https://doi.org/10.17863/CAM.22674
https://doi.org/10.17863/CAM.22674
https://doi.org/10.17863/CAM.22674
https://doi.org/10.17863/CAM.22674
https://doi.org/10.1093/nargab/lqad005
https://doi.org/10.1093/nargab/lqad005
https://doi.org/10.1093/nargab/lqad005
https://doi.org/10.1093/nargab/lqad005
https://doi.org/10.1093/nargab/lqad005
https://doi.org/10.1371/journal.pone.0221235
https://doi.org/10.1038/s41598-021-04207-6
https://doi.org/10.1038/s41598-021-04207-6
https://doi.org/10.1038/s41598-021-04207-6
https://doi.org/10.1038/s41598-021-04207-6
https://doi.org/10.1016/j.xgen.2022.100179
https://doi.org/10.1016/j.xgen.2022.100179
https://doi.org/10.1016/j.xgen.2022.100179
https://doi.org/10.1016/j.xgen.2022.100179
https://doi.org/10.1016/j.xgen.2022.100179
https://doi.org/10.1093/nar/gky1015
https://doi.org/10.1093/nar/gky1015
https://doi.org/10.1093/nar/gky1015
https://doi.org/10.1093/nar/gky1015
https://doi.org/10.1093/nar/gky1015
https://doi.org/10.1038/s41588-021-00920-0
https://doi.org/10.1038/s41586-019-1689-y
https://doi.org/10.1038/s41586-019-1689-y
https://doi.org/10.1038/s41586-019-1689-y
https://doi.org/10.1038/s41586-019-1689-y
https://doi.org/10.1038/s41586-019-1689-y
https://doi.org/10.1186/s13059-019-1892-z
https://doi.org/10.1186/s13059-019-1892-z
https://doi.org/10.1186/s13059-019-1892-z
https://doi.org/10.1186/s13059-019-1892-z
https://doi.org/10.1186/s13059-019-1892-z
https://doi.org/10.1093/bioinformatics/btad756
https://doi.org/10.1093/bioinformatics/btad756
https://doi.org/10.1093/bioinformatics/btad756
https://doi.org/10.1093/bioinformatics/btad756
https://doi.org/10.1093/bioinformatics/btad756
https://doi.org/10.1038/s41467-024-53711-6
https://doi.org/10.1038/s41467-024-53711-6
https://doi.org/10.1038/s41467-024-53711-6
https://doi.org/10.1038/s41467-024-53711-6
https://doi.org/10.1186/s12859-021-04450-8
https://doi.org/10.1186/s12859-021-04450-8
https://doi.org/10.1186/s12859-021-04450-8
https://doi.org/10.1186/s12859-021-04450-8
https://doi.org/10.1186/s12864-022-08357-3
https://doi.org/10.1186/s12864-022-08357-3
https://doi.org/10.1186/s12864-022-08357-3
https://doi.org/10.1186/s12864-022-08357-3
https://doi.org/10.1002/gcc.22918
https://doi.org/10.1002/gcc.22918
https://doi.org/10.1002/gcc.22918
https://doi.org/10.1002/gcc.22918
https://doi.org/10.1186/s13059-016-0893-4
https://doi.org/10.1186/s13059-016-0893-4
https://doi.org/10.1186/s13059-016-0893-4
https://doi.org/10.1186/s13059-016-0893-4


14 | Jiang et al.

31. Huang X, Wojtowicz D, Przytycka TM. Detecting presence of
mutational signatures in cancer with confidence. Bioinformatics
2018;34:330–7. https://doi.org/10.1093/bioinformatics/btx604.

32. Fantini D, Vidimar V, Yu Y. et al. MutSignatures: An R package
for extraction and analysis of cancer mutational signatures. Sci
Rep 2020;10:18217. https://doi.org/10.1038/s41598-020-75062-0.

33. Jin H, Gulhan DC, Geiger B. et al. Accurate and sensitive muta-
tional signature analysis with MuSiCal. Nat Genet 2024;56:
541–52. https://doi.org/10.1038/s41588-024-01659-0.

34. Li S, Crawford FW, Gerstein MB. Using sigLASSO to
optimize cancer mutation signatures jointly with sampling
likelihood. Nat Commun 2020;11:3575. https://doi.org/10.1038/
s41467-020-17388-x.

35. Gori K, Baez-Ortega A. Sigfit: Flexible Bayesian inference of
mutational signatures. 2020. https://doi.org/10.1101/372896.

36. Schumann F, Blanc E, Messerschmidt C. et al. SigsPack, a
package for cancer mutational signatures. BMC Bioinformatics
2019;20:450. https://doi.org/10.1186/s12859-019-3043-7.

37. Delignette-Muller ML, Dutang C. Fitdistrplus: An R package
for fitting distributions. J Stat Softw 2015;64:1–34. https://doi.
org/10.18637/jss.v064.i04.

38. Held L, Sabanés Bové D. Applied Statistical Inference: Likelihood and
Bayes. Springer, Berlin Heidelberg, 2014.

39. Senkin S, Moody S, Díaz-Gay M. et al. Geographic variation
of mutagenic exposures in kidney cancer genomes. Nature
2024;629:910–8. https://doi.org/10.1038/s41586-024-07368-2.
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