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Abstract
Purpose Early detection and quantitative evaluation of liver steatosis are crucial. Therefore, this study investigated a method 
for classifying ultrasound images to fatty liver grades based on echo-envelope statistics (ES) and convolutional neural net-
work (CNN) analyses.
Methods Three fatty liver grades, i.e., normal, mild, and moderate-to-severe, were defined using the thresholds of the mag-
netic resonance imaging-derived proton density fat fraction (MRI-PDFF). There were 10 cases of each grade, totaling 30 
cases. To visualize the texture information affected by the deposition of fat droplets within the liver, the maps of first- and 
fourth-order moments and the heat maps formed from both moments were employed as parametric images derived from the 
ES. Several dozen to hundreds of regions of interest (ROIs) were extracted from the liver region in each parametric image. 
A total of 7680 ROIs were utilized for the transfer learning of a pretrained VGG-16 and classified using the transfer-learned 
VGG-16.
Results The classification accuracies of the ROIs in all types of the parametric images were approximately 46%. The fatty 
liver grade for each case was determined by hard voting on the classified ROIs within the case. In the case of the fourth-
order moment maps, the classification accuracy of the cases through hard voting mostly increased to approximately 63%.
Conclusions The formation of parametric images derived from the ES and the CNN classification of the parametric images 
were proposed for the quantitative diagnosis of liver steatosis. In more than 60% of the cases, the fatty liver grade could be 
estimated solely using ultrasound images.
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Introduction

In recent years, the number of patients with metabolic dys-
function-associated fatty liver disease (MAFLD) has rapidly 
increased and is estimated to be approximately 25% of the 
total population [1, 2]. MAFLD is strongly associated with 
the development of liver fibrosis, which is a major contribu-
tor to cirrhosis and hepatocellular carcinoma [3–5]. Hence, 
early detection and quantitative diagnosis of liver steatosis 
and fibrosis are crucial.

Hepatic fat deposition can be estimated using the mag-
netic resonance imaging-derived proton density fat fraction 
(MRI-PDFF) [6–8]. MRI-PDFF is a reliable diagnostic 
modality, but it is costly and time-consuming. Moreover, 
the number of medical facilities capable of performing MRI-
PDFF is currently limited. Ultrasonography is an inexpen-
sive and time-saving procedure. The progression of hepatic 
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fat deposition increases the attenuation of the ultrasound sig-
nal [9]. Equipment and applications in ultrasound scanners, 
such as FibroScan (controlled attenuation parameter: CAP) 
and attenuation imaging (ATI), have been implemented to 
estimate the attenuation of the ultrasound signal or image 
[10–14]. However, the estimated ultrasound attenuation also 
includes components from scatterers and tissue structures. 
This reduces the accuracy of the estimations from ultrasound 
images. The accuracy of diagnosing liver steatosis using the 
CAP has been reported to be inferior to that of MRI-PDFF 
[11, 15].

The texture of ultrasound images of the liver varies due 
to the deposition of fat droplets and the replacement with 
fibrous tissues. The texture information has been quantita-
tively represented by the statistics and probability density 
function (PDF) of the pixel brightness, which is echo enve-
lopes, and more advanced methods have also been studied 
for tissue characterization [16–21]. Therefore, the effects of 
fat droplets and fibrous tissues can be evaluated via these 
methods of echo-envelope statistics (ES) analysis. A quan-
titative diagnosis of the liver can be performed by evaluating 
the ES and the PDF. However, the results of these analy-
ses do not correspond only to the amount of fat droplets or 
fibrous tissues but also to the number density and distribu-
tion of various types of scatterers. Therefore, the fatty liver 
grade and liver fibrosis stage referenced in clinical practice 
cannot be directly evaluated.

In a previous study, a combination of ES analysis and 
convolutional neural network (CNN) analysis was proposed 
for the quantitative diagnosis of liver fibrosis [22]. CNNs 
have been extensively utilized across various medical fields, 
including applications in ultrasound images for tasks such as 
segmentation, beamforming, denoising, and tumor diagnosis 
[23–29]. A CNN was used to link the ultrasound images 
with ES to liver fibrosis stage in this method. In ultrasound 
images of livers without steatosis, the potential for quantita-
tive diagnosis of liver fibrosis through the CNN classifica-
tion was suggested.

In the present study, the formation of parametric images 
derived from ES of ultrasound images, and the classifica-
tion of the parametric images into their fatty liver grades 
using the CNN, are proposed for the quantitative diagnosis 
of liver steatosis. In this method, the distribution of moments 
(the moment map) is utilized as the parametric images. The 
moment, which is the expected value of the exponential 
envelopes in the surrounding pixels, is one of the ES and is 
also associated with the shape of the PDF.

The moments can reflect the progression of liver stea-
tosis, but the change in the moments with the progression 
vary depending on the order of the moment. The aim of the 
present study was to reveal the effectiveness of the para-
metric images and a suitable order of moment. Therefore, 
moment maps of the first- and fourth-order moments were 

employed as parametric images. In addition, moment heat 
maps formed from both moment maps were also employed. 
The accuracies of the CNN classification of each paramet-
ric image for fatty liver grades were then evaluated through 
transfer learning using VGG-16, a CNN model. Moreover, 
the fatty liver grades classified using the CNN were com-
pared with the liver steatosis indicators CAP and ATI in 
each case.

Materials and methods

Clinical echo data

Clinical data were obtained from Chiba University Hospital 
(Chiba, Japan). An ultrasound scanner (Aplio a550; Canon 
Medical Systems, Otawara, Japan) equipped with a convex 
array probe (PVT-475BT; Canon Medical Systems) was 
used to acquire the ultrasound images. The center frequency 
of the transmitted ultrasound was 3 MHz. For image acqui-
sition, the focal length and maximum depth were fixed at 
78 mm and 120 mm, respectively.

The background diseases in all the cases included liver 
steatosis (LS), MAFLD, metabolic dysfunction-associated 
steatohepatitis (MASH), primary biliary cholangitis (PBC), 
autoimmune hepatitis (AH), compensated liver cirrhosis 
(CLC), and others. The hepatic fat deposition and liver stiff-
ness were investigated at Chiba University Hospital. The 
hepatic fat deposition measured using MRI-PDFF ranged 
from 1.9 to 23.8%. According to a previous study, the fatty 
liver grades can be categorized into four groups: grade 0, 
normal (< 5.2%); grade 1, mild (5.2–11.3%); grade 2, mod-
erate (11.3–17.1%); and grade 3, severe (> 17.1%)[15]. 
The cut-off area under the receiver operating characteris-
tic (AUROC) values for detecting MRI-PDFF grades ≥ 1, 
grades ≥ 2, and grade 3 were 0.96, 0.90, and 0.79, respec-
tively. Thus, the classification based on MRI-PDFF is con-
sidered reliable. In this study, we defined three fatty liver 
grades: G0 as normal, G1 as mild, and G2-3 as moderate and 
severe. This is because the number of moderate and severe 
cases was insufficient. There were 10 cases of each grade, 
totaling 30 cases, with four to ten images per case. In the 
present study, transfer learning of the typical CNNs was per-
formed. Therefore, the number of cases and the number of 
input images per case were deliberately matched to remove 
the risk by imbalanced data. The liver stiffness and CAP 
measured using the FibroScan device ranged from 3.4 kPa to 
46.1 kPa and from 142 to 358 dB/m, respectively. The ATI 
measured using the ultrasound scanner ranged from 0.36 
to 1.21 dB/cm/MHz. The image findings related to liver 
steatosis that can be confirmed in an ultrasound image were 
verified by physicians. The six image findings are as follows: 
(1) bright liver, (2) liver-kidney contrast, (3) liver-spleen 
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contrast, deep attenuation, (4) deep attenuation, (5) hepatic 
and portal vein blurring, and (6) flag sign. Table 1 presents 
the MRI-PDFF and six image findings of all cases.

Normalization of ultrasound images and formation 
of moment map

Echo envelopes along the scan line of a convex probe with 
log compression were used. The ultrasound images were 
reconstructed through the scan conversion of envelopes that 
were transformed linearly. The lateral and depth pixel spac-
ing of the image was set to 50 μm. Only the liver region was 
segmented from the images.

The ultrasound images were normalized using the square 
roots of the second-order moments to remove the effects of 
focus, gain, and attenuation during transmission and recep-
tion, as shown in Fig. 1. Simultaneously, non-speckle signals 
(pixels) that were significantly brighter than the surrounding 

pixels were removed. The removal threshold was set to three 
times the square root of the second-order moment. The sizes 
of the elliptical regions were set to 4.6 mm and 10.8 mm in 
the depth and lateral directions, respectively, for calculat-
ing the second-order moments. The size of this elliptical 
region corresponds to 6 × 8 times the resolution (0.76 mm × 
1.35 mm). The second-order moment in the elliptical region 
centered on each target pixel was calculated as follows:

 where n is the order of the moment, i and j are the coordi-
nates of the target pixel, and E

[

xk
]

 is the expected value of 
xk , which is the echo envelope of each pixel in the elliptical 
region. If the echo envelope of the target pixel exceeded the 
threshold, the target pixel was excluded as a non-speckle 
signal. The process of calculating the second-order moments 
and pixel exclusion was repeated until there were no longer 

Mn,i,j = E
[

xn
k

]

, #(1) #

Table 1  MRI-PDFF and six 
image findings: (1) bright 
liver, (2) liver-kidney contrast, 
(3) liver-spleen contrast, 
deep attenuation, (4) deep 
attenuation, (5) hepatic and 
portal veins blurring, (6) flag 
sign of all cases

No. MRI-PDFF [%] Imaging findings

1 2 3 4 5 6

G0
Normal

1 1.9
2 2.3 ◯ ◯ ◯ ◯
3 2.4
4 2.7
5 4.2 ◯ ◯ ◯
6 4.2 ◯
7 4.5 ◯
8 4.6 ◯
9 4.7 ◯ ◯ ◯ ◯
10 5 ◯ ◯ ◯ ◯

G1
Mild

11 5.4 ◯ ◯ ◯ ◯ ◯
12 5.4 ◯ ◯ ◯ ◯
13 6.2 ◯ ◯ ◯ ◯ ◯
14 6.7 ◯ ◯ ◯
15 7.5 ◯ ◯ ◯
16 8 ◯ ◯ ◯ ◯ ◯
17 8.4
18 8.5 ◯ ◯ ◯ ◯ ◯
19 8.9 ◯ ◯
20 9.4 ◯ ◯ ◯ ◯

G2-3 Moderate 
and

Severe

21 11.9 ◯ ◯ ◯ ◯ ◯
22 12.7 ◯ ◯ ◯ ◯
23 13.5 ◯ ◯
24 16.6 ◯ ◯ ◯ ◯
25 18.7 ◯ ◯ ◯ ◯
26 21.6 ◯ ◯ ◯ ◯
27 22 ◯ ◯ ◯ ◯ ◯
28 23.8 ◯ ◯ ◯ ◯
29 25.9 ◯ ◯ ◯ ◯ ◯
30 32.1 ◯ ◯
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any pixels to exclude. The normalized ultrasound and col-
orized images inputted to the CNN are also shown Fig. 1. 
The colorization involved converting from a gray-scale color 
palette (conventional B-mode style) to a jet color palette. 
In a previous study, the accuracy of CNN classification of 
ultrasound image slightly increased as a result of the col-
orization [22].

The first- and fourth-order moments around each pixel were 
calculated using Eq. (1) ( n = 1, 4 ) within an elliptical region 
centered on the pixel, as shown in Fig. 1. The sizes of the 
elliptical region were set to 3.0 mm and 8.1 mm in the depth 
and lateral directions, respectively. The ES can be reliably cal-
culated in regions where the sizes in both the depth and lateral 
directions are eight times greater than the resolution of the 
ultrasound image [30]. However, tissue information may be 
blurred by calculations in such regions. Therefore, the size of 
the elliptical region used to form the parametric images was 
reduced to 4 × 6 times the resolution.

Extraction of region of interest and formation 
of moment heat map

The region of interest (ROI) was extracted as an input image 
for the CNN. The size of the ROI was 20 mm (400 pixels) 
in the lateral and depth directions. The sliding interval was 
at least 4 mm. In the extracted ROIs, pixels outside the liver 
region and pixels excluded by normalization accounted for 
less than 1%. The ROIs were extracted from the same loca-
tions in the colorized ultrasound images, first- and fourth-
order moment maps, as shown in Fig. 2.

A moment heat map corresponding to the ROIs in the 
first- and fourth-order moment maps was also created to 
show the distribution and relationship of each moment. 
In the heat map, the 2D coordinates were prepared with 
the fourth-order moment as the vertical axis and the first-
order moment as the horizontal axis. The values of the 
first- and fourth-order moments for each pixel were then 
plotted in 2D coordinates. Finally, the number of plotted 
pixels in each grid was indicated in color. Figure 2 shows 

Fig. 1  Normalization of 
ultrasound images and formed 
moment maps: a segmented 
liver region, b square roots of 
the second-order moments, 
c, d normalized and colorized 
ultrasound images, e first-order 
moment map, and f fourth-order 
moment map
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examples of the heat maps. The distribution and relation-
ship between the first- and fourth-order moments can be 
evaluated simultaneously and visually using a heat map.

Learning and validation of CNN

The ultrasound images, moment maps, and moment heat 

Fig. 2  Examples of ROIs as input images at the same locations: a case of G0 (No. 4 in Table 1), b case of G1 (No. 13 in Table 1), c case of G2-3 
(No. 26 in Table 1)
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maps within the ROIs were classified using a CNN. On 
average, 256 ROIs per case (7680 ROIs) were randomly 
selected and used for learning, validating, and testing the 
network. The pretrained VGG-16 in the Deep Learning 
Toolbox of MATLAB (The MathWorks, Inc., Natick, USA) 
was employed for the CNN classification of ROIs based on 
fatty liver grades. For transfer learning, the last fully con-
nected layer of VGG-16 was replaced for the classification 
of fatty liver grades G0, G1, and G2-3 (input: 4096, output: 
3). The weights of the replaced layers were initialized using 
random numbers.

In transfer learning, only two fully connected layers and 
two convolutional layers from the output layer were trained 
using stochastic gradient descent with a mini-batch process-
ing of 64 data points. The dropout rate between the fully 
connected layers was set at 75%, and the learning rate was 
7.5 ×  10−5. For the four-fold cross-validation, 30 cases were 
divided into four groups, as shown in Table 2. In the four-
fold cross-validation, VGG-16 was trained using the ROIs 
in Groups 1 and 2. Subsequently, the ROIs in Group 3 were 
classified for validation using the trained VGG-16 at every 
epoch. Finally, the ROIs in Group 4 were classified for test-
ing using the trained VGG-16 with a minimum validation 
loss. All the ROIs were classified for testing by rotating the 
process. The number of epochs was determined based on 
the validation losses, and it ranged from 7 to 18. In the pro-
posed method, 87 to 425 ROIs were extracted and classified 
for each case. Therefore, the fatty liver grade for each case 
was determined through hard voting of the classified ROIs 
within the case.

Results

Evaluation of ultrasound parameters

Figure 3 shows the relationship between MRI-PDFF with 
CAP and ATI in each case, the means of the first-order 
moments, and those of the fourth-order moments in all the 
ultrasound images in each case. The dashed lines indicate 
the cut-off values of the CAP and ATI for the fatty liver 
grades of G0 and G1, G1, and G2-3 [13, 15]. The back-
ground colors indicate fatty liver grades by MRI-PDFF. 
The classification accuracies based on the cut-off values 

were 43.3% and 20%, respectively. The values of the CAP 
and ATI, and the means of the first-order moment, were 
observed to increase in correspondence with the MRI-PDFF. 
In addition, the means of the fourth-order moment showed a 
similar decreasing trend. However, the classification of the 
fatty liver grades using CAP or ATI was not straightforward. 
Moreover, the impact of liver fibrosis on these ultrasound 
parameters was investigated. Since liver biopsies were not 
performed in all cases, liver stiffness (elasticity) measured 
with FibroScan was used as an indicator. Figure 4 shows the 
relationship between the elasticities with CAP and ATI in 
each case, the means of the first-order moments, and those 
of the fourth-order moments in all the ultrasound images in 
each case. As for liver stiffness, a significant association was 
not observed compared to MRI-PDFF.

CNN classification

Figure 5 shows the results of the fatty liver grade classi-
fication obtained using the CNN. In the CNN classifica-
tion of the ROIs, the accuracies of the ultrasound images, 
first-order moment maps, fourth-order moment maps, and 
moment heat maps were 49.1%, 45.7%, 46.6%, and 46.0%, 
respectively. The ROIs of the ultrasound images and those 
of the first-order moment maps exhibited the highest and 
lowest classification accuracies, respectively. However, the 
difference between the input images appeared to be insignifi-
cant. In the hard voting for each case, the accuracies of the 
ultrasound images, first-order moment maps, fourth-order 
moment maps, and moment heat maps were 60.0%, 53.3%, 
63.3%, and 63.3%, respectively. Hard voting significantly 
improved the classification accuracies of the fourth-order 
moment maps and moment heat maps.

To compare the CNN classification with the CAP and 
ATI, the colors of the plots in Fig. 3 were changed to blue, 
green, and red based on the grades of G0, G1, and G2-3 
using the CNN, as shown in Fig. 6. The CNN classifica-
tion results obtained using the ultrasound images exhibited 
a correlation with the CAP and the first- and fourth-order 
moments. When utilizing the first- and fourth-order moment 
maps, a correlation was observed with both the moments. 
However, in the case of the moment maps, the correlation 
between the results and liver steatosis indicators was poor.

Table 2  Numbers of utilized 
cases and ROIs for four-fold 
cross validation

Group 1 Group 2 Group 3 Group 4

Cases ROIs (per case) Cases ROIs (per 
case)

Cases ROIs (per 
case)

Cases ROIs (per 
case)

G0 3 768  (120–450) 2 512 (159,353) 3 768 (232–298) 2 512 (87,425)
G1 3 768 (210–315) 2 512 (184,328) 3 768 (161–344) 2 512 (256)
G2–3 3 768 (182–293) 2 512 (256) 3 768 (107–331) 2 512 (164,348)
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In this study, CNN classification was conducted for each 
of the four types of input image. The differences in the clas-
sification results among the input image types were com-
pared. In the case of colorized ultrasound images, there was 
a significant correlation between the classification results 
and CAP values, and mean moments, although only texture 
information was utilized for image classification. Regarding 
the cases classified as G1, the CAP values ranged from the 
cut-off values between G0 and G1 to those between G1 and 
G2-3, while the actual grades were G0 and G2-3. In the case 
of the first-order moment maps, the classification resulted in 
a binary classification of G0 and G2-3 based on the bound-
ary value of the moment. The same trend was observed for 
the case of the fourth-order moment maps. Cases with mean 
moments close to the boundary values were classified as G1. 
Interestingly, the CAP values of the cases were greater than 
the cut-off values between G1 and G2-3. In the case of the 
moment heat maps, the classification results did not show a 
clear correlation with the CAP, ATI, or mean moments. The 

moment heat maps were classified based on the distribution 
and relationship of the first- and fourth-order moments, and 
not on the individual moments.

Discussion

MRI-PDFF is considered the most reliable indicator in clini-
cal practice for estimating hepatic fat deposition. Further-
more, a significant correlation has been observed between 
fat-droplet deposition and ultrasound attenuation. There-
fore, a quantitative diagnosis based on CAP and ATI is also 
anticipated owing to the noninvasiveness and low cost of 
ultrasound scanners. However, the classification of fatty liver 
grades based on the cut-off values of CAP and ATI showed a 
low accuracy in this study. As shown in Fig. 3, the CAP and 
ATI values increased in accordance with the MRI-PDFF. 
Moreover, the means of the first- and fourth-order moments, 
which are indicators based on ES, increased and decreased, 

Fig. 3  Relationship between hepatic fat deposition (MRI-PDFF) with ultrasound attenuation of a CAP, b ATI, and ES of the means of c first- 
and d fourth-order moments in all the ultrasound images
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respectively. The correlation coefficients of the CAP, ATI, 
and means of the first- and fourth-order moments of each 
case with MRI-PDFF were 0.581, 0.250, 0.582, and − 0.515, 
respectively. The CAP and mean moments were significantly 
correlated with the MRI-PDFF. Therefore, if the effective 
cut-off values can be determined through future large-scale 
studies, the moments may also become effective indicators 
of liver steatosis.

In addition, the correlation coefficients of CAP, ATI, 
and the means of the first- and fourth-order moments of 
each case with elasticities measured with FibroScan were 
− 0.031, − 0.268, − 0.393, and 0.387, respectively. CAP and 
ATI were not correlated with liver stiffness. The correlation 
coefficients of the mean moments were higher than those 
of CAP and ATI, but sufficiently smaller when compared 
to the correlation coefficient with MRI-PDFF. Therefore, 
the ES such as moments may be more sensitive to steatosis 
than fibrosis.

This study focused on classification of parametric images 
into fatty liver grades using the CNN. While a qualitative 
correlation between both moments and fatty liver grades 

was observed, the quantitative aspect cannot be considered 
sufficient due to the limited number of cases. Therefore, the 
parametric images may be classified based solely on their 
moments, rather than being classified based on their fatty 
liver grades.

The first limitation of this study was the small amount of 
clinical data used. The number of cases were determined to 
be the same for each grade in a three-grade fatty liver clas-
sification to avoid learning bias due to imbalanced data. If 
the numbers of moderate and severe cases are sufficient, the 
proposed method can be evaluated using the actual four-
grade classification.

The second limitation was the applicable liver conditions 
of the proposed method utilizing ES. The method focused 
on the increase in the first-order moment associated with the 
deposition of fat droplets. However, it is known that the first-
order moment decreases as the replacement with fibrous tis-
sues progresses. Therefore, the applicability of the proposed 
method is restricted to cases of mild fibrosis.

Fig. 4  Relationship between liver stiffness (elasticity measured with FibroScan) with ultrasound attenuation of a CAP, b ATI, and ES of the 
means of c first- and d fourth-order moments in all the ultrasound images



13Journal of Medical Ultrasonics (2025) 52:5–15 

In the present study, the formation of moment maps and 
the extraction and selection of ROIs were automatically or 
randomly performed, while the only segmentation of liver 
regions was manually performed. Several segmentation 
algorithms of the liver region for ultrasound images have 
been developed [31, 32]. Therefore, the proposed fatty liver 
classification could be implemented in ultrasound scanners. 
As a result, it is anticipated that the ultrasound scanner will 
be able to automatically screen for liver steatosis during 
health checkups. The goal of this study was to contribute to 
the identification of individuals at risk and the early detec-
tion of MAFLD.

Conclusions

In the present study, a method to classify ultrasound images 
into fatty liver grades based on the ES and CNN analyses 
was investigated. The texture of the ultrasound images 
of the liver varies owing to the deposition of fat droplets. 
Therefore, parametric images were formed based on ES of 

the ultrasound images to visualize the texture information 
affected by hepatic fat deposition. The first- and fourth-order 
moments, expected values of the exponential envelopes, and 
fourth power of the envelopes in the surrounding pixels were 
employed as the ES. Consequently, the first- and fourth-
order moment maps and moment heat maps representing the 
relationships between the first- and fourth-order moments 
were formed as parametric images.

The ROIs were classified into fatty liver grades using the 
pretrained VGG-16. The classification accuracy of the ROIs 
for all types of parametric images was approximately 46%. The 
fatty liver grade for each case was determined by hard voting 
of the classified ROIs. The classification accuracy improved 
to approximately 63% when the fourth-order moment maps 
were used as the input images. For comparison with the ultra-
sound indicators used in actual clinical practice, the cases were 
also classified based on the CAP and ATI cut-off values. The 
classification accuracies were found to be 43.3% and 20%, 
respectively.

The moments of the ultrasound images served as indicators 
with a high correlation with the MRI-PDFF. Moreover, the 

Fig. 5  Classification results of the ROIs of a  ultrasound images, 
b first-order moment maps, c fourth-order moment maps, d moment 
heatmaps obtained by the CNN, and those of cases obtained through 

a hard voting on the classified ROIs of e  ultrasound images, f first-
order moment maps, g  fourth-order moment maps, and h  moment 
heatmaps
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moment maps and moment heat maps were highly effective as 
input images for the CNN classification of fatty liver grades.
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