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Abstract:
Pathology plays a crucial role in diagnosing and evaluating patient tissue samples obtained via surgeries and biopsies. The
advent of whole slide scanners and the development of deep learning technologies have considerably advanced this field,
promoting extensive research and development in pathology artificial intelligence (AI). These advancements have contribut-
ed to reduced workload of pathologists and supported decision-making in treatment plans. Large-scale AI models, known as
foundation models (FMs), are more accurate and applicable to various tasks than traditional AI. Such models have recently
emerged and expanded their application scope in healthcare. Numerous FMs have been developed in pathology, with re-
ported applications in various tasks, such as disease and rare cancer diagnoses, patient survival prognosis prediction, bio-
marker expression prediction, and scoring of the immunohistochemical expression intensity. However, several challenges
persist in the clinical application of FMs, which healthcare professionals, as users, must be aware of. Research to address
these challenges is ongoing. In the future, the development of generalist medical AI, which integrates pathology FMs with
FMs from other medical domains, is expected to progress, effectively utilizing AI in real clinical settings to promote preci-
sion and personalized medicine.
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1. Introduction for Digital Pathology

(a) Development of digital pathology
For more than 50 years, surgical pathology has played a vital
role in diagnosing diseases, evaluating disease progression, and
elucidating causes by observing patient tissue sections ob-
tained from surgeries and biopsies through formalin fixation,
embedding, and staining. Next, these sections were examined
by trained pathologists under microscopes. During this proc-
ess, several scoring systems, such as the Gleason score for pros-
tate cancer and the Nottingham score for breast cancer, were
utilized to grade tumors based on their morphology. These
scores provide essential information for determining treat-
ment plans; however, given that they are determined based on
the pathologist’s subjective judgment, a notable variability ex-
ists between pathologists. Moreover, some indicators impose a
burden on pathologists in routine practice (1). However, intro-
ducing whole slide scanners in the 1990s easily created digital
images of entire specimens with the same resolution as micro-
scopes. This development highlighted the application of im-
age analysis and machine learning technologies to histopathol-
ogy, thereby expanding digital pathology, wherein the inter-

pretation and analysis of digitized images (whole slide images
[WSI]) can be performed quantitatively using computers. Fur-
thermore, the remarkable speed of technological innovation in
deep learning developed artificial intelligence (AI) that reduces
the workload of pathologists and aids in predicting patient
prognosis and supporting treatment decisions based on WSI,
further resulting in research and development of AI with high
potential clinical utility (2).

(b) Current applications of AI in pathology
The applications of current pathology AI are broadly catego-
rized into three types: i) improving the accuracy and efficiency
of pathology diagnosis, ii) predicting patient prognosis and
supporting treatment decisions, and iii) integrating data with
genomic information.

Some items in ii) include iii) as elemental technology.

i) Improving the accuracy and efficiency of pathology
diagnosis
AI enables accurate quantitative evaluation of various tissue
features, such as immunohistochemical biomarker evaluation,
cell counting, spatial cell arrangement, structural density, dis-
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tribution patterns, and tissue structure, thereby developing di-
agnostic AI tools that diagnose with the same or higher accu-
racy obtained by general pathologists in specific tissues or pro-
vide information that is difficult to identify by pathologists.
Examples include diagnostic support tools that evaluate the
morphological features necessary for tumor assessment, such
as tumor grade, histological type, and invasion extent, and au-
tomatic quantification tools for immunohistochemical stain-
ing intensity. For example, using tools, such as Mindpeak
Breast Ki-67 RoI and Mindpeak ER/PR RoI, which auto-
mate the evaluation of Ki-67 and estrogen and progesterone
receptors in breast cancer, interobserver agreement among
pathologists increases (3). Additionally, AI has been developed
to optimize the pathology workflow by triaging case priorities,
categorizing cases based on priority, and checking specimen
quality and identification (4), (5), (6).

ii) Predicting patient prognosis and supporting
treatment decisions
After years of research, several morphological features of histo-
pathological tissues, such as tumor grade and tissue subtypes,
have been established and proven useful as indicators for pre-
dicting patient prognosis. Similarly, various clinical and genet-
ic data, including treatment effects, responsiveness, resistance
obtained from electronic medical records, and cancer gene
panel test results, are crucial for predicting patient prognosis.
The development of straightforward and accurate prognostic
indicators has been reported using AI to effectively correlate
and integrate these data with numerous histopathological
findings obtained from pathology images, which have not yet
been established as prognostic indicators. For example, Shi et
al. developed a tumor microenvironment (TME) signature by
automatically quantifying TME from pathological images of
colorectal cancer, aiding in patient prognosis stratification (7).
Reportedly, integrating individual histopathological features
and, in some cases, clinical and genetic information, into a sin-
gle classification system accurately reflects the nature and be-
havior of tumors. Pathology AI applied to prognosis predic-
tion is expected to contribute to appropriate treatment selec-
tion and stratification of patients, promoting precision and
personalized medicine (1), (2), (8).

iii) Integrating data with genomic information
The research and development of AI associating the pheno-
types of histopathological tissue morphology with genomic
profiles is attracting considerable attention. For example,
Jaume et al. developed biologically and histopathologically in-
terpretable AI that integrates genomic information and WSI
using large datasets, such as the TCGA (9) with WSI and bulk
transcriptome data (10). This research is essential for under-
standing the biological mechanisms underlying cancer and se-
lecting targeted therapies. Furthermore, studies estimating
gene mutations and protein expression levels from pathology
images to reduce the delay in patient treatment initiation be-

cause of the weeks-long time required for clinicians to obtain
genetic and immunological test results have been conduct-
ed (11), (12). Such research is progressing concerning developing
AI that integrates multimodal information and presents it in
an interpretable form for pathologists and clinicians.

2. Introduction for Foundation Models

(a) Development of foundation models
Large-scale AI models called foundation models (FMs) have
emerged (13) with 1) advancing social networking services, 2)
the global spread of COVID-19, which increased the amount
of digital data, 3) improved computational efficiency owing to
hardware advancements, and 4) development of new AI archi-
tectures such as neural networks and transformers. FMs are
applicable to a wider range of tasks than traditional AI mod-
els. A human-centered AI institute at Stanford defined FM as
“a foundation model is any model that is trained on broad da-
ta (generally using self-supervision at scale) that can be adapt-
ed (e.g., fine-tuned) to a wide range of downstream tasks”(14).
Initially, large-scale language models trained on vast text data
collected from the web solved various language-related tasks
(information retrieval, text generation, sentiment analysis,
chatbots, etc.) with high accuracy (15), (16). Subsequently, diverse
FMs have been developed using various data modalities, such
as images, audio, and point cloud data (17). According to the
“AI Foundation Models: Update paper”(18) by the UK govern-
ment’s Competition and Markets Authority updated in April
2024, giant AI companies like Meta, Google, and OpenAI are
investing millions of dollars to acquire developers. In health-
care, the number of papers related to medical foundation
models has exponentially increased from 2018 to February
2024, reflecting the growing expectations and interest of
healthcare professionals in applying FMs in clinical practice.
While there were only a few papers in 2018, >120 papers were
published in 2023 alone (19).

(b) Foundation and nonfoundation models
The differences between FMs and non-FMs (deep learning
models) are summarized in Table 1(13). Generally, the more
complex the model, the more diverse relationships it can cap-
ture (expressiveness), and the more data, the better the model
performance (scalability) (20). FMs possess superior expressive-
ness and scalability based on large models, training data, and
parallelizable training methods. A common feature of FMs
and non-FMs is the need to obtain and utilize the embeddings
generated by the model while making inferences from input
data. Embeddings represent the features of the input data as
short vectors (or small tensors), and the quality of these em-
beddings remarkably affects the model accuracy during down-
stream tasks.
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(c) Applications of foundation models in
healthcare
FMs in healthcare can be broadly categorized into four types
based on the data modality they handle (19), (21):

i) Language Foundation Models for Natural Language
Processing (NLP) in Healthcare

Examples of usage: medical report generation, education
for medical students/residents, patient self-diagnosis, and
mental health support.

ii) Vision Foundation Models (VFMs) for Image Data
Examples of usage: image diagnosis and similar case re-

trieval, prognosis prediction for specific diseases, and surgical
assistance through detection of critical structures and lesions.

iii) Bioinformatics Foundation Models for Omics Data
Such as DNA, RNA, and Protein Data

Examples of usage: sequence, interaction, structural, and
functional analyses, protein sequence generation, drug re-
sponse and sensitivity prediction, disease risk prediction, and
drug perturbation effect prediction.

iv) Multimodal Foundation Models (MFMs) Integrating
Multiple Modalities Such as Language, Image, and Bioinfor-
matics

Examples of usage: comprehensive diagnostic support
based on multiple data modalities, medical image report gen-
eration, cross-search between text descriptions and chemical
structures, promotion of research through dialog with models
harboring biological and medical knowledge, and advice on di-
agnosis and treatment based on patient inquiries and images.

3. Introduction for Histopathology
Foundation Models

(a) Need for foundation models in pathology
Representative tasks in computational pathology include pa-
tient prognosis prediction, biomarker prediction, cancer and
tissue subtype classification, cancer grading, diagnostic predic-
tion, and immunohistochemical staining intensity scoring
(Section 1(b)). The development and clinical application of
pathology FMs are desired for two reasons:

i) Annotation Cost: Before promoting FM development,

the approach to handling individual tasks involved creating su-
pervised learning models based on data annotated by patholo-
gists, which required substantial time and practical effort from
pathologists for each disease, organ type, and task type (22). The
average salary of a pathologist is $149 h−1 (https://
www.salary.com/research/salary/alternate/pathologist-hourly-
wages), and assuming 5 min per slide, the annotation cost per
pathology slide is approximately $12. The cost of annotation
and increasing working hours can be a burden for clinical
pathologists (22), (23). Furthermore, the quality of annotation de-
termines the trained model performance, requiring patholo-
gists to conduct high-quality annotation, thereby adding to
their burden and responsibility and becoming a bottleneck in
the model development of individual tasks. Model develop-
ment utilizing vast amounts of pathology image data with
minimal or simple annotations per case is crucial.

ii) Lack of Public Datasets: At present, approximately 100
publicly available pathology image datasets (24) are accessible to
model developers, most of which include hundreds to tens of
thousands of WSIs. However, the diseases and organ types in-
cluded in each dataset are limited, and the data quality varies.
TCGA―the largest public dataset―including pathology im-
ages, contains tens of thousands of WSIs; however, it is limited
to 32 cancer types, making it challenging to cover the diverse
diseases encountered in clinical practice.

(b) Examples of pathology foundation models
As of June 2024, more than 10 FMs specifically for pathology
images were reported. The origin and scale of datasets, tissue
types included, and learning methods vary for each FM. Many
models are publicly available and usable for downstream tasks,
although some are only available for limited use or are not
publicly released (Table 2) (10), (22), (23), (25), (26), (27), (28), (29), (30), (31), (32), (33).

Herein, we overviewed these pathological FMs by focusing
on the following: a) training datasets, modalities, and embed-
ding levels; b) examples of downstream task usage; c) status of
public availability; and d) performance comparison between
models.

Table 1. Comparison between Foundation Models and Nonfoundation Models (Adapted from Table 1 in Reference [13]1).

Characteristics Foundation model Nonfoundation model (deep learning model)

Model architecture (Mainly) Transformer Convolutional neural network

Model size Vary large Medium to large

Model applicable task Many Single

Performance on adapted tasks State-of-the-art (SOTA) High to SOTA

Performance on untrained tasks Medium to high Low

Data amount for model training Very large Medium to large

Using labeled data for model training? No Yes

1Reference [13] was published under the CC BY 4.0 license.
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a) Training datasets, modalities, and embedding levels
i) Dataset Origin and Scale: Each model is pretrained on a
public dataset (e.g., TCGA, PubMed Central Open Access
Dataset [https://ncbi.nlm.nih.gov/pmc/tools/openftlist/],
TG-GATEs) (34) or a proprietary clinical pathological image
dataset collected from single or multiple institutions). For ex-
ample, the Virchow (27) model utilizes a dataset of 1,488,550
WSIs from 119,629 patients stored at Memorial Sloan Ketter-

ing Cancer Center and is currently the largest dataset of hu-
man pathological images.

ii) Organ and Tissue Types: The organs and tissue types,
in addition to their ratios, included in datasets are influenced
by various factors, such as whether the dataset includes biop-
sy/surgical specimen WSIs, specific public datasets, or case ac-
cumulation trends of the data collection medical facilities. Al-
though identifying consistent trends is difficult, most datasets

Table 2. List of Pathology Foundation Models with Published Papers, Including Preprints, between October 2022 and June
2024.

Foundation
model name

CTransPath (Lunit)* PLIP Virchow UNI CONCH PRISM Prov-
GigaPath

TANGLE RudolphV

Publication date 2022 2022 2023 2024 2024 2024 2024 2024 2024 2024

Journal name Medical Image
Analysis

arxiv Nature
Medicine

Nature
Medicine

Nature
Medicine

Nature
Medicine

arxiv Nature CVPR2024 arxiv

Pretraining
dataset name

TCGA TCGA OpenPath MSKCC Mass-100K Educational
sources

MSKCC) Dataset from
Providence

TCGA Dataset from
over 15
different
laboratories
across the EU
and US

PAIP TULIP Mass-1K PubMed
Central
Open Access
Dataset

TG-GATEs TCGA

Mass-22K

Number of
GPUs/type used
for training

48/NVIDIA
V100 GPUs

64/
NVIDIA
V100
GPUs

Not
specified

-/NVIDIA
A100
GPUs

32/
NVIDIA
A100 GPUs

8/NVIDIA
A100 GPUs

16/
NVIDIA
V100
GPUs

16 nodes ×
4/NVIDIA
A100 GPUs

8/NVIDIA
A100 GPUs

16/NVIDIA
A100 GPUs

Embedding level
(patch/slide)

Patch Patch Patch Patch Patch Patch Slide Slide Slide Patch

Number of WSIs 29,763 (TCGA) 20,994
(TCGA)

Not
specified

1,488,550 100,426 Not specified 587,196 171,189 2,074
(TCGA)

133,998

2,457 (PAIP) 15,672
(TULIP)

6,597 (TG-
GATEs)

Number of
patch images (M)

15 32.6 0 2,000 100 1 Not
specified

1,300 15 1,200

Number of
patients

Not specified Not
specified

Not
specified

119,629 Not
specified

Not specified 195,344 >30,000 >1,864 34,103

More than 10
types of organs
in the dataset?

Yes Yes Yes Yes Yes Yes Yes Yes No Yes

Staining types
(H&E/H&E +
others)

Not specified H&E H&E +
others

H&E H&E H&E +
others

H&E H&E +
others

Not specified H&E +
others

FFPE/frozen FFPE, frozen Not
specified

Not
specified

FFPE FFPE Not specified Not
specified

Not specified Not specified FFPE, Frozen

VFM/MFM VFM VFM MFM VFM VFM MFM MFM MFM MFM VFM

Model publicly
available?

Yes Yes Yes Yes Yes Yes Yes Yes No Yes

Reference
number

33 25 28 27 28 30 31 22 10 32

Because of space constraints, not all models are included in this table. For a complete list, please refer to Supplementary Table 1.
＊When the model name is not specified in the original paper, the first author’s name is shown.
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used to train FMs include images from >10 different organs.
Some models, such as Virchow, UNI (29), TANGLE (10), and
RudolphV (32), are explicitly trained on datasets that include
normal tissues; however, it is not specified whether other mod-
els include only tumor datasets or also normal tissue images.
To our knowledge, no experiment has examined the extent to
which including normal tissues parallel to tumor tissues in
FM training contributes to improved model performance in
downstream tasks. Chen et al. (29) demonstrated that training
on a combination of lab-derived datasets and a public dataset,
composed of only normal tissue images, resulted in better per-
formance than that on lab-derived datasets alone for the 43-
class cancer-type classification task. However, this improve-
ment cannot be conclusively attributed to the mere increase in
image count or the inclusion of normal tissue images.

iii) H&E vs. H&E + Other Stains: Although many patho-
logical FMs are trained using datasets with solely hematoxylin
and eosin (H&E)-stained images, some models like CONCH
and RudolphV include immunostained and/or specially
stained images. CONCH conducted comparative experiments
by evaluating models trained with only H&E-stained images
compared with models trained with other stain types includ-
ed. The results indicated that models incorporating various
stains performed better on most tasks, including tumor sub-
typing and grading, image-to-text retrieval, and text-to-image
retrieval (8/13). However, in some classification tasks, models
trained on only H&E-stained images either outperformed or
showed marginally lower performance than models with addi-
tional stains. This indicates that incorporating diverse stains
does not necessarily yield the best results.

iv) VFM/MFM: Many pathological FMs are VFMs;
meanwhile, models like PLIP (28), CONCH, PRISM (31), Prov-
GigaPath (22), and TANGLE (10) are MFMs. They handle patho-
logical images and text (e.g., clinical pathology reports, social
media, educational sources, and PubMed Central Open Ac-
cess Dataset captions) and bulk transcriptome data in the case
of TANGLE. These MFMs acquire equivalence between
paired image and other modality data, enabling model applica-
tion to tasks such as image-to-text retrieval, text-to-image re-
trieval, report generation, and gene expression analysis within
images.

v) Embedding Levels from Models: WSIs are high-resolu-
tion virtual slide images of entire-stained glass slide specimens
that often exceed several gigabytes in data size. WSIs have a
pyramid structure with multiple layers of images at different
magnifications, thereby allowing a comprehensive observation
of the entire specimen slide at any zoom level. Memory con-
straints make it challenging to handle WSIs as whole images
during model training; thus, they are typically divided into
small patches (tiles) of a few hundred pixels. Therefore, some
models output embeddings for each patch, whereas others
provide WSI-level embeddings. Models like PRISM, Prov-
GigaPath, and TANGLE output WSI-level embeddings,
whereas others output patch-level embeddings. Aggregating

patch-level embeddings to obtain WSI-level embeddings is
possible, and the efficacy of each embedding level for different
tasks remains debatable. Prov-GigaPath demonstrated statisti-
cally significant improvements over previous patch-level em-
bedding models across 16 tasks, including classification and
image-to-text search. However, https://github.com/mahmoo-
dlab/UNI indicates that UNI and CONCH outperformed
Prov-GigaPath in four of five classification tasks, including tu-
mor grade classification and immunohistochemical protein ex-
pression intensity scoring.

b) Examples of downstream tasks
FMs are applicable to various downstream tasks, with appro-
priate accuracy verification conducted posttraining. The tasks
handled by VFMs/MEMs in healthcare are described in Sec-
tion 2(c), in which we focus on pathological images and list
contents by task category (Figure 1). The tasks mentioned
herein are based on those listed in FM pa-
pers (10), (22), (23), (25), (26), (27), (28), (29), (30), (31), (32), (33).

Common Tasks: Predominantly, classification tasks are
applicable to VFMs and MFMs, with fewer object detection,
segmentation, and search tasks. VFMs such as Lunit (25), UNI,
RandolphV, and CTransPath (33) have been evaluated for these
minor tasks. Reportedly, the SegPath dataset, which we previ-
ously published, is used as a benchmark for segmentation
tasks. The SegPath dataset is a large-scale dataset comprising
>1,500 pairs of H&E- and immunohistochemically-stained
images (35).

i) Classification Tasks: This task involves predicting which
category a given image datum (patch or WSI) belongs to. Ex-
amples include disease detection, cancer detection, cancer/
normal tissue classification, subtyping, disease diagnosis, rare
cancer diagnosis, patient prognosis prediction, cancer recur-
rence prediction, cancer metastasis prediction, biomarker ex-
pression prediction (microsatellite instability, driver mutation,
and tumor mutation burden), treatment outcome prediction,
and immunohistochemical image protein expression intensity
scoring.

ii) Object Detection/Segmentation Tasks: This task in-
volves detecting specific structures in images or predicting the
category of each pixel. Examples include mitosis detection, cell
segmentation in H&E and immunohistochemical images,
gland segmentation, cancer segmentation, and tissue segmen-
tation.

iii) Image-to-Image Retrieval Tasks: This task searches for
images with high similarity to a query image.

MFM-specific Tasks:
i) Cross-Modal Retrieval Tasks: This is done using an im-

age or text query to search for corresponding text or image
pairs.

Examples include retrieving corresponding pathology re-
ports from a database based on patient WSIs.

ii) Image Captioning Tasks: This task generates summary
text for an image.
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Figure 1. Task-specific schematic of the pathology foundation models (FMs).
The figure illustrates five tasks in which pathology FM are applied, including the application example for each task. These include
common tasks, such as classification, object detection/segmentation, and image-to-image retrieval, and specific tasks such as cross-
modal retrieval and image captioning. The figure highlights the versatility and potential of the pathology FMs in various diagnos-
tic and research contexts.
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Examples of such inputs include inputting a WSI and out-
putting a pathology report.

c) Public availability status
Most FMs are open access, allowing users to apply them to
downstream tasks. However, some models (e.g., CONCH)
have limited task availability compared to their original papers
or are not open access (e.g., Virchow, PRISM, and Ru-
dolphV). The usage instructions for available models are typi-
cally described on their respective GitHub (a service for shar-
ing and managing program source code online) pages refer-
enced in the original papers.

d) Performance comparison between models
Zeng et al. (36) conducted comparative accuracy experiments for
CTransPath, UNI, Virchow, and Prov-GigaPath across 20
tasks in disease detection, biomarker prediction, and treat-
ment outcome prediction. In disease detection tasks, all four
models achieved comparable performances. However, in the
biomarker and treatment outcome prediction tasks, UNI and
Prov-GigaPath consistently demonstrated performance equal
to or exceeding that of the other models. For biomarker pre-
diction in the lung tissue, UNI and Prov-GigaPath outper-
formed the other models. The authors attributed these results
to the higher representation of the lung tissue in the pretrain-
ing datasets of UNI and Prov-GigaPath, suggesting that the
proportion of relevant tissue in the training dataset could en-
hance the representational power of the model for that tissue
type.

4. Issues and Future Directions of
Foundation Models

Thus far, we have outlined the development of digital pathol-
ogy and FMs, their applications in healthcare, the introduc-
tion of pathological FMs, and specific examples of their usage.
This section focuses on the future implications of FM-related
research and discusses potential issues users might face while
employing FMs in clinical AI applications.

(a) Hardware requirements
Many FMs require specific hardware because of their immense
complexity and scale. Although these models demonstrate re-
markable performance, their training and inference processes
often require substantial computational resources. For exam-
ple, running Prov-GigaPath requires high-end Graphics Proc-
essing Units (GPUs), such as NVIDIA A100 (37). Hardware in-
vestment required for these models can be challenging for re-
source-constrained medical institutions. Therefore, balancing
model performance with hardware feasibility is critical while
implementing these models clinically. Future research should
optimize these models to operate on less resource-intensive
hardware, thereby making them accessible to several medical
facilities.

(b) Transition to multimodal AI assistants and
generalist medical AI
At present, VFMs are the most developed pathological FMs.
However, various MFMs have been developed, focusing on
combining language and visual modalities to produce patholo-
gy diagnostic reports from image inputs or molecular biology
and visual modalities to identify notable genes in model-driv-
en pathology diagnoses. These MFMs are mainstream in path-
ology and across healthcare (19). The current self-supervised
learning methods are not universally generalizable across all
modalities and often require tailoring per specific modali-
ties (21). This limitation means that integrating more modalities
into FMs in real-world clinical settings is not feasible. In 2023,
Lu et al. (38) developed a dialog-based pathological AI assistant
capable of prompt engineering, which improved task accuracy
by interactively providing appropriate questions and instruc-
tions, was built on previously developed pathological MFMs
by their group and supported diagnostic assistance by describ-
ing histological findings and suggesting additional tests
through interactions with pathologists. Recently, the concept
of generalist medical artificial intelligence (GMAI) (39) has been
proposed, utilizing vast and diverse data types―including im-
ages, electronic health records, test results, genomics, graphs,
and medical texts―to perform various tasks across different
medical specialties. The development of AI assistants integrat-
ing FMs from domains beyond pathology will possibly drive
comprehensive medical AI research and development toward
realizing GMAI.

(c) Hallucinations and interpretability
Models generate embeddings through probabilistic processes
instead of truly understanding the logical meaning of data (40).
Consequently, FMs might generate nonexistent information
(fabricated citations, information not inferable from input da-
ta, etc.) during generative tasks such as pathology report gen-
eration (hallucinations) (41), (42). Users must recognize these po-
tential hallucinations. Furthermore, the inference processes of
large-scale FMs with hundreds of millions to trillions of pa-
rameters are incredibly complex and are often described as the
“black box” nature of AI. Unlike traditional medical devices
that are typically transparent and logical, this characteristic
makes it difficult for people to trust the algorithm results (43).
Thus, the field of “explainable AI (44)” is advancing, developing
techniques to enhance human understanding of how AI mod-
els reach their outputs.

(d) Potential for domain shift and information
updates
Pathological specimens from Japan and overseas may show re-
markable color and texture differences, even with the same
staining. Because all publicly available pathological FMs were
developed using datasets from overseas facilities, they might
not generalize to Japanese specimens (WSIs) because of color
and texture distribution (domain shift (45)). Various methods
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have been developed to efficiently standardize color tones and
perform color augmentation. Previously, we created a large-
scale pathological image dataset, PLISM (46), which includes
tissues stained with H&E in various color tones that facilitate
color augmentation. Moreover, there are potential issues per-
taining to handling and processing of tissue samples, and the
patient specimen data used for training FMs may have inher-
ent biases concerning gender, race, age, and sampling meth-
ods. If the sample appearance, such as color tone, or the social
and sampling method aspects of the to-be predicted data sig-
nificantly differ from the training data, the analysis and pre-
diction accuracy of FMs may decrease. Further, the lack of
standardized evaluation metrics and benchmarks complicates
the validation process, thereby making it difficult for health-
care professionals to accurately assess the performance of these
FMs. Additionally, the data used to train these large models,
including PubMed and textbook knowledge, can quickly be-
come outdated because of the rapid advancements in medi-
cine, necessitating regular updates to prevent inaccuracies.
However, retraining these large-scale models with new data is
costly. Researchers aim to improve these model architectures
using retrieval-augmented generation (RAG) (15), which allows
models to reference external databases while generating re-
sponses, consequently enhancing accuracy and explainability.

(e) Concerns about the clinical implementation
of foundation models
Despite the rapid development of FMs, their validation in real
clinical settings remains insufficient, preventing their clinical
application. Similar to other AI models, FMs are regulated as
medical devices by the US Food and Drug Administration un-
der a uniform software category developed for specific-use cas-
es (47). The World Health Organization released AI ethics and
governance guidance for MFMs in 2024, including recom-
mendations in development and deployment for governments
and developers (48). The guidance outlines more than 40 con-
siderable recommendations for governments, technology com-
panies, and healthcare providers to ensure the appropriate use
of MFMs for promoting and protecting the population
health. However, the current regulatory environment is inade-
quate for the clinical safety and effective deployment of FMs.
Only a few approved AI models have been tested in random-
ized controlled trials and none have involved FMs (49). The lack
of transparency in trial reports and evaluated use cases is a con-
siderable issue. The Standard Protocol Items: Recommenda-
tions for Interventional Trials―AI and consolidated stand-
ards of reporting trials―AI guidelines (50), which were assessed
by an international multistakeholder group from specific
fields, such as healthcare, statistics, computer science, law, and
ethics, in a two-stage Delphi survey and agreed upon in a 2-
day consensus meeting, have been formulated to improve
standardization and transparency in clinical trials involving
AI; however, most published randomized controlled trials that
use AI technology have not strictly followed these established

reporting standards (51). Users must be aware of the insufficient
algorithm validation of FMs in real clinical settings. At
present, there are no pathological FMs approved by the FDA
for commercial use, and utilizing pathological FMs remains
confined to academic research (52).

5. Conclusion

Advances in digital pathology have expanded the utilization of
WSIs, leading to active research and development of related
AI technologies. Particularly, the emergence of FMs has
broadened the scope of AI applications in medicine, allowing
the development of AI models capable of handling various
tasks via training on diverse data, such as images, texts, and
omics information. In the future, AI-based medical practice
using FM-based AI assistants and GMAI will potentially be
realized in pathology and real clinical settings, promoting ef-
forts toward precision and personalized medicine. Although
medical AI is an extremely useful tool in practice, properly un-
derstanding the effectiveness, considerations, and potential is-
sues of using AI centered on FMs to benefit patients is crucial
for medical professionals, who are the primary users of FMs.

Article Information

Conflicts of Interest
None

Sources of Funding
This work was supported by the AMED Practical Research
for Innovative Cancer Control grant number JP 24ck0106873
and JP 24ck0106904 to S.I., JSPS KAKENHI Grant-in-Aid
for Scientific Research (S) grant number 22H04990 to S.I.,
and JSPS KAKENHI Grant-in-Aid for Scientific Research (B)
grant number 21H03836 to D.K.

Author Contributions
M.O. contributed to the search of previous publications and
wrote the manuscript draft. D.K. and S.I. reviewed the manu-
script critically.

Approval by Institutional Review Board (IRB)
Not applicable.

References
1. Rakha EA, Toss M, Shiino S, et al. Current and future

applications of artificial intelligence in pathology: a clinical
perspective. J Clin Pathol. 2021;74(7):409-14.

2. Bera K, Schalper KA, Rimm DL, et al. Artificial intelligence in
digital pathology - new tools for diagnosis and precision
oncology. Nat Rev Clin Oncol. 2019;16(11):703-15.

3. Abele N, Tiemann K, Krech T, et al. Noninferiority of artificial
intelligence-assisted analysis of Ki-67 and estrogen/progesterone

DOI: 10.31662/jmaj.2024-0206
JMA Journal: Volume 8, Issue 1 https://www.jmaj.jp/

128



receptor in breast cancer routine diagnostics. Mod Pathol.
2023;36(3):100033.

4. Serag A, Ion-Margineanu A, Qureshi H, et al. Translational AI
and deep learning in diagnostic pathology. Front Med
[Internet]. 2019 [cited 2022 May 28]; 6:185. Available from:
https://www.frontiersin.org/article/10.3389/fmed.2019.00185

5. Ahmad Z, Rahim S, Zubair M, et al. Artificial intelligence (AI)
in medicine, current applications and future role with special
emphasis on its potential and promise in pathology: present and
future impact, obstacles including costs and acceptance among
pathologists, practical and philosophical considerations. A
comprehensive review. Diagn Pathol. 2021;16(1):24.

6. Hong R, Fenyö D. Deep learning and its applications in
computational pathology. BioMedInformatics.
2022;2(1):159-68.

7. Shi L, Zhang Y, Wang H. Prognostic prediction based on
histopathologic features of tumor microenvironment in
colorectal cancer. Front Med [Internet]. 2023 Apr [cited 2024
Jul 17];10. Available from: https://www.frontiersin.org/
journals/medicine/articles/10.3389/fmed.2023.1154077/full

8. Srinidhi CL, Ciga O, Martel AL. Deep neural network models
for computational histopathology: a survey. Med Image Anal.
2021;67:101813.

9. Cancer Genome Atlas Research Network, Weinstein JN,
Collisson EA, et al. The Cancer Genome Atlas Pan-Cancer
analysis project. Nat Genet. 2013;45(10):1113-20.

10. Jaume G, Oldenburg L, Vaidya A, et al. Transcriptomics-guided
slide representation learning in computational pathology
[Internet]. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition 2024, pp. 9632-44
[cited 2024 Jul 5]. Available from: http://arxiv.org/abs/
2405.11618

11. Fujii S, Kotani D, Hattori M, et al. Rapid screening using
pathomorphologic interpretation to detect BRAFV600E
mutation and microsatellite instability in colorectal cancer. Clin
Cancer Res. 2022;28(12):2623-32.

12. Redlich JP, Feuerhake F, Weis J, et al. Applications of artificial
intelligence in the analysis of histopathology images of gliomas:
a review. Npj Imaging. 2024;2(1):1-16.

13. Schneider J. Foundation models in brief: a historical, socio-
technical focus. arXiv preprint arXiv:2212.08967 [Internet].
2022 [cited 2024 Jul 7]. Available from: https://arxiv.org/abs/
2212.08967v1

14. Bommasani R, Hudson DA, Adeli E, et al. On the
opportunities and risks of foundation models. arXiv preprint
arXiv:2108.07258 [Internet]. 2022 [cited 2024 Jul 5]. Available
from: http://arxiv.org/abs/2108.07258

15. Lewis P, Perez E, Piktus A, et al. Retrieval-augmented
generation for knowledge-intensive nlp tasks. Adv Neural Inf
Process Syst [Internet]. 2021 [cited 2024 Jul 5]. Available from:
http://arxiv.org/abs/2005.11401

16. Izacard G, Lewis P, Lomeli M, et al. Atlas: few-shot learning
with retrieval augmented language models. J Mach Learn Res.
2024;24(1):251:11912-54.

17. uncbiag/Awesome-Foundation-Models [Internet]. uncbiag;
2024 [cited 2024 Jul 5]. Available from: https://github.com/
uncbiag/Awesome-Foundation-Models

18. CMA. AI Foundation Models technical update report
[Internet]. [cited 2024 Jul 5]. Available from: https://
assets.publishing.service.gov.uk/media/
661e5a4c7469198185bd3d62/
AI_Foundation_Models_technical_update_report.pdf

19. He Y, Huang F, Jiang X, et al. Foundation model for advancing
healthcare: challenges, opportunities, and future directions.
arXiv preprint arXiv:2404.03264 [Internet]. 2024 [cited 2024
Jul 7]. Available from: https://arxiv.org/abs/2404.03264v1

20. Kaplan J, McCandlish S, Henighan T, et al. Scaling laws for
neural language models arXiv preprint arXiv:2001.08361
[Internet]. 2020 [cited 2024 Jul 7]. Available from: http://
arxiv.org/abs/2001.08361

21. Azad B, Azad R, Eskandari S, et al. Foundational models in
medical imaging: a comprehensive survey and future vision.
arXiv preprint arXiv:2310.18689 [Internet]. 2023 [cited 2024
Jul 9]. Available from: http://arxiv.org/abs/2310.18689

22. Xu H, Usuyama N, Bagga J, et al. A whole-slide foundation
model for digital pathology from real-world data. Nature.
2024;630(8015):181-8.

23. Azizi S, Culp L, Freyberg J, et al. Robust and data-efficient
generalization of self-supervised machine learning for diagnostic
imaging. Nat Biomed Eng. 2023;7(6):756-79.

24. Stettler M (Duc). maduc7/Histopathology-datasets [Internet].
2024 [cited 2024 Jul 8]. Available from: https://github.com/
maduc7/Histopathology-Datasets

25. Kang M, Song H, Park S, et al. Benchmarking self-supervised
learning on diverse pathology datasets. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition 2023, pp. 3344-54 [Internet]. [cited 2024 Jul 8].
Available from: http://arxiv.org/abs/2212.04690

26. Filiot A, Ghermi R, Olivier A, et al. Scaling self-supervised
learning for histopathology with masked image modeling
[Internet]. medRxiv. 2023 [cited 2024 Jul 8]. Available from:
https://www.medrxiv.org/content/
10.1101/2023.07.21.23292757v1

27. Vorontsov E, Bozkurt A, Casson A, et al. Virchow: a million-
slide digital pathology foundation model. arXiv preprint
arXiv:2309.07778 [Internet]. 2024 [cited 2024 Jul 8]. Available
from: http://arxiv.org/abs/2309.07778

28. Huang Z, Bianchi F, Yuksekgonul M, et al. A visual-language
foundation model for pathology image analysis using medical
Twitter. Nat Med. 2023;29(9):2307-16.

29. Chen RJ, Ding T, Lu MY, et al. Towards a general-purpose
foundation model for computational pathology. Nat Med.
2024;30(3):850-62.

30. Lu MY, Chen B, Williamson DFK, et al. A visual-language
foundation model for computational pathology. Nat Med.
2024;30(3):863-74.

31. Shaikovski G, Casson A, Severson K, et al. PRISM: A multi-
modal generative foundation model for slide-level

DOI: 10.31662/jmaj.2024-0206
JMA Journal: Volume 8, Issue 1 https://www.jmaj.jp/

129



histopathology. arXiv preprint arXiv:2405.10254 [Internet].
2024 [cited 2024 Jul 8]. Available from: http://arxiv.org/abs/
2405.10254

32. Dippel J, Feulner B, Winterhoff T, et al. RudolfV: a foundation
model by pathologists for pathologists. arXiv preprint
arXiv:2401.04079 [Internet]. 2024 [cited 2024 Jul 8]. Available
from: http://arxiv.org/abs/2401.04079

33. Wang X, Yang S, Zhang J, et al. Transformer-based unsupervised
contrastive learning for histopathological image classification.
Med Image Anal. 2022;81:102559.

34. Igarashi Y, Nakatsu N, Yamashita T, et al. Open TG-GATEs: a
large-scale toxicogenomics database. Nucleic Acids Res.
2015;43(D1):D921-7.

35. Komura D, Onoyama T, Shinbo K, et al. Restaining-based
annotation for cancer histology segmentation to overcome
annotation-related limitations among pathologists. Patterns (N
Y). 2023;4(2):100688.

36. Campanella G, Chen S, Verma R, et al. A clinical benchmark of
public self-supervised pathology foundation models. arXiv
preprint arXiv:2407.06508 [Internet]. 2024 [cited 2024 Jul 8].
Available from: http://arxiv.org/abs/2407.06508

37. prov-gigapath/prov-gigapath [Internet]. prov-gigapath. 2024
[cited 2024 Jul 9]. Available from: https://github.com/prov-
gigapath/prov-gigapath

38. Lu MY, Chen B, Williamson DFK, et al. A multimodal
generative AI copilot for human pathology. Nature. 2024:1-3.

39. Moor M, Banerjee O, Abad ZSH, et al. Foundation models for
generalist medical artificial intelligence. Nature.
2023;616(7956):259-65.

40. Bender EM, Gebru T, McMillan-Major A, et al. On the dangers
of stochastic parrots: can language models be too big? In:
Proceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency, New York, NY: Association
for Computing Machinery. p. 610-23 [Internet]. 2021 [cited
2024 Jul 9]. Available from: https://doi.org/
10.1145/3442188.3445922

41. Li Y, Du Y, Zhou K, et al. Evaluating object hallucination in
large vision-language models. arXiv preprint arXiv:2305.10355
[Internet]. 2023 [cited 2024 Jul 9]. Available from: http://
arxiv.org/abs/2305.10355

42. Pal A, Umapathi LK, Sankarasubbu M. Med-HALT: medical
domain hallucination test for large language models. arXiv
preprint arXiv:2307.15343 [Internet]. 2023 [cited 2024 Jul 9].
Available from: http://arxiv.org/abs/2307.15343

43. Azad R, Aghdam EK, Rauland A, et al. Medical image
segmentation review: the success of U-Net. 2022 [cited 2024 Jul

9]. Available from: https://arxiv.org/abs/2211.14830
44. Arrieta AB, Díaz-Rodríguez N, Del Ser J, et al. Explainable

artificial intelligence (XAI): concepts, taxonomies,
opportunities and challenges toward responsible AI. Inf Fusion.
2020 [cited 2024 Jul 9];58:82-115. Available from: http://
arxiv.org/abs/1910.10045

45. Stacke K, Eilertsen G, Unger J, et al. Measuring domain shift for
deep learning in histopathology. IEEE J Biomed Health Inform.
2021;25(2):325-36.

46. Ochi M, Komura D, Onoyama T, et al. Registered multi-
device/staining histology image dataset for domain-agnostic
machine learning models. Sci Data. 2024;11(1):330.

47. Meskó B, Topol EJ. The imperative for regulatory oversight of
large language models (or generative AI) in healthcare. npj Digit
Med. 2023;6(1):120.

48. WHO. Ethics and governance of artificial intelligence for
health: guidance on large multi-modal models [Internet].
Geneva: WHO; 2024 [cited 2024 Jul 9]. Available from:
https://www.who.int/publications/i/item/9789240084759

49. Lam TYT, Cheung MFK, Munro YL, et al. Randomized
controlled trials of artificial intelligence in clinical practice:
systematic review. J Med Internet Res. 2022;24(8):e37188.

50. Cruz Rivera S, Liu X, Chan AW, et al. Guidelines for clinical
trial protocols for interventions involving artificial intelligence:
the SPIRIT-AI extension. Nat Med. 2020;26(9):1351-63.

51. Plana D, Shung DL, Grimshaw AA, et al. Randomized clinical
trials of machine learning interventions in health care: a
systematic review. JAMA Netw Open. 2022;5(9):e2233946.

52. Health C for D and R. Artificial intelligence and machine
learning (AI/ML)-enabled medical devices. FDA [Internet].
2024 [cited 2024 Jul 9]. Available from: https://www.fda.gov/
medical-devices/software-medical-device-samd/artificial-
intelligence-and-machine-learning-aiml-enabled-medical-devices

Supplement

Supplementary Table 1
List of pathology foundation models with published papers,
including preprints, between October 2022 and June 2024.

*When the model name is not specified in the original pa-
per, the first author’s name is shown.
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