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Abstract
Acute liver failure (ALF) is a serious disease that progresses from acute liver injury (ALI) and that often leads to multiorgan failure and 
ultimately death. Currently, effective treatment strategies for ALF, aside from transplantation, remain elusive, partly because ALI is 
highly heterogeneous. Furthermore, clinicians lack a quantitative indicator that they can use to predict which patients hospitalized 
with ALI will progress to ALF and the need for liver transplantation. In our study, we retrospectively analyzed data from 319 patients 
admitted to the hospital with ALI. By applying a machine-learning approach and by using the SHapley Additive exPlanations (SHAP) 
algorithm to analyze time-course blood test data, we identified prothrombin time activity percentage (PT%) as a biomarker reflecting 
individual ALI status. Unlike previous studies predicting the need for liver transplantation in patients with ALF, our study focused on 
PT% dynamics. Use of this variable allowed us to stratify the patients with highly heterogeneous ALI into six groups with distinct 
clinical courses and prognoses, i.e. self-limited, intensive care–responsive, or intensive care–refractory patterns. Notably, these groups 
were well predicted by clinical data collected at the time of admission. Additionally, utilizing mathematical modeling and machine 
learning, we assessed the predictability of individual PT% dynamics during the early phase of ALI. Our findings may allow for 
optimizing medical resource allocation and early introduction of tailored individualized treatment, which may result in improving ALF 
prognosis.

Significance Statement

Acute liver failure (ALF) is a diverse syndrome with poor prognosis, and the lack of proper classification hinders understanding its 
pathophysiology and developing treatments. While liver transplantation may be necessary, organ scarcity and age restrictions are 
major challenges. Selecting patients and timing surgery are difficult due to variations in acute liver injury (ALI) progression to ALF. 
A promising strategy is predicting which patients with ALI will progress to ALF and initiating early interventions. This study aims 
to predict ALI progression at both group and individual levels during early ALI. Our findings have significant clinical implications 
for establishing early treatment plans, crucial for improving patient outcomes, treatment efficacy, and optimizing healthcare delivery.
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Introduction
Acute liver failure (ALF) is a serious disease characterized by co-
agulation disorders and encephalopathy that progresses from 
acute liver injury (ALI) and that often leads to multiorgan failure, 
culminating in death (1, 2). However, the heterogeneity of ALI and 
the significant individual variation in the progression to ALF make 

predicting clinical outcomes challenging. Additionally, ALF has 
few established treatments because its pathophysiology is not 
well understood (3, 4). Diagnostically, ALF has been characterized 
since the 1950s by a prolonged prothrombin time (PT; i.e. an inter-
national normalized ratio [INR] > 1.5) and a certain degree of 
mental status alteration (e.g. hepatic encephalopathy or hepatic 
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coma) (5). In Japan, ALF is diagnosed by criteria established by the 
Intractable Hepato-Biliary Diseases Study Group and is classified 
as ALF with or without hepatic coma. ALF with hepatic coma is fur-
ther subclassified into two disease types: acute and subacute ac-
cording to the period during which hepatic coma develops (6).

Liver transplantation is nearly the sole recourse for patients 
with ALF, yet the global availability of liver transplants falls short 
of meeting the needs of all (7). Therefore, it is crucial to promptly 
identify patients who genuinely require transplantation so that 
medical resources can be optimally allocated among patients 
with ALF. So far, several models have been developed to predict 
the necessity of liver transplantation in patients with ALF at specif-
ic time points, such as at admission (8–10). Despite efforts primar-
ily focusing on population averages and the prediction of severity 
of patients with ALF, few studies have analyzed a frame work for 
stratifying patients with heterogenous ALI to predict progression 
to ALF.

In this study, we quantitatively analyzed extensive clinical data 
from the first week of hospitalization in a cohort of 319 patients 
with ALI at Kyushu University Hospital retrospectively. Because 
a machine-learning approach indicated that PT activity percent-
age (PT%) mostly reflected individual ALI status, we focused on 
time-course patterns of PT% for the 7 days postadmission. Using 
this framework, we were able to stratify the patients with highly 
heterogeneous ALI into six groups with distinct clinical courses 
and prognoses, i.e. self-limited, intensive care–responsive, or in-
tensive care–refractory patterns. Notably, we could predict these 
stratified groups upon admission and distinguish between pa-
tients who would require intensive care at a high-volume center 
and those who would require liver transplantation. Furthermore, 
using mathematical modeling and machine learning, we demon-
strated that individual prediction of PT% dynamics for the 7 days 
postadmission is feasible upon admission. A better understanding 
of individual heterogeneity in ALI not only will contribute to tail-
ored treatments that consider individual PT% dynamics, thus op-
timizing medical resource allocation, but will also provide clinical 
insights into understanding the mechanisms leading to severe 
ALF. Therefore, distinct from previous predictive models (8–11), 
our approach significantly enhances understanding of the patho-
physiology of ALI/ALF and may improve treatment outcomes.

Results
Description of cohort and study design
We retrospectively analyzed extensive clinical data collected 
from 319 patients with ALI, who were admitted to Kyushu 
University Hospital between January 2007 and March 2021. The 
most frequent etiology was unknown (28.7%) followed by hepa-
titis B virus (25.6%), autoimmune hepatitis (14.4%), hepatitis A vi-
rus (11.9%), and drug-induced liver injury (4.7%). The mean age 
was 46.5 years and 52.2% were male. Among the 319 patients 
with ALI, 116 patients (8.2 patients per year on average) were diag-
nosed with ALF. Approximately 200 to 300 patients with ALF are 
seen in Japan annually (12, 13), and thus Kyushu University 
Hospital is considered to be one of the high-volume centers man-
aging ALF in Japan. The clinical data, which were annotated so 
that we could assess individual clinical outcomes, included basic 
demographic information (such as age and sex), blood test results, 
treatment details, and other information (see Fig. S1, Tables S1
and S2 for details). We defined “clinical outcome” as whether pa-
tients hospitalized with ALI would survive without liver trans-
plantation or not. Transplant-free survival (TFS) cases (n = 264) 

were categorized as those recovering without the need for liver 
transplantation, whereas non-TFS cases (n = 55) were those who 
died or required liver transplantation for survival. Further details 
on data preparation are outlined in the Methods.

Exploring biomarkers for ALF
To identify a biomarker for predicting non-TFS in patients hospi-
talized with ALI, we used the time-course blood test data collected 
on days 0, 1, 2, 3, and 7 after admission. We applied a machine- 
learning approach, specifically the random forest (RF) classifier 
(see Methods for details), to predict whether a given patient be-
longed to the TFS or non-TFS group based on blood test data meas-
ured on different dates (Fig. S1B). It is reasonable that the receiver 
operating characteristic (ROC)–area under the curves (AUCs) of RF 
classifiers show improvement over time after admission, as 
shown in Fig. S2A. In fact, our RF classifiers with the data at 7 
days postadmission achieved an exceptionally high accuracy 
rate, with an ROC–AUC of 0.97 (Fig. 1A: sensitivity analyses on 
data preparation are shown in Fig. S2B). These results indicated 
that the blood test data may contain biomarker(s) associated 
with the clinical outcome we were interested in.

We then computed SHapley Additive exPlanations (SHAP) val-
ues (14–17), an index that quantifies the contribution of each 
item in the prediction, to evaluate the significance of nine blood 
markers collected at 7 days postadmission (i.e. data from 
Fig. S1A) in discerning between TFS and non-TFS patients. This 
computation was based on the highest ROC–AUC values. PT% (de-
fined further below) emerged as the most crucial factor, with pla-
telets, creatinine, blood urea nitrogen, alanine aminotransferase 
(ALT), lactate dehydrogenase (LDH), albumin, the ratio of direct 
to total bilirubin, and aspartate aminotransferase (AST) following 
in importance (Fig. 1B). In this study, we have quantified PT, a met-
ric used in coagulation studies to assess the efficiency of the extrin-
sic coagulation pathway (a component of the clotting cascade (18)) 
as the PT activity percentage, hereafter referred to as PT%. At 
Kyushu University Hospital, the normal reference value of PT% is 
70–130%. PT% is determined by contrasting the patient’s PT result 
with a normal reference value (19), with lower PT% values indicat-
ing more severe conditions (see below). Note that PT results can be 
reported using other metrics such as PT, PT ratio, and INR (i.e. 
PT-INR) (20, 21). In Fig. S3, we used nonlinear regression to conduct 
a comparison between PT% and PT-INR, as well as between PT% 
and PT. This analysis revealed a strong correlation between these 
measurements, with mutual information coefficients of 0.96 and 
0.89, respectively. Additionally, we observed that the PT% values 
for our patients with ALI covered a wider range (i.e. 0–150%) than 
those for PT-INR (i.e. 0–15%) or PT (i.e. 0–80%), suggesting that PT 
% is more robust to measurement error for mathematical model-
ing and data fitting (see below). Consequently, although INR is a 
standardized system for reporting PT that takes into account the 
sensitivity of the reagents used in the PT test (22), for the evaluation 
of PT in this study, we used PT% without a loss of generality.

The PT% value is acknowledged as a liver function measure 
strongly influenced by coagulation factors such as factors II, V, 
VII, and X, all of which are produced by the liver (23, 24). It was 
quite natural that the SHAP values revealed that patients with 
low PT% values had a higher likelihood of being non-TFS cases be-
cause PT% reflects the status of hepatic protein synthesis and is 
the defining parameter of ALF. Similarly, when we compared the 
time course of PT% values between the TFS and non-TFS patients 
(represented by green and orange curves, respectively; Fig. 1C), we 
observed two distinct patterns. Among the TFS patients, PT% 
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values tended to increase to relatively high levels over time after 
admission, whereas PT% values remained low in the non-TFS 
patients.

Next, to establish a threshold for PT% values indicative of ALI 
status, we conducted a logistic regression analysis with PT% val-
ues at 7 days postadmission as the predictor variable and clinical 
outcome as the outcome variable (Fig. 1D). We achieved similarly 
high ROC–AUCs of 94% for non-TFS, even when excluding other 
blood markers. This suggested that the PT% value alone can serve 
as a biomarker of individual ALI status, at least at 7 days postad-
mission. In addition, we calculated cutoff values of PT% corre-
sponding to a probability of 0.5 (51.30%; the red dashed line in 
Fig. 1D: this value corresponds to a PT-INR of 1.37). The first panel 
of Fig. S4 demonstrates that the threshold generally distinguishes 
between TFS and non-TFS patients at 7 days postadmission (P <  
0.001 by Wilcoxon rank-sum test). Conversely, exceeding the 
threshold at any point before day 7 does not necessarily indicate 
non-TFS. Therefore, it is particularly important to differentiate 
non-TFS cases during the early phase of ALI by considering the dy-
namics of PT% after admission (see next section).

Regarding other biomarkers, we compared each value between 
the TFS and non-TFS patients as depicted in Fig. S4. We found that 
the non-TFS groups showed low PT% and albumin. These clinical 
findings indicate that treatment-unresponsive ALI may be linked 
to poor prognosis.

Stratifying and characterizing ALF progression 
by PT% dynamics
Considering the notable individual-level variation in the time- 
course patterns of PT% values over time at and after admission, 
as depicted in Fig. 1C, even among the TFS or non-TFS group, we 
further examined individual heterogeneity in PT% dynamics. We 
performed an unsupervised clustering analysis using dynamic 
time warping (25) to stratify the time-course patterns of PT% val-
ues into six groups (i.e. G1 = 31, G2 = 66, G3 = 42, G4 = 70, G5 = 55, 
and G6 = 55 patients, respectively; see Methods for details). 
Figure 2A illustrates the PT% dynamics of all the six groups, clear-
ly demonstrating distinct time-course patterns, with most 
non-TFS patients stratified into G5 and G6 (i.e. 23.6 and 72.7% of 

A B

C D

Fig. 1. Exploring a biomarker for individual ALF progression: A) The ROC curve of RF classifiers trained to predict the need for transplantation based on 
the blood test data at 7 days postadmission is presented (using data from Fig. S1A). The corresponding ROC–AUC is calculated and displayed at the top of 
the panel. B) Feature importance of the predictive model in A is illustrated as a SHAP summary plot (using data from Fig. S1A). The y-axis represents the 
blood test items, arranged in order of their contribution to the prediction. The contribution of each feature for each patient (each point) to the prediction is 
represented as SHAP values (x-axis). A higher SHAP value means a higher contribution to the likelihood of the need for transplantation, while a lower 
value indicates a higher contribution to the likelihood of no need. The color of each point in each feature represents the value of that feature for the 
patient, with higher values shown in red and lower values in blue. PT%, prothrombin time activity percentage; Plt, platelet; Cre, creatinine; BUN, blood 
urea nitrogen; ALT, alanine aminotransferase; LDH, lactate dehydrogenase; Alb, albumin; D/T-bil, ratio of direct bilirubin (D-bil) to total bilirubin (T-bil); 
AST, aspartate aminotransferase. C) The time course of observed PT% values for all cases is depicted. The green and orange plots (i.e. left and right panels) 
represent the TFS (n = 264) and non-TFS (n = 55) patients, respectively (using data from Fig. S1B). D) A logistic regression model for predicting severe 
patients using the PT% values on day 7 is computed (using data from Fig. S1A). The green and orange dots (i.e., the dots with y-axis values of 0 and 1, 
respectively) represent the TFS and non-TFS patients, respectively. The red dashed line indicates the PT% threshold value (i.e. PT% = 51.30%).
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patients in G5 and G6 were non-TFS, respectively). Note that 
the non-TFS cases (n = 2) in G4 showed PT% improvement in 
response to treatment and may have recovered without liver 

transplantation; however, they were transplanted early because 
a donor liver was available and their hepatic encephalopathy 
was persistent at that time. Interestingly, when comparing the 

A

B

C

D

Fig. 2. Stratifying and characterizing PT% dynamics during the progression of ALF: A) The time-course patterns of PT% for each group stratified by 
unsupervised time-series clustering are depicted and colored accordingly (using data from Fig. S1B). The green and orange plots represent the TFS 
(n = 264) and non-TFS (n = 55) patients. B) The PT% at admission and 7 days postadmission are compared across the stratified groups (using data from 
Fig. S1B) with colors corresponding to those used in A. The red dashed line indicates the PT% threshold value obtained in Fig. 1D (i.e. PT% = 51.30%). C) 
Shown is the ROC curve of the binary classification prediction (e.g. either G6 or not) using RF based on the clinical dataset on admission (using data from 
Fig. S1C) except for G1 and G2. The corresponding ROC–AUCs are calculated and displayed at the top of each panel. D) Feature importance of the 
predictive model in C is illustrated as a SHAP summary plot (using data from Fig. S1C). Here, only the top 5 features are shown, but the SHAP values for all 
features are presented in Fig. S4. ATIII, antithrombin III; Che, cholinesterase; PT%, prothrombin time activity percentage; AST, aspartate 
aminotransferase; gGTP, γ-glutamyl transpeptidase; ALT, alanine aminotransferase; LDH, lactate dehydrogenase; APTT, activated partial 
thromboplastin time; NH3, serum ammonia; no LA, no liver atrophy.
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PT% value threshold calculated in Fig. 1D, a consistent pattern 
emerged. The time-course PT% values of all patients categorized 
into G1 to G4 remained above the threshold at 7 days postadmis-
sion, even in cases where the PT% values were below the thresh-
old at the time of admission (Fig. 2B). Significantly, individuals in 
G1 and G2 consistently maintained PT% values above the thresh-
old over time without intensive care, such as plasma exchange, 
anticoagulation, or continuous hemodiafiltration (Fig. 2B and 
Table S2). In contrast, some patients in G5 and G6, 18.2 and 
63.6%, respectively, had PT% values below the threshold at 7 
days postadmission despite intensive care (Fig. 2B and Table S2). 
Although most patients in G3 and G4 presented PT% values below 
the threshold at the time of admission, intensive care drastically 
improved PT% values, which were above the threshold at 7 days 
postadmission (Fig. 2B and Table S2). Our stratification based on 
PT% dynamics successfully captured the need and the effect of in-
tensive care at the group level, despite the large variation in PT% 
values at admission. Our results emphasize that the time-course 
patterns of PT%, rather than the PT% values at admission (except 
for patients in G1 and G2), are crucial for predicting and under-
standing the progression of ALF.

We then investigated whether each group could be predicted by 
the clinical datasets measured at admission, including the results 
of blood tests, basic information, and diagnostic details, as de-
scribed in Fig. S1C. Subsequently, we focused our attention on 
G3 to G6 because PT% values at admission clearly distinguished 
whether a given patient belonged to G1/G2 or non-G1/G2. 
Similarly, we used RF classifiers and evaluated the ROC curve 
for binary classification prediction (e.g. either G6 or not). In gen-
eral, we achieved high accuracies of ROC–AUC for predicting G3 
(80%), G4 (78%), G5 (88%), and G6 (90%), as shown in Fig. 2C. As ex-
pected from the lower PT% values at admission for G3, G4, G5, and 
G6, the PT% value is one of the most crucial factors for prediction 
among the SHAP values (see Fig. 2D for the top 5 features and 
Fig. S5 for all features). Apart from the requirement for various 
factors like antithrombin III, cholinesterase, AST, and others to 
predict an individual’s progression group, our RF classifiers sug-
gest that, upon admission, it may be possible to predict the clinical 
outcome of patients hospitalized with ALI by determining which 
of the stratified groups a patient belongs to.

Regarding the blood test data selected as important features for 
G3 to G6 in Fig. 2D, we compared each value among the six groups 
as depicted in Fig. S6. We found that G3 and G4 showed higher 
AST, ALT, and LDH than G5 despite having similar PT%. G5 and 
G6 were characterized by liver atrophy and marked decrease of 
PT%, which may reflect severe liver dysfunction on admission.

Predicting individual future PT% dynamics 
at admission
While our RF classifiers may determine the clinical outcome of pa-
tients with ALI at admission in terms of the stratified groups (i.e. 
G1 to G6) in Fig. 2C, there is a greater practical demand in clinical 
settings for making individual predictions about real-time future 
PT% dynamics (1, 22). To gain a deeper understanding of the indi-
vidual heterogeneity among patients with ALI, we used a math-
ematical model describing the dynamics of PT% (Eq. 1 in 
Methods). We fitted the model to the time course of PT% values (il-
lustrated in Fig. S1B), taking into account the inter-patient vari-
ability in parameters (see Methods for details, specifically 
labeled as “model fitting” in this study). We comprehensively re-
constructed the PT% dynamics at the individual level for 7 days 
following admission, as illustrated for all individuals in Figs. 3A 

and S7, and summarized the estimated parameters in Table S3. 
We demonstrated that Eq. 1 well described the time course of 
PT% values over time after admission.

Next, we investigated the predictability of individual PT% dy-
namics during the early phase of ALI by combining mathematical 
modeling and machine learning. Specifically, we performed an RF 
regressor to estimate parameters in Eq. 1: we used the datasets at 
admission in Fig. S1C as predictor variables and the estimated par-
ameter values obtained from model fitting in Table S3 as the out-
come variables (see Methods for details, specifically labeled as “RF 
prediction”). The detailed comparison between the estimated and 
predicted parameters is explored in Fig. S8 (sensitivity analyses on 
data preparation are referred to in Fig. S2C). We depicted the pre-
dicted PT% dynamics using the mathematical model with 
“RF-predicted parameters” in Figs. 3B and S7A, and obtained a de-
termination coefficient of 0.85 between the model fitting and RF 
prediction at day 0, 1, 2, 3, and 7 postadmission. These findings 
suggest that individual prediction of PT% dynamics for the 7 
days postadmission is viable using the clinical datasets obtained 
at admission (see below for further analysis).

At last, we examined whether enhancing the RF predictions in 
Fig. 3B was achievable by including clinical data, encompassing 
treatment information alongside the admission data. We expanded 
the admission data to include day-by-day blood test results and 
treatment details up to day 7 postadmission (as outlined in 
Fig. S1E) and performed the RF regressor, as previously described. 
The left and right panels in Fig. 3C showed the average and individ-
ual root mean squared errors (i.e. RMSEs) between the observed PT 
% data and the RF prediction with different datasets, respectively. 
Interestingly, as depicted in Figs. S5B and S9, the predicted PT% dy-
namics, based on RF prediction using blood test data until 2 days 
postadmission, showed significant improvement, with narrower 
95% prediction intervals. While the RMSEs showed significant im-
provement up to 2 days postadmission, the inclusion of treatment 
details did not impact the predictions. In fact, by day 2 postadmis-
sion, there was a reduction of 68.9% in the total RMSE difference 
from admission to 7 days postadmission. These findings suggest 
that the clinical outcome of patients hospitalized with ALI is pri-
marily determined up to 2 days postadmission when all patients 
are treated uniformly. We address this further in the Discussion.

Furthermore, we similarly assessed the RF predictions within 
the stratified groups (i.e. G1 to G6) as shown in Fig. S10. While 
we observed similar trends across all the groups, the RMSEs in 
G3 were larger than those in other groups. These results also indi-
cated that predicting the intermediate patterns of PT% dynamics 
at the individual level becomes more challenging even with the 
addition of clinical datasets.

Discussion
Using longitudinal clinical data collected from 319 patients with 
ALI who had been admitted to Kyushu University Hospital, we an-
alyzed clinical variables to assess whether the patients would sur-
vive without liver transplantation. Unlike previous observational 
studies of ALI or ALF which have attempted to predict the need 
for liver transplantation by using clinical variables, including 
ALF etiologies upon admission (8, 9, 26), we focused on time- 
course patterns of PT% values. In this way, we were able to stratify 
the patients with highly heterogeneous ALI into six distinct clinic-
al groups: G1 to G6. All non-TFS patients, except for the two 
non-TFS cases stratified in G4 who underwent early transplant-
ation because of the availability of a donor liver, were stratified 
into G5 and G6. Whereas all patients in G1 to G4 exhibited PT% 
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A

B

C

Fig. 3. Predicting individual PT% dynamics during the early progression phases: A) The reconstructed individual PT% dynamics for 24 representative 
patients are displayed. The dots and black solid curves represent the observed PT% data and the best-fitted model by NLMEM based on the entire PT% 
dataset (i.e. model fitting), respectively (using data from Fig. S1B). B) The predicted PT% dynamics by the mathematical model with RF-predicted 
parameters based on the blood test data on admission for the 24 patients (i.e. RF prediction) are presented. The green and orange solid lines correspond to 
TFS and non-TFS cases, respectively, while the shaded area in each panel indicates the mean and 95% prediction interval of the model prediction, 
respectively (using data from Fig. S1C). The dots and black solid curves are the same as in A. C) The average and individual RMSEs between the observed 
PT% data and the RF prediction with different datasets are depicted in the left and right panels, respectively (using data from Fig. S1E). Note that D0 

represents clinical data on admission, including blood test data; DTI0 includes D0 and treatment information on admission; Dt includes D0 and blood test 
data until day t postadmission; DTIt includes Dt and treatment information until day t postadmission. The green and orange plots represent TFS and 
non-TFS patients, respectively.
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values higher than the threshold of 51.30% at 7 days postadmis-
sion, 40.9% of the patients in G5 and G6 had lower PT% values. 
Our results indicate that these groups stratified by PT% dynamics 
sufficiently reflect the prognosis of patients with ALI.

As patients in G1 and G2 presented PT% values consistently 
above the threshold without intensive care such as plasma ex-
change or continuous hemodiafiltration, they could be followed 
up at general hospitals (self-limited patients). Most patients in 
G3 and G4 presented PT% values below the threshold at the 
time of admission; however, intensive care drastically improved 
PT% values, indicating that these patients should be treated at a 
high-volume center (intensive care–responsive patients). A sub-
stantial number of patients in G5 and G6 had PT% values below 
the threshold at 7 days postadmission despite intensive care, 
which implies that liver transplantation should be considered 
early in these patients (intensive care–refractory patients).

As a decline of PT% generally proceeds hepatic encephalopathy 
under deteriorating hepatic function, ALI first advances to ALF 
without coma and then to ALF with coma. According to the pro-
portion of patients with ALI, ALF without coma, and ALF with 
coma in each group shown in Table S2, the patients in G2, G4, 
and G6 seemed to be more advanced than those in G1, G3, and 
G5, respectively. Our method to stratify patients with ALI by PT 
% dynamics is supposed to reflect the need and the effect of inten-
sive care. In addition, our stratification indicates the pathophysio-
logical characteristics of each group. Given that liver atrophy 
appears when ALF with coma continues, the high proportion of 
liver atrophy in G5 and G6 indicates that the poor prognosis of 
these groups might be attributable to their severely advanced sta-
tus (Fig. S6 and Table S2). Furthermore, many groups reported 
that the hepatic microcirculatory disturbance caused by sinusoid-
al hypercoagulation is involved in ALF pathogenesis (27–31). We 
reported previously that patients with a high ALT/LDH ratio also 
have hepatic microcirculatory disturbance (32) and tend to re-
spond to intensive care, including steroid pulse therapy and anti-
coagulant therapy (33). Meanwhile, certain patients did not show 
the elevation of coagulation markers, and these patients differed 
in the elevation of interferon-gamma (32–34). Similarly, the in-
flammatory cells and cytokines were known to be involved in 
ALF pathogenesis and correlate with ALF prognosis (35–38). 
These findings indicated the several subgroups of ALF with differ-
ent underlying mechanisms. At present, there is no classification 
of ALF based on pathogenesis, and our stratification may help us 
to establish a new classification. In fact, the proportion of patients 
with an ALT/LDH ratio of <1.5 in G3 and G4 was higher than in the 
other groups (Table S2) and intensive care drastically increased PT 
% in these groups (Fig. 2B), which is consistent with our previous 
reports. Taken together, the stratification of patients with ALI/ 
ALF in this study holds mechanistic significance, and further ana-
lysis of the differences between each group is expected to offer 
new insights into the mechanisms underlying non-TFS.

The heterogeneity of ALF etiology and regional differences may 
lead to different inspections among experts. This lack of objectiv-
ity and generalizability may hinder the development of basic and 
clinical research on ALF and the development of new treatments. 
It is important to emphasize that our cohort includes all stages of 
ALF progression, from self-limited ALI to ALF with coma. And we 
have successfully stratified these highly heterogeneous patients 
(using unsupervised machine learning) according to their disease 
progression dynamics based solely on PT% dynamics, and have 
predicted with high accuracy whether they will be self-limited 
(G1 and G2), intensive care responsive (G3 and G4), or intensive 
care refractory (G5 and G6) at the time of admission. This will 

enable nonspecialists to predict treatment responsiveness as 
well as specialists and make appropriate decisions about hospital 
transfers in the case of ALF, a relatively rare condition for which 
few hepatologists can accurately grasp the condition.

Some observational studies, such as the King’s College Criteria 
(9), Acute Liver Failure Study Group Prognostic Index (ALFSG-PI) 
(8), and a decision tree model (10) have been designed to predict 
the need for liver transplantation using clinical data at the time 
of admission. In contrast, the ALF early dynamic model (26) for 
non-acetaminophen-induced patients with ALF (non-APAP-ALF) 
and the binary mixed model (BiMM) forest model (11) for patients 
with APAP-ALF utilized sequential clinical data postadmission to 
predict the need for liver transplantation. However, none of these 
studies focused on PT% dynamics because their objectives were 
patients with ALF with coma, whose PT% might severely decline 
on admission. In contrast, the present study analyzed patients 
with ALI and stratified them by PT% dynamics into six groups 
that sufficiently reflected prognosis and treatment responsive-
ness. Notably, these groups stratified by PT% dynamics could be 
predicted by using the clinical datasets measured at admission, 
including the results of blood tests, basic demographic informa-
tion, and diagnostic details. Therefore, we could predict who 
might need or respond to intensive care at the time of admission. 
Our findings may allow for optimizing medical resource allocation 
and early introduction of tailored individualized treatment plans, 
which may result in improving ALI prognosis. In fact, only 3 pa-
tients among 88 patients whose PT% was above 40% in G3/G4/ 
G5/G6 advanced to ALF whose PT% was below 40% in our cohort. 
Interestingly, through the combination of mathematical model-
ing and machine learning, we have demonstrated the potential 
for real-time individual prediction of PT% dynamics for the 7 
days postadmission using clinical datasets obtained at admission. 
Additionally, we found that the addition of clinical datasets up to 
2 days postadmission significantly improved the predictions. 
Although predicting the patterns of PT% dynamics, particularly 
for patients belonging to G3, is more challenging, our real-time 
prediction with admission data, including day-by-day blood test 
results up to 2 days postadmission, provides notable information, 
at least for the first 7 days. In clinical settings, if individual predic-
tions regarding real-time future PT% dynamics are updated 
day-by-day, we will be able to select the patients truly requiring 
liver transplantation and thus reduce the number of unnecessary 
liver transplantations, which in turn would benefit the many oth-
er patients awaiting brain-dead donor livers.

The model proposed in this study differs significantly from pre-
vious models in that it provides stratification that focuses on the 
dynamics of disease progression and group prediction at the 
time of admission, rather than on whether the patient can survive 
without transplantation. Therefore, it is difficult to strictly com-
pare it with previous models due to differences in the characteris-
tics of the cases treated and the predicted outcomes (see Table S4
for details). However, the performance of the G5 and G6 predic-
tions (ROC–AUC: 0.88 and 0.9, respectively; see Fig. 2C) or the pre-
diction of survival without transplantation using only admission 
blood test data (ROC–AUC: 0.85; see Fig. S2A) can serve as points 
of comparison with earlier models.

Our study has several limitations. First, our analysis relied on data 
from 319 patients at a single high-volume center. In recent studies 
with extensive data from the ALFSG, models were developed to pre-
dict severity by multivariate analysis of admission data from >1,900 
patients (8). However, those studies were limited to a dataset col-
lected at a specific time point (at admission). In another study using 
the BiMM forest model (11), although a time-series blood dataset was 
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used, the study focused on predicting daily encephalopathy grades 
and lacked a framework for the early prediction of ALF progression. 
While the number of patients in our study is limited compared 
with large cohort studies, our extensive longitudinal clinical data in-
clude time-course blood test data, including PT% values. Therefore, 
we achieved stratification of ALI by the need for and responsiveness 
to intensive care. Furthermore, we achieved real-time predictions of 
future PT% dynamics, thus addressing early prediction of ALI pro-
gression through an integrative approach that combines process- 
based mathematical modeling and machine learning. Secondly, fur-
ther investigation is needed to explore the association between the 
accuracy of our real-time prediction and treatment details such as 
plasma exchanges, steroid pulse therapy, and anticoagulant ther-
apy. Our analysis demonstrated that the inclusion of treatment de-
tails did not impact the predictions. This might be attributed to the 
uniform and high-quality treatment provided to all patients at a sin-
gle high-volume center. This aspect is particularly relevant in real- 
world clinical settings, where treatments may differ among hospitals 
or countries according to the experiences of frontline clinicians. We 
are currently planning to collect prospective and multicenter data. 
This will allow us to quantitatively evaluate the impact of treatment 
on PT% and outcomes despite patient heterogeneity as the amount 
of data increases. Finally, in our study, it is possible that population 
characteristics influenced the analysis. Because Kyushu University 
is a transplant hospital, the number of severe ALI cases was com-
paratively high. Additionally, there are regional differences and 
changes over time in ALI etiologies (13). These variances may affect 
clinical outcome. However, because the population analyzed in 
this study included major causes of ALI, such as autoimmune hepa-
titis, hepatitis A and hepatitis B virus infections, and drug-induced 
liver injury, our analysis may have broad applicability for ALI. 
These challenges need to be considered when dealing with larger da-
tasets, including validation data from different cohorts (e.g. multi-
center cohort study) as they become available.

In conclusion, this study is the first to analyze PT% dynamics in 
patients with ALI and then derive a stratification model to identify 
six groups reflecting the need for and responsiveness to intensive 
care. Notably, these stratified groups could be predicted using the 
clinical dataset upon admission, which will enable optimizing 
medical resource allocation and early introduction of tailored in-
dividualized treatment plans, resulting in improving ALF progno-
sis. Furthermore, we plan to make our stratification model public 
for clinicians treating ALF in the future, and that will enable them 
to identify appropriate treatment for each subgroup during the 
early phase. Additionally, our clinical stratification at admission 
and real-time predictions of future PT% dynamics open a door 
for preemptive medicine against severe ALF and the ability to tai-
lor treatment plans at the individual level.

Methods
Ethics statement
This study was performed in accordance with the Declaration of 
Helsinki and was approved by the Ethics Committees of Nagoya 
University (hc23-13) and Kyushu University Hospital (nos 
222283-01 and 23202-00). Written informed consent was waived 
because of the retrospective design. Consent for publication was 
obtained from all patients.

Study data
The present study was a single-center retrospective study in pa-
tients with ALI admitted at Kyushu University Hospital between 

January 2007 and March 2021. Clinical data were collected from 
medical records. ALF was diagnosed by using criteria established 
by the Intractable Hepato-Biliary Diseases Study Group in 
Japan (6). Patients with previously normal liver function who 
had a prothrombin activity percentage of 40% or less of the stand-
ardized value or an INR of 1.5 or more caused by severe liver dam-
age within 8 weeks of the onset of symptoms were diagnosed as 
having ALF. Patients with ALF were further classified into ALF 
with or without hepatic coma. ALF with hepatic coma was further 
subclassified into two disease types, the acute type and the sub-
acute type, which were defined as grade II or more severe hepatic 
encephalopathy developing within 10 days or between 11 and 56 
days after the onset of disease symptoms, respectively. As the def-
initions of ALF in some countries require hepatic coma (12), ALF 
with coma in the Japanese definition is the same as ALF in these 
countries. ALF without coma in the Japanese definition is consid-
ered to be the earlier condition of ALF with coma and is a practical 
disease entity for analyzing the contiguous progression from ALI 
to ALF with coma. Patients showing PT% values of <40% of the 
standardized value or an INR of 1.5 or more and grade II or more 
severe hepatic coma between 8 and 24 weeks after the onset of 
disease symptoms were diagnosed as having late-onset hepatic 
failure. Patients with malignant tumors and liver cirrhosis were 
excluded.

Regarding the therapeutic strategy, the hepatology team at 
Kyushu University decided how to treat each patient. Plasma ex-
change for the treatment of ALF is recommended in the Clinical 
Practical Guideline published by the European Association for 
the Study of the Liver (EASL) (39) and has been considered a 
standard treatment for ALF globally (40). Plasma exchange was 
repeated to keep PT% over 40% or PT-INR <1.5, and hemodiafil-
tration was performed if necessary. In Japan, because of the 
lack of brain-dead donors, patients with ALF frequently undergo 
medical treatments other than liver transplantation, such as 
high-dose intravenous methylprednisolone therapy (steroid 
pulse therapy) and anticoagulation therapy (13). For high-dose 
intravenous methylprednisolone therapy (steroid pulse ther-
apy), 1,000 mg of methylprednisolone was administered intra-
venously for 1 h/day for 3 days. Transcatheter arterial steroid 
injection therapy, which was reported as a new treatment for 
ALF (33, 41), was performed by injecting methylprednisolone 
via the proper hepatic artery over 1 h (1,000 mg/day for 3 days). 
Anticoagulant therapies, including recombinant thrombo-
modulin alfa, antithrombin III, and/or danaparoid sodium, 
were administered according to drug information. Liver trans-
plantation was implemented regardless of the treatment meth-
od when liver insufficiency progressed and an appropriate 
donor was available.

Data preparation
We used clinical data collected from 319 patients, incorporating 
75 numerical variables as presented in Table S1 and 19 categor-
ical variables as detailed in Table S2. Each variable had <20% 
missing values, as we excluded data with >20% missing values. 
Additionally, we converted categorical data into dummy varia-
bles. All the data, encompassing the 75 numerical and 19 cat-
egorical variables, underwent multiple imputation using R’s 
mice package (42) to address missing values. This imputed data-
set served as a representative set for our analysis. To assess the 
sensitivity of the imputation, we generated 50 different datasets 
and confirmed the robustness of our analysis, as shown in 
Fig. S1BC.
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Supervised machine learning for predicting 
clinical outcome
We used an RF classifier (43), a supervised machine-learning algo-
rithm, to predict the clinical outcome of patients hospitalized with 
ALI. We approached the problem as a binary classification task, 
where the model aimed to predict whether a given patient’s clin-
ical status was considered severe, such as the necessity for liver 
transplantation, or not. We used the RandomForestClassifier 
from Python’s scikit-learn and used the K-Fold cross-validation 
method (StratifiedKfold, Python, scikit-learn). Specifically, we 
split the data into five parts, used each for testing, and averaged 
the results to plot the ROC curve and to calculate the AUC. To cal-
culate the SD, we used each fold’s ROC values. Regarding the issue 
of data imbalance in the classifier, we addressed it using the syn-
thetic minority over-sampling technique (SMOTE; Python, 
Imbalanced-learn).

Logistic regression for predicting clinical outcome
Using logistic regression, we constructed a predictive model for in-
dividuals who develop severe conditions (i.e. non-TFS patients). In 
this model, we used PT% values on day 7 postadmission as the 
predictor variable while categorizing patients into TFS and 
non-TFS outcomes. We implemented this using Python’s 
scikit-learn library and established a threshold for PT% values. 
The threshold was determined at the PT% value corresponding 
to a probability of 0.5 in the model that used all the data as train-
ing data. Regarding the calculation of ROC–AUC and the issue of 
data imbalance, we used the K-Fold cross-validation method 
and SMOTE as in the RF model, respectively.

Unsupervised clustering and stratification of PT% 
dynamics
To stratify the time-course patterns of PT% values (i.e. PT% dy-
namics), we used dynamic time warping (25) to assess dissimilar-
ity among PT% dynamics, utilizing Python’s tslearn library. The 
number of clusters was determined through the elbow method, 
considering the sum of squared errors of prediction.

Modeling PT% dynamics
To describe PT% dynamics, we used the following simple model:

dP(t)
dt

= g − DP(t), (1) 

where P(t) is the PT% value at time t, and parameters g and D re-
present an increase and decrease in PT% time, respectively. 
These changes are attributed to the supply and consumption 
(and degradation) of coagulation factors, including factors II, V, 
VII, and X (23, 24).

Quantifying PT% dynamics: model fitting
For the parameter estimation of Eq. 1 (i.e. g, D, and P(0)) and fitting 
of the time-course PT% values (referred to as “model fitting” in this 
study), we used a nonlinear mixed-effects modeling approach, 
which incorporates fixed effects as well as random effects describ-
ing the inter-patient variability in parameter values. Each param-
eter of patient k, θk( = θ × eπk ), is decomposed as the product of θ 
(the fixed effect) and eπk (the random effect), where πk is assumed 
to be drawn from a normal distribution: N(0, Ω). The fixed effect 
parameters and random effect parameters were estimated by us-
ing the stochastic approximation expectation/maximization algo-
rithm and empirical Bayes method, respectively. MONOLIX 
2021R2 (www.lixoft.com) (44), a program for maximum likelihood 

estimation for nonlinear mixed-effects models, was used to fit the 
model to the time-course PT% values (Fig. 3A). The estimated pa-
rameters are summarized in Table S3.

Predicting PT% dynamics: RF prediction
Alternatively, for parameter estimation in Eq. 1 and the prediction of 
time-course PT% values (referred to as “RF prediction” in this study), 
we used an RF regressor, specifically the RandomForest 
Regressor from Python’s scikit-learn library. In this model, the data-
sets at admission in Fig. S1C were used as predictor variables, with 
the estimated parameter values obtained from model fitting in 
Table S3 serving as the outcome variables. The individual parameter 
values were then estimated and referred to as “RF- 
predicted parameters” in this study. Note that we used the 
LeaveOneOut module in Python’s scikit-learn library, training on 
all cases except one. The predicted PT% dynamics, along with its 
95% prediction interval, were calculated using Eq. 1 with the RF- 
predicted parameters (see Fig. 3B). The 95% prediction interval was 
derived from the predicted values of each decision tree within the RF.

Statistical analysis
When necessary, variables were compared among different 
groups using Fisher’s exact test with residual analysis for categor-
ical variables and ANOVA (for more than two groups) with the 
Bonferroni-corrected Wilcoxon rank-sum test or Wilcoxon rank- 
sum test (for two groups) for numerical variables. All statistical 
analyses were performed using R (version 4.2.0).

Supplementary Material
Supplementary material is available at PNAS Nexus online.

Funding
This study was supported in part by Scientific Research (KAKENHI) 
Grant-in-Aid for Research Activity Start-up JP23K19591 (to K.I.); 
Grant-in-Aid for Early-Career Scientists JP22K160 (to T.G.); 
Grant-in-Aid for Scientific Research C JP22K07987 (to Mo.K.); C 
JP22K07963 (to M.T.); B 23H03497 (to S.I.); S JP22H04993 (to Y.O.); 
Grant-in-Aid for Transformative Research Areas 22H05215 (to 
S.I.); Grant-in-Aid for Challenging Research (Exploratory) 
22K19829 (to S.I.); AMED CREST 19gm1310002 (to S.I.); AMED 
Research Program on Emerging and Re-emerging Infectious 
Diseases 22fk0108509 (to S.I.), 23fk0108684 (to S.I.), 23fk0108685 
(to S.I.); AMED Research Program on HIV/AIDS 22fk0410052 (to 
S.I.); AMED Program for Basic and Clinical Research on Hepatitis 
22fk0210094 (to S.I.); AMED Program on the Innovative 
Development and the Application of New Drugs for Hepatitis B 
22fk0310504h0501 (to S.I.); AMED Strategic Research Program for 
Brain Sciences 22wm0425011s0302; AMED Research Program on 
Hepatitis JP24fk0210102 (to Y.O.); JST MIRAI JPMJMI22G1 (to S.I.); 
Shin-Nihon of Advanced Medical Research (to S.I.); SECOM 
Science and Technology Foundation (to S.I.); and The Japan Prize 
Foundation (to S.I.).

Author Contributions
R.Y. carried out the computational analysis and wrote the paper; 
M.T. and Mi.K. designed the research, curated the data, and wrote 
the paper; N.N. supervised the project and reviewed and edited 
the pater; T.G., K.I. and Mo.K. curated the data and reviewed 
and edited the paper; K.F. supervised the project and reviewed 

Yoshimura et al. | 9

https://www.lixoft.com
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgaf004#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgaf004#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgaf004#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgaf004#supplementary-data


and edited the pater; S.I. and Y.O. designed the research, super-
vised the project, and reviewed and edited the paper. All authors 
discussed the research and contributed to writing the manuscript.

Data Availability
The clinical data of the patients with ALF/ALI used in this study 
and the code we used for analyses are available via following 
GitHub URL: https://github.com/rik-yosh/R-Yoshimura_ALI/tree/ 
master.

References
1 Bernal W, Wendon J. 2013. Acute liver failure. N Engl J Med. 369: 

2525–2534.
2 Fujiwara K, et al. 2008. Fulminant hepatitis and late onset hepatic 

failure in Japan. Hepatol Res. 38:646–657.
3 Polson J, Lee WM; American Association for the Study of Liver 

Disease. 2005. AASLD position paper: the management of acute 
liver failure. Hepatology. 41:1179–1197.

4 Stravitz RT, et al. 2023. Future directions in acute liver failure. 
Hepatology. 78:1266–1289.

5 Trey C, Davidson CS. 1970. The management of fulminant hepat-

ic failure. Prog Liver Dis. 3:282–298.
6 Mochida S, et al. 2011. Diagnostic criteria of acute liver failure: a 

report by the Intractable Hepato-Biliary Diseases Study Group of 
Japan. Hepatol Res. 41:805–812.

7 Goldaracena N, Cullen JM, Kim DS, Ekser B, Halazun KJ. 2020. 
Expanding the donor pool for liver transplantation with marginal 
donors. Int J Surg. 82S:30–35.

8 Koch DG, Tillman H, Durkalski V, Lee WM, Reuben A. 2016. 
Development of a model to predict transplant-free survival of 
patients with acute liver failure. Clin Gastroenterol Hepatol. 14: 
1199–1206.e2.

9 O’Grady JG, Alexander GJ, Hayllar KM, Williams R. 1989. Early in-

dicators of prognosis in fulminant hepatic failure. 
Gastroenterology. 97:439–445.

10 Speiser JL, Lee WM, Karvellas CJ; US Acute Liver Failure Study 
Group. 2015. Predicting outcome on admission and post- 
admission for acetaminophen-induced acute liver failure using 
classification and regression tree models. PLoS One. 10:e0122929.

11 Speiser JL, et al. 2019. Predicting daily outcomes in 
acetaminophen-induced acute liver failure patients with ma-
chine learning techniques. Comput Methods Programs Biomed. 
175:111–120.

12 Sugawara K, Nakayama N, Mochida S. 2012. Acute liver failure in 

Japan: definition, classification, and prediction of the outcome. J 
Gastroenterol. 47:849–861.

13 Nakao M, et al. 2018. Nationwide survey for acute liver failure and 
late-onset hepatic failure in Japan. J Gastroenterol. 53:752–769.

14 Wang R, et al. 2024. Deep learning-based identification of eyes at 
risk for glaucoma surgery. Sci Rep. 14:599.

15 Huang W, Zhu JY, Song CY, Lu YQ. 2024. Machine learning mod-
els for early prediction of potassium lowering effectiveness and 
adverse events in patients with hyperkalemia. Sci Rep. 14:737.

16 Kawakami E, et al. 2023. Monitoring of blood biochemical 
markers for periprosthetic joint infection using ensemble ma-

chine learning and UMAP embedding. Arch Orthop Trauma Surg. 
143:6057–6067.

17 Price GD, Heinz MV, Song SH, Nemesure MD, Jacobson NC. 2023. 
Using digital phenotyping to capture depression symptom vari-
ability: detecting naturalistic variability in depression symptoms 

across one year using passively collected wearable movement 
and sleep data. Transl Psychiatry. 13:381.

18 Triplett DA. 2000. Coagulation and bleeding disorders: review 
and update. Clin Chem. 46:1260–1269.

19 1985. International Committee for Standardization in 
Haematology, International Committee on Thrombosis and 
Haemostasis: ICSH/ICTH recommendations for reporting pro-

thrombin time in oral anticoagulant control. Thromb Haemost. 
53:155–156.

20 Glavinic R, et al. 2022. Acute arterial thrombosis of lower extrem-
ities in COVID-19 patients. J Clin Med. 11:1538.

21 Tripodi A, Lippi G, Plebani M. 2016. How to report results of pro-
thrombin and activated partial thromboplastin times. Clin Chem 

Lab Med. 54:215–222.
22 Robert A, Chazouilleres O. 1996. Prothrombin time in liver fail-

ure: time, ratio, activity percentage, or international normalized 
ratio? Hepatology. 24:1392–1394.

23 Levy JH, Szlam F, Wolberg AS, Winkler A. 2014. Clinical use of the 
activated partial thromboplastin time and prothrombin time for 
screening: a review of the literature and current guidelines for 

testing. Clin Lab Med. 34:453–477.
24 Rossaint R, et al. 2023. The European guideline on management 

of major bleeding and coagulopathy following trauma: sixth edi-
tion. Crit Care. 27:80.

25 Sakoe H, Chiba S. 1978. Dynamic programming algorithm opti-
mization for spoken word recognition. IEEE Trans Acoust Speech 

Signal Process. 26:43–49.
26 Kumar R, et al. 2012. Prospective derivation and validation of 

early dynamic model for predicting outcome in patients with 
acute liver failure. Gut. 61:1068–1075.

27 Kato J, et al. 2013. Interferon-gamma-mediated tissue factor ex-
pression contributes to T-cell-mediated hepatitis through induc-
tion of hypercoagulation in mice. Hepatology. 57:362–372.

28 Miyazawa Y, Tsutsui H, Mizuhara H, Fujiwara H, Kaneda K. 1998. 

Involvement of intrasinusoidal hemostasis in the development 
of concanavalin A-induced hepatic injury in mice. Hepatology. 
27:497–506.

29 Hirata K, Ogata I, Ohta Y, Fujiwara K. 1989. Hepatic sinusoidal 
cell destruction in the development of intravascular coagulation 
in acute liver failure of rats. J Pathol. 158:157–165.

30 Fujiwara K, et al. 1988. Intravascular coagulation in acute liver 
failure in rats and its treatment with antithrombin III. Gut. 29: 
1103–1108.

31 Rake MO, Flute PT, Pannell G, Williams R. 1970. Intravascular co-
agulation in acute hepatic necrosis. Lancet. 1:533–537.

32 Kuwano A, et al. 2021. Microcirculatory disturbance in acute liver 
injury. Exp Ther Med. 21:596.

33 Kuwano A, et al. 2023. Transcatheter arterial steroid injection 

therapy improves the prognosis of patients with acute liver fail-
ure. Medicine (Baltimore). 102:e33090.

34 Kurokawa M, et al. 2024. Microcirculatory disturbance in acute 
liver injury is triggered by IFNgamma-CD40 axis. J Inflamm 
(Lond). 21:23.

35 dos Santos DC, et al. 2012. Activated lymphocytes and high liver 

expression of IFN-gamma are associated with fulminant hepatic 
failure in patients. Liver Int. 32:147–157.

36 Nguyen NT, Umbaugh DS, Sanchez-Guerrero G, Ramachandran 
A, Jaeschke H. 2022. Kupffer cells regulate liver recovery through 
induction of chemokine receptor CXCR2 on hepatocytes after 
acetaminophen overdose in mice. Arch Toxicol. 96:305–320.

37 Umbaugh DS, et al. 2024. The chemokine CXCL14 is a novel early 

prognostic biomarker for poor outcome in acetaminophen-induced 
acute liver failure. Hepatology. 79:1352–1364.

10 | PNAS Nexus, 2025, Vol. 4, No. 2

https://github.com/rik-yosh/R-Yoshimura_ALI/tree/master
https://github.com/rik-yosh/R-Yoshimura_ALI/tree/master


38 Vazquez JH, et al. 2022. Proteomics indicates lactate dehydrogen-
ase is prognostic in acetaminophen-induced acute liver failure 
patients and reveals altered signaling pathways. Toxicol Sci. 187: 
25–34.

39 European Association for the Study of the Liver. Electronic ad-
dress: easloffice@easloffice.eu, et al. 2017. EASL Clinical Practical 
Guidelines on the management of acute (fulminant) liver failure. 
J Hepatol. 66:1047–1081.

40 Fernandez J, Bassegoda O, Toapanta D, Bernal W. 2024. Acute liv-
er failure: a practical update. JHEP Rep. 6:101131.

41 Kotoh K, et al. 2006. Arterial steroid injection therapy can inhibit 
the progression of severe acute hepatic failure toward fulminant 
liver failure. World J Gastroenterol. 12:6678–6682.

42 van Buuren S, Groothuis-Oudshoorn K. 2011. Mice: multivariate 
imputation by chained equations in R. J Stat Softw. 45:1–67.

43 Breiman L. 2001. Random forests. Mach Learn. 45:5–32.
44 Traynard P, Ayral G, Twarogowska M, Chauvin J. 2020. Efficient 

pharmacokinetic modeling workflow with the monolixsuite: a 
case study of remifentanil. CPT Pharmacometrics Syst Pharmacol. 
9:198–210.

Yoshimura et al. | 11

mailto:easloffice@easloffice.eu

	Stratifying and predicting progression to acute liver failure during the early phase of acute liver injury
	Introduction
	Results
	Description of cohort and study design
	Exploring biomarkers for ALF
	Stratifying and characterizing ALF progression by PT% dynamics
	Predicting individual future PT% dynamics at admission

	Discussion
	Methods
	Ethics statement
	Study data
	Data preparation
	Supervised machine learning for predicting clinical outcome
	Logistic regression for predicting clinical outcome
	Unsupervised clustering and stratification of PT% dynamics
	Modeling PT% dynamics
	Quantifying PT% dynamics: model fitting
	Predicting PT% dynamics: RF prediction

	Statistical analysis

	Supplementary Material
	Funding
	Author Contributions
	Data Availability
	References




