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Abstract

Cryptic genetic variation is increasingly being identified in numerous coral species, with prior

research indicating that different cryptic genetic lineages can exhibit varied responses to

environmental changes. This suggests a potential link between cryptic coral lineages and

local environmental conditions. In this study, we investigate how communities of cryptic

coral lineages vary along environmental gradients. We began by identifying cryptic genetic

lineages within six coral species sampled around St. Croix, USVI based on 2b-RAD

sequencing data. We then analyzed associations between the distributions of cryptic line-

ages across the six coral species (i.e., “cryptic coral community composition”) and ecore-

gions, or geographically distinct environmental conditions. Our findings show that depth is a

more significant predictor of community composition than ecoregions and is the most influ-

ential factor among the 40 abiotic variables that characterize ecoregions. These results

imply that cryptic coral communities are influenced by both depth and local environmental

conditions, although the exact environmental factors driving these patterns remain

unknown. Understanding community turnover across a seascape is important to consider

when outplanting corals to restore a reef, as locally-adapted lineages may have differential

fitness in different environmental conditions.

Introduction

The Caribbean Sea is experiencing a sharp decline in coral cover, primarily due to diseases

[1, 2] and warm temperature anomalies [3–5]. These stressors have led to rapid transforma-

tions in coral communities and a subsequent reduction in reef functionality across the Carib-

bean [6]. In response, conservationists have launched efforts to restore coral populations by

outplanting asexually propagated coral fragments [7] and sexually propagated coral recruits

[8] onto degraded reefs. Restoration activities are widespread, covering multiple Caribbean

islands [9, 10], the U.S. [11], and Central and South America [12]. When outplanting coral,

restoration practitioners aim to identify specific genotypes that demonstrate resilience, i.e.,

high survival and growth rates, at outplant sites. However, it’s important to consider that the
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most successful genotypes may vary due to local environments at different outplanting loca-

tions [13].

Understanding how environmental gradients drive local adaptations will be crucial for opti-

mizing outplanting strategies. By ensuring corals are placed in environments where they are

most likely to thrive, we can enhance their survival rates [13]. It is also important to recognize

shared environmental adaptations across various coral species. These species likely form com-

munities that are locally adapted to specific, yet undefined, ecoregions [14]. Thus, improving

the survival rates of outplanted corals necessitates a robust understanding of how local envi-

ronmental factors shape the genetic structure of diverse coral species. This knowledge is vital

for developing targeted, effective restoration strategies that support the resilience and recovery

of coral ecosystems.

Many coral taxa around the world, including Acropora hyacinthus [15], Orbicella faveolata
[16], Pocillopora spp. [17], Porites cf. lobata [18], and Agaricia spp. [19], exhibit cryptic genetic

variation, forming distinct genetic lineages that are morphologically similar but genetically

divergent. Genetic divergence within species can arise from various factors- including differ-

ences in depth, habitat type, physical disturbances, oceanographic factors, temperature, or geo-

graphic isolation [20]. Depth is a common driver in many species [20], with numerous studies

demonstrating significant associations between cryptic lineages and depth [17, 20, 21]. Depth

preferences often lead to spatial segregation; for instance, cryptic genetic lineages of M. caver-
nosa and S. siderea, are found at different depths and distances from shore, with some lineages

restricted to shallow reefs of 3–10 meters, while others thrive in deeper habitats over 20 meters

[21]. Similarly, Agaricia fragilis exhibits genomic divergence and limited dispersal across

depths [22].

In addition to depth, environmental factors such as salinity [23, 24] and temperature [25,

26] significantly influence community composition in marine ecosystems. Temperature is of

particular concern due to increasing heat anomalies leading to mass mortality events [3–5].

Some cryptic lineages exhibit variable responses to temperature [15, 16]. For example, cryptic

lineages of O. faveolata in Panama show different physiological responses to coral bleaching,

suggesting adaptations to rising water temperatures [16]. Likewise, cryptic lineages of A. hya-
cinthus in American Samoa demonstrate variations in heat tolerance and their association

with heat-resistant symbionts [15]. More broadly, shifts in community composition can result

from divergent responses to heat stress [27], although communities may recover if environ-

mental conditions reverse [28]. Given the consistent associations of depth and temperature

with cryptic genetic variation in coral species, we hypothesize that these factors may serve as

key environmental drivers of cryptic coral community composition.

St. Croix is characterized by extensive patch reefs and colonized pavement areas, and it

includes protected areas such as the Buck Island Reef National Monument and the East End

Marine Park [2] (Fig 1). Despite facing the widespread environmental pressures that have deci-

mated coral populations elsewhere, the benthic habitats of St. Croix have historically main-

tained fair conditions, with some regions like Buck Island Reef showing notable resilience [29,

30]. This resilience is often attributed to the genetic diversity among coral species, with partic-

ularly resilient species like M. cavernosa and P. astreoides playing a crucial role in recovery

potential [29, 31]. Alternatively, the Orbicella populations on the island, especially O. faveolata,

have suffered significant declines, characterized by dead colony surface areas and erosion rates

that surpass their live surface area and rates of calcification [32]. Furthermore, the recent surge

in Stony Coral Tissue Loss Disease (SCTLD) throughout the U.S. Virgin Islands underscores

the urgency of evaluating the variability in resilience within coral communities [33].

In this study, we conducted a population genomics analysis of six coral species sampled

across St. Croix: Agaricia agaricites, Montastraea cavernosa, Orbicella faveolata, Porites

PLOS ONE Cryptic coral community composition across environmental gradients

PLOS ONE | https://doi.org/10.1371/journal.pone.0318653 February 6, 2025 2 / 18

for these analyses, as well as all scripts and data to

reproduce the figures in this manuscript, can be

found at: https://github.com/kristinaleilani/2bRAD-

workshop.

Funding: This study was primarily funded by the

NatureNet Science Fellowship from The Nature

Conservancy to K. L. B., and partially funded by the

National Fish and Wildlife Foundation Grant

0318.20.069532 awarded to The Nature

Conservancy and the National Science Foundation

grant OCE-2433977 to M.V.M.. However, the

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript."

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0318653
https://github.com/kristinaleilani/2bRAD-workshop
https://github.com/kristinaleilani/2bRAD-workshop


astreoides, Pseudodiploria strigosa, and Siderastrea siderea. These species, which are wide-

spread throughout the Caribbean, represent a diverse range of coral families and reproductive

strategies, including both broadcast spawners and brooders. Our sample set also included a

mix of species experiencing population declines, such as the endangered O. faveolata [34], as

well as species that are increasing and considered “weedy,” such as P. astreoides [35, 36].

For each species, we identified cryptic genetic lineages and subsequently explored the envi-

ronmental associations between seascape heterogeneity and the composition of these cryptic

coral communities. The primary goal of our research was to pinpoint the environmental pre-

dictors and ecological thresholds that play a role in structuring the distribution of cryptic

genetic lineages across multiple species. This comprehensive approach allows us to better

understand the dynamics influencing coral diversity and resilience across different environ-

mental gradients.

Methods

Sample collection

Six coral species- A. agaricites (n = 42), M. cavernosa (n = 54), O. faveolata (n = 98), P.

astreoides (n = 61), P. strigosa (n = 108), and S. siderea (n = 53)—were sampled from 12 sites

surrounding St. Croix. Adult colonies >5cm in diameter were sampled, and for each sample,

depth was recorded in situ (S1 Fig in S1 File). Tissue samples were stored in 100% ethanol at

-80 degrees Celsius. Sampling was conducted in accordance with the U.S. Virgin Islands

Fig 1. Map of St. Croix, USVI. Three coral sampling sites are pictured to demonstrate the variability of reef environments across

the island. On the western side, Butler Bay (photo by Corina Marks) has high visibility with a moderate reef slope. Cane Bay

(photo by Kristina Black) is most notably defined by a “wall,” or a sudden cavernous drop-off adjacent to the north shore. Deep

End (photo by Daisy Flores) is shallow and turbid. Some sites receive direct anthropogenic impacts from the capital

Christiansted, which is highly developed, and the town of Frederiksted, where cruise ships bring tourism. The island also

maintains two marine protected areas: Buck Island National Monument and East End Marine Park. Coastlines and district

boundaries are plotted with GADM mapping data (https://gadm.org/index.html).

https://doi.org/10.1371/journal.pone.0318653.g001
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Department of Planning and Natural Resources (The Nature Conservancy Coral Restoration

Permit DFW20052X).

Laboratory methods

Genomic DNA was isolated using a CTAB extraction procedure (Supplementary section 1 in

S1 File), followed by purification using the Zymo Genomic DNA Clean & Concentrator kit

(Zymo #D4067) following the manufacturer’s protocol. All samples were equalized to 12ng/

μL, and 2bRAD libraries were prepared following a protocol available at https://github.com/

z0on/2bRAD_denovo. 2bRAD is a restriction site-associated DNA sequencing method used to

survey 0.5% of the total genome, which is sufficient for profiling neutral genetic variation of

these natural populations [37]. The libraries were sequenced at the Genomic and Sequencing

Analysis Facility at the University of Texas at Austin on the Illumina NovaSeq SR100 platform.

2bRAD genotyping

Raw sequences were processed using the Texas Advanced Computing Center (TACC). Raw

reads were trimmed and deduplicated following a custom pipeline hosted at https://github.

com/z0on/2bRAD_denovo, then low-quality ends were trimmed using Cutadapt [38]. Refer-

ence genomes were available for mapping sample sets of O. faveolata (NCBI RefSeq assembly:

GCF_002042975.1) and M. cavernosa [21]. However, for all other species, de novo cluster-

derived reference was constructed, following [37]. Briefly, the trimmed reads within each sam-

ple set were “stacked” to identify tags that appear multiple times. Tags that appeared in at least

10 individuals were collected. Then, tags with more than 7 observations without reverse-com-

plement were discarded, and the remaining tags were clustered at 91% identity (i.e. allowing

for up to 3 mismatches within 34b tag). The most abundant tag from each cluster became the

reference, and all the reference tags were concatenated to form 10 equal-sized pseudo-chromo-

somes. Additionally, four reference genomes of the main zooxanthellae clades of algal symbi-

ont genomes were concatenated onto the coral genomes (Symbiodinium: NCBI accession no.

GCA_003297005.1, Brevolium: GCA_000507305.1; Cladocopium: GCA_003297045.1; Durisdi-
nium: GAFP00000000). All genomes were indexed with Bowtie2 [39] and trimmed reads were

mapped to their respective reference. All reads that mapped to the symbiont genomes were

discarded, leaving only coral reads for downstream analysis. The resulting bam files were gen-

otyped with ANGSD [40] and individuals with less than 10% of sites at 5X coverage were dis-

carded. Sites were filtered with minor allele frequency < 0.025, and only sites with mapping

error<0.1% and genotyped in at least 75% of individuals were retained. Genotypes were com-

piled into a pairwise Identity-by-state (IBS) genetic dissimilarity matrix for initial inspection.

Hierarchical clustering of the genetic matrix was evaluated for correct alignment of technical

replicates, and identification of clonal samples. All clones and technical replicates were

removed. Then the samples were re-genotyped with ANGSD using the smaller set of individu-

als to produce the final IBS matrix.

Population genomics

We explored population structure within each species by visualizing the IBS dissimilarities as a

hierarchical clustering tree and principal coordinates analysis (PCoA) using the R package

vegan (version 2.6–4). For O. faveolata and P. strigosa, the optimal number of genetic lineages

was visually determined by examining hierarchical clustering tree and PCoA. To determine

the number of lineages in the remaining four species, we clustered our samples with larger

2bRAD datasets from the Florida Keys and Gulf of Mexico. Four cryptic genetic lineages in M.

cavernosa and S. siderea were detected in a previous study [21, 41] NCBI BioProject Accession
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PRJNA679067), and at least two more lineages of M. cavernosa were detected in the Gulf of

Mexico [42]. Three lineages of A. agaricia and P. astreoides were detected in another study

from Florida [43] SRA Bioproject PRJNA812916). M. cavernosa, S. siderea, and A. agaricites all

demonstrated clear assignment to previously detected lineages. However, P. astreoides did not

cluster with any lineages from Florida, despite genetic connectivity previously detected

between Florida and the U.S. Virgin Islands in a microsatellite study [44]. Therefore, we also

designated the optimal number of lineages within St. Croix P. astreoides by visual separation in

a hierarchical clustering tree and principal coordinate analysis (PCoA).

Defining ecoregions

Environmental monitoring data was obtained from the Virgin Islands Department of Plan-

ning and Natural Resources (DPNR), available at waterqualitydata.us. This data represents

eight in situ variables measured across the St. Croix coastline from 2000 to 2022 (S2 Fig and

S1 Table in S1 File). Variables included pH, Enterococcus and E. coli (count per 100ml), dis-

solved oxygen, Kjeldahl nitrogen, and phosphorus (mg/L), and Secchi disk depth (m). All

variables were monitored across all coastlines of St. Croix, and very close to coral sampling

sites (S2 Fig in S1 File). The only exception is that E. coli was not monitored near Cane Bay

on the north shore. We summarized variables at each location by calculating mean, maxi-

mum, and minimum values across all observations. We also calculated mean monthly range

as the difference between the maximum and minimum value at each site each month, and

then averaged across months (S2 Table in S1 File). Similarly, we calculated mean yearly

range as range of values at each site recorded over each year, averaged across years (S3

Table in S1 File). Altogether, these measures produced 40 environmental variables total. To

extract environmental values at our coral sampling sites, we performed a kriging interpola-

tion of each variable. Using the autoKrige function in the R package automap (version 1.0–

14), we inferred the optimal model to fit a variogram between neighboring monitoring sites

and implemented cross-validation to approximate a continuous environmental grid. Then,

values were extracted at the twelve coral sampling sites from environmental grids of each

variable (S3 Fig in S1 File).

Due to multicollinearity within our environmental dataset, we aimed to summarize condi-

tions across the seascape by clustering sampling sites into distinct “ecoregions” of similar envi-

ronmental values. We first reduced multicollinearity within the environmental dataset by

removing variables with height < 0.3 average distance in a hierarchical clustering tree

(Fig 2A). Then the smaller subset of 15 variables was used to cluster sampling sites by environ-

ment (Fig 2B). The hierarchical clustering tree resulted in four ecoregions (Fig 2C) across the

seascape. At first glance, these regions appear to align with visual differences between the reef

environments (Fig 1). These regions are also reasonable given the influence of the Caribbean

Current around St. Croix. The northbound Caribbean current deflects around the southern

shore of St. Croix, sending disparate wake flows to the eastern sites (ecoregion A) and the west-

ern sites (ecoregions C and D) (45). The two flows are asymmetric due to wake eddies, or cir-

cular currents, forming contained benthic conditions in ecoregion A [45]. Ecoregion B (The

Palms and WAPA) are closest to the Virgin Islands capital of Christiansted, and likely receive

land-based sources of pollution [46]. Ecoregion C (Cane Bay, North Star, and Carambola) is

close to ecoregion D in the hierarchical clustering tree (Fig 2B) but likely differs due a promi-

nent shelf break that drops 5,500m deep approximately 250m from shore [47]. Together, these

ecoregions likely capture broad environmental heterogeneity across the seascape, so that even

variables that are missing from this analysis are likely congruent with these environmental

boundaries.
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Fig 2. Environmental clustering of 12 sites into “ecoregions”. (a) Clustering of 16 environmental variables, after reducing

multicollinearity. (b) Clustering of sampling sites based on those 15 environmental variables. Ecoregion is indicated by

color and assigned to sites that cluster by environment. (c) Sampling sites and their ecoregion assignment on the map of

St. Croix, USVI. Coastlines and district boundaries are plotted with GADM mapping data (https://gadm.org/index.html).

https://doi.org/10.1371/journal.pone.0318653.g002
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Community-environment associations

A common framework for finding associations between community composition and envi-

ronmental variables is to compare species abundance at multiple sampling sites across a het-

erogeneous landscape with various environmental factors [48]. Several methods are used for

this analysis, including latent factor mixed models (LFMM; [49]), redundancy analysis (RDA;

[50]), and gradient forest [51]. Gradient forest may be the most advanced method, as it

employs multiple regression trees to estimate environmental thresholds that drive community

turnover across the landscape. This method, which extends the principles of random forest to

handle multiple response variables, allows for the detection of both linear and nonlinear rela-

tionships between communities and their environments, while also controlling for collinearity

among environmental variables [51]. In our study, we apply the gradient forest method to

identify the environmental predictors of coral community composition across the reefs of

St. Croix in the U.S. Virgin Islands.

Abundances of each lineage within each species at each site were used to produce a com-

munity-by-site table for investigating the influence of environmental gradients on cryptic

lineage composition. These counts became our response matrix that was input to a gradient

forest model with the environmental predictors (using R package gradientForest version

0.1.32, [51]). We ran two gradient forest models: one with depth and assignment to four

ecoregions and one with all 40 environmental predictors. Random forests were grown for

each lineage, each with an ensemble of 500 trees, where each tree splits environmental gra-

dients at different observations. The change in community composition across each split

was then summarized into the compositional turnover along each environmental gradient.

The importance of each predictor was computed with cross-validation and assessed by con-

ditional permutation of each variable, permuted with a maximum of two splits on predic-

tors correlated > 0.5.

Results

Cryptic genetic lineages

After quality filtering individual corals and genomic loci, a subset was retained for analyzing

population structure within each species (Table 1, S4 Table in S1 File). Technical replicates

and genetically identical individuals were removed from the final subset by retaining the sam-

ple with highest alignment rate to its respective coral genome.

We identified two genetic lineages within A. agaricites, O. faveolata, and P. astreoides (Fig

3A,3C and 3D) and four lineages of P. strigosa based on visual examination of the hierarchical

clustering tree and PCoA of the identity-by-state genetic dissimilarity matrix for each species.

When clustering A. agaricites and P. astreoides with samples from a prior study in Florida [43],

we observed that the two A. agaricites lineages from St. Croix cluster with two genetic lineages

found throughout the Florida Keys. Specifically, the red St. Croix lineage (Fig 3A) clusters with

Table 1. Sample size and genomic sites retained for six coral species.

Species # individuals retained after quality filtering and removing clones # geographic sites represented # genomic sites retained after sequencing

A. agaricites 25 8 49,992

M. cavernosa 35 8 32,790

O. faveolata 47 10 28,724

P. astreoides 47 6 115,034

P. strigosa 70 11 35,943

S. siderea 21 8 49,863

https://doi.org/10.1371/journal.pone.0318653.t001

PLOS ONE Cryptic coral community composition across environmental gradients

PLOS ONE | https://doi.org/10.1371/journal.pone.0318653 February 6, 2025 7 / 18

https://doi.org/10.1371/journal.pone.0318653.t001
https://doi.org/10.1371/journal.pone.0318653


the shallow-preferred lineage in Florida and the blue St. Croix lineage clusters with the depth-

generalist lineage in Florida. However, the two P. astreoides lineages from St. Croix do not

cluster with any of the lineages observed in the Florida Keys, and instead appear to be geneti-

cally differentiated. The M. cavernosa and S. siderea sample sets also clustered with samples

from prior studies [21, 42, 52]. M. cavernosa from St. Croix clustered with six lineages special-

ized to various depths, and S. siderea clustered with two shallow and one deep-specialized line-

age found across the Florida Keys and the Gulf of Mexico. Differentiation of three S. siderea
lineages is apparent in hierarchical clustering and PCoA (Fig 3F), but the delineation of six M.

cavernosa lineages is less obvious, especially in ordination space (Fig 3B). However, this is

likely due to the under-sampling of M. cavernosa around St. Croix, and a larger sample set

would likely reveal more striking differentiation of lineages.

Cryptic lineages within each coral species show different geographic distributions. For

instance, the red lineage of A. agaricites occurs at all sites, but the blue lineage was only found

at one western site (Fig 4A). Similarly, the red lineage of P. astreoides occurs at all sites but the

blue lineage was only found at one central site (Fig 4D). On the other hand, the two lineages of

O. faveolata seem to be geographically segregated and do not co-occur at the same sites (Fig

4C). P. strigosa, which contains four lineages, shows geographic partitioning of the green line-

age to the west and blue lineage in the east (Fig 4E). Similarly, S. siderea shows partitioning of

the red and tan lineages in the central sites and outer sites, respectively. However, the blue line-

age S. siderea occurs at all sites (Fig 4F). M. cavernosa, which contains six lineages, also shows

some geographic separation, as the red, green, and tan lineages only occur at central sites while

the pink and turquoise lineages occur everywhere (Fig 4B).

Fig 3. Identifying cryptic genetic lineages in six coral species in St. Croix. (a) A. agaricites is composed of two

distinct genetic lineages as shown in the hierarchical clustering tree (left) and PCoA (right) of genetic dissimilarities.

(b) M. cavernosa contains six lineages, as confirmed by clustering with a larger sample set from Florida and the Gulf of

Mexico. (c) O. faveolata contains two lineages, (d) P. astreoides contains two lineages, (e) P. strigosa contains four

lineages, and (f) S. siderea contains three lineages.

https://doi.org/10.1371/journal.pone.0318653.g003
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Community ecology

In the first gradient forest model, depth and ecoregions together accounted for 15.4% of the

variation in cryptic coral communities. Depth was the strongest predictor (cross-validation R2

= 0.083) and Ecoregion B, representing central St. Croix near the capital Christiansted (Fig

2C), was the most important ecoregion driving community structure (Fig 5A). When sum-

ming importances of all ecoregions together (cross-validation R2 = 0.071), they explain less

community structure than depth. These findings imply that depth and ecoregions both con-

tribute to the structure of cryptic coral communities, but depth is a more important predictor

than ecoregions.

When evaluating the importances of all 40 environmental variables, they together

accounted for 29.5% of the community composition. Depth was the strongest predictor (Fig

5B, R2 = 0.15), and the yearly range of pH was the second most important (Fig 5B, R2 = 0.011).

Depth shows a prominent ecological threshold around 5 meters deep, where there is a sharp

turnover of community assembly (Fig 5B). Notably, depth increases with distance from shore

at all sites (Fig 5E), though eastern sites associated with Ecoregion A are generally the shallow-

est (Fig 2E). We also observed a gradual turnover when the yearly range of pH is 0.4–0.5 and

steep turnover around 0.5 (Fig 5C), which corresponds to Ecoregion B on the map (Figs 2C

and 5F).

Fig 4. Spatial distribution of cryptic genetic lineages in six coral species from St. Croix. Each pie chart represents

the occurrence of distinct genetic lineages at each sampling site, and the size legend in the bottom right of each panel

indicates the number of samples in each pie. Different lineages are indicated by color and correspond to points in

PCoAs from Fig 2. Coastlines and district boundaries are plotted with GADM mapping data (https://gadm.org/index.

html).

https://doi.org/10.1371/journal.pone.0318653.g004

PLOS ONE Cryptic coral community composition across environmental gradients

PLOS ONE | https://doi.org/10.1371/journal.pone.0318653 February 6, 2025 9 / 18

https://gadm.org/index.html
https://gadm.org/index.html
https://doi.org/10.1371/journal.pone.0318653.g004
https://doi.org/10.1371/journal.pone.0318653


Discussion

Multiple cryptic genetic lineages were detected within six coral species from St. Croix, reveal-

ing a complex genetic landscape. These include at least two lineages within A. agaricites, P.

astreoides, and O. faveolata, three within S. siderea, four within P. strigosa, and six within M.

cavernosa. The geographic partitioning observed among some of these lineages suggests that

local reef environments may influence cryptic genetic variation. When assessing the abun-

dance of these 19 cryptic lineages, it becomes evident that community composition is partially

determined by both depth and the natural environmental boundaries that define distinct ecor-

egions. However, we note that these associations reflect how community structure correlates

with long-term environmental trends- in this case, abiotic variables summarized over 9–22

years. Further investigations into the role of instantaneous selective pressures, such as cyclones

or bleaching events, could be conducted by resampling coral over time. Comparing abundance

before and after such events could provide insights into how cryptic communities shift in

response to these acute pressures, thereby enhancing our temporal understanding of coral

responses to changing environmental conditions.

The cryptic variation identified in this study is consistent with previous findings in most of

the species examined. Depth-partitioned cryptic lineages have been reported in Agaricia [19]

and specifically in A. agaricites [43], as well as in P. astreoides [43, 44, 53], S. siderea, and M.

cavernosa [21, 42, 52]. These studies consistently demonstrate that genetic lineages exhibit

preferences for specific depths rather than strict depth boundaries. Depth partitioning was also

identified in O. faveolata lineages from Puerto Rico [54], although previous research from Pan-

ama detected three lineages with variations in thermal tolerance [16]. P. strigosa remains rela-

tively understudied in population genetics, despite its high morphological variability

suggesting potential for cryptic genetic variation [55]. The four P. strigosa lineages identified

in this study represent the first documented instances of cryptic genetic divergence within this

Fig 5. Environmental drivers of cryptic coral communities. (a) Estimated importance (cross-validation R2) of depth and four ecoregions to coral community

composition across the seascape. (b) Top five out of 40 environmental predictors, based on cross-validation R2 in a gradient forest model. (c-d) Cumulative

importance distributions show change in community composition along the range of the two most important variables. Tick marks on the x-axis indicate the

environmental values at each site. (c) Coral communities demonstrate steep turnover around 5 meters deep, and (d) communities show graduate turnover

across a gradient of yearly pH range. (d) Map of depths around St. Croix, using bathymetry data from GEBCO 2023 Grid (doi:10.5285/f98b053b-0cbc-

6c23-e053-6c86abc0af7b). (e) Map of the maximum temperature (averaged from 2010–2022) and derived from interpolation of in situ monitoring data from

the Virgin Islands DPNR. Coastlines and district boundaries are plotted with GADM mapping data (https://gadm.org/index.html).

https://doi.org/10.1371/journal.pone.0318653.g005
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species. Overall, the coral reefs of St. Croix exhibit genetic diversity comparable to other

regions in the Caribbean.

Our investigation into the associations between community composition and environmen-

tal factors revealed that ecoregions may play a supporting role in shaping cryptic community

structure, second to depth. Previous studies have also identified depth as a primary factor

influencing cryptic variation [17, 19, 21, 56]. However, our findings underscore the novel

impact of ecoregions on the structuring of cryptic lineages. When re-analyzing community-

environment associations using all abiotic variables employed to define ecoregions, depth re-

emerged as the most important predictor, followed by various measures of pH, temperature,

and other variables (Fig 5D). While depth and temperature are plausible candidates for driving

community structure, the actual variables that drive ecoregion differences, beyond depth, may

not be represented in our data. Our findings suggest that unique local conditions within each

ecoregion collectively shape the structure of cryptic coral communities, such that nuanced

shifts in many environmental factors drive community divergence.

While our incorporation of cryptic genetic lineages into a multi–species study represents a

novel application to coral community ecology, previous research has identified environmental

drivers of coral communities at the species level. Important drivers include cyclones [57], tem-

perature anomalies [57–59], productivity [60], latitude [61], sedimentation [62], and depth

[63]. Although depth emerges as a common driver across many coral communities worldwide,

a study in the Indo-Pacific region found it to be only a minor predictor for two coral species

[59]. One potential explanation for the prevalence of depth as a driver could be its impact on

light reduction [64] and algal biomass and diversity [65]. For instance, a study of coral reefs in

South Africa delineated depth thresholds at 15 meters for Pocillopora damicornis and 33

meters for reef communities [61], mirroring the depth threshold we observed at approximately

14–22 meters (see Fig 5C). Additionally, previous research in the Virgin Islands noted varia-

tions in community structure among different sites [66], which aligns with our finding that

ecoregions may exert influence over community composition.

One factor (beyond depth) that might have a direct effect on the cryptic coral community is

the yearly range of pH, the next most important predictor after depth (Fig 5D). It shows nota-

ble differences within Ecoregion B (see Fig 5E). After pH, mean and maximum temperature

appear to be the next most drivers of cryptic coral community structure (Fig 5B). In St. Croix,

maximum temperature shows notable differences near Ecoregion B and Buck Island National

Monument (S3h Fig in S1 File). Fluctuations in pH [67] and temperature [68–70] have been

shown to affect coral reef ecosystem structure and function, so their putative role in driving

community structure on St. Croix seems likely. However, while we can speculate about how

pH, temperature, and other variables may impose selective pressures, it is essential to consider

the multicollinearity present in our environmental dataset (Fig 2A). Therefore, although our

findings align with our hypotheses that depth and temperature are critical environmental driv-

ers influencing genetic divergence in cryptic communities, we view these variables as part of

the unique local conditions within each ecoregion that collectively shape selection pressures

on cryptic coral communities.

While we can estimate the extent of environmental differences that contribute to commu-

nity structure, we recognize that most lineages are not strictly confined to specific depths or

ecoregions and can co-occur at certain sites (see Fig 4). Untangling the mechanisms driving

and maintaining genetic differentiation between cryptic lineages in the absence of geographic

isolation remains a challenge. In addition to environmental variables, non-environmental fac-

tors such as ocean currents, reproductive strategies, natural disturbances, and prezygotic barri-

ers may also influence coral community structure. For example, ocean currents can restrict

dispersal patterns of local coral taxa [71] and determine the settling locations of coral larvae
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[72]. In St. Croix, currents bend around the southern coast, sending wake flows to both the

eastern and western sites [45], which may help explain the structured distribution of cryptic

lineages across the east and west. Additionally, the reproductive mode of coral species-

whether brooding or spawning- influences dispersal distance due to variations in larval phase

length. For instance, the broadcast spawner Acropora palmata can have parent-offspring sepa-

rations of 70 meters to one kilometer [73], while brooding Agaricia corals typically only dis-

perse 2 to 11 meters per generation [74]. Despite the influence of ocean currents, many coral

larvae settle in close proximity to their parent colonies [74], suggesting that short dispersal dis-

tances may limit the role of currents in driving genetic differentiation within these

populations.

Natural disturbances, such as hurricanes, can also shape the structure of cryptic coral com-

munities by fragmenting corals and redispersing them over large distances. However, the

impact of these disturbances varies depending on oceanic geographic features. For example,

patterns of reef destruction in St. Croix caused by Hurricane Hugo in 1989 varied by depth,

shoreline orientation, and the composition of benthic communities before the storm [75].

Moreover, patterns of coral growth on the mesophotic shelf edge of the U.S. Virgin Islands

appear to be structured by acute but infrequent swell impacts, which varies across depths [76].

These examples illustrate how natural disturbances can generate distinct patterns in coral com-

munity structure, shaped by the interaction between damage and recovery processes. On

St. Croix, the impacts of Hurricanes Irma and Maria were similarly devastating, with signifi-

cant damage to heritage and fisheries resources [77, 78], though the full scope of damage to the

island’s coral communities remains unclear.

Prezygotic barriers, such as temporal isolation and gamete incompatibility, can also drive

genetic divergence and the formation of cryptic lineages in corals. Within a single species,

individuals may spawn at different times of the year, with some spawning in spring and others

in fall. This asynchronous spawning is observed in species such as Acropora tenuis, A. samoen-
sis, A. digitifera, Orbicella spp., and Mycedium elephantotus, all of which show genetic differen-

tiation linked to their spawning periods [79–83]. Spawn timing is also determined by

environmental cues and genetics, and even just a few hours difference in spawning can lead to

sympatric speciation [84]. Gamete incompatibility further contributes to this process. In some

Orbicella spp., eggs can demonstrate conspecific sperm precedence (CSP), where they prefer-

entially accept sperm from their own species. CSP may help gametes from broadcast spawners

find each other in the water column, but it may also drive divergence in gamete compatibility

[85]. In the Caribbean, three recently diverged Orbicella spp.- O. franksi, O. faveolata, and O.

annularis- show varying levels of gamete incompatibility, which may have played a role in

their speciation [86].

Despite these alternative explanations for the observed distribution patterns, depth consis-

tently appears to be a significant driver of cryptic genetic differentiation in prior literature [20]

and in our study. In St. Croix, depth can explain geographically proximate yet genetically

divergent coral populations. This is particularly evident in O. faveolata, S. siderea, M. caver-
nosa, and P. astreoides, all of which exhibit high lineage diversity along the extensive depth gra-

dient in Ecoregion C (see Figs 2 and 4). However, further exploration is warranted to

investigate potential hybrid zones between cryptic lineages present on both sides of this eco-

logical barrier, and to examine non-environmental drivers such as those described above.

Although cryptic communities in St. Croix are associated with depth and ecoregions, it is

uncertain whether these factors have a causal relationship with community assemblage. How-

ever, these associations with significant predictors can be empirically tested through field

experiments. Reciprocal transplantations across ecoregion boundaries offer a means to exam-

ine local adaptations by assessing the fitness (i.e., survival or growth) of transplanted lineages.
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For instance, a reciprocal transplantation experiment involving five coral species from shallow

(5-10m) and deep (45m) sites demonstrated decreased fitness of corals from deep sites when

transplanted to shallow sites [87]. Similar experiments within our study system could ascertain

whether cryptic lineages can thrive when outplanted beyond their native depth or ecoregion

boundaries to aid in reef restoration initiatives. In addition, common garden experiments con-

ducted ex situ could validate the influence of identified environmental predictors, such as tem-

perature thresholds, on fitness. For instance, a common garden experiment investigating

Acropora pulchra found that elevated temperatures and increased pCO2 levels led to reduced

growth, suggesting these variables likely shape the distribution of this species across the sea-

scape [88].

Continued efforts to characterize cryptic variation within coral species and understand the

unique environments supporting genetically distinct populations will be crucial for informing

effective coral outplanting strategies [20]. As restoration programs begin to identify resilient

genotypes for propagation, insights from cryptic lineages and their evolutionary trajectories

can guide the spatial planning of coral outplants, ensuring they are placed in environmental

conditions optimal for their survival [13].

Conclusions

In this study, we observed that cryptic genetic lineages within many coral species form distinct

communities that vary across depth and ecoregions. Given that all six species and at least 11

cryptic lineages in this study are distributed across the Caribbean, these findings could be gen-

eralizable beyond the Virgin Islands. As human impacts on coral reefs escalate, evaluating the

direct effects of environmental changes on coral fitness, particularly in the Caribbean, becomes

increasingly crucial. Future studies directly assessing the impact of the identified predictors

will be essential in determining the adaptability or restriction of cryptic lineages to specific

conditions. Furthermore, characterizing environmental heterogeneity across the seascape and

understanding its influence on cryptic communities will be vital for guiding future restoration

efforts.
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