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ABSTRACT: Polyolefins are unique among synthetic polymers because their wide
application envelope originates from a finely controlled microstructure of hydrocarbon
chains, lacking any distinctive functional groups. This hampers the methods of
automated sorting based on vibrational spectroscopies and calls for much more complex
13C NMR elucidations. High-temperature cryoprobes have dramatically shortened the
acquisition time of 13C NMR spectra, and few minutes are now enough for polyolefin
classification purposes; however, conventional data analysis remains labor and time-
consuming. In this paper, we introduce an instrument for automated fast determinations
of the 13C NMR microstructure on polyolefin materials, implemented by integrating
High-Throughput Experimentation and Data Science tools and methods. From the
scientific standpoint, the main interest of the approach is the solution proposed to
address the general problem how to rapidly characterize statistically distributed analytes,
of which synthetic polymers are a most important case. In practical terms, the instrument
represents the first automated tool for microstructural polyolefin analysis: it is readily applicable to monomaterials, whereas
extension to multimaterials, including postconsumer streams, is feasible but still requires some work.

■ INTRODUCTION
A sustainable society needs plastics as much as practical ways to
recycle plastic wastes.1−4 Redesign the market of virgin products
privileging monomaterials, enforce a separate collection of
postconsumer products, sort any residual multimaterial wastes
and implement economically viable methods for mechanical or
thermal recycling are complementary and equally important
actions of a comprehensive strategy that must be given utmost
priority.
In recent years major progress has been achieved, and for

certain plastics (like e.g. polyesters and polyamides) the fraction
of recycled wastes is approaching that of paper and some
common metals.1,2,4 However, in a generally positive scenario
polyolefins lag behind,4 which is truly unfortunate because
altogether polyethylene (PE) and polypropylene (PP) materials
represent roughly 50% by weight of all produced plastics (about
200 million metric tons in 2023).2,5,6 What makes polyolefins
unique is that their wide properties envelope stems from
precisely controlled distributions of monomeric units lacking
any functional groups. The aliphatic hydrocarbon nature
determines a high chemical and environmental inertness,
which is a formidable asset for most applications but also a
severe drawback for postconsumer sorting and reutilization
purposes; in particular, the comparatively featureless vibrational
spectra of polyolefins limit the scope of automated sorting of
waste streams based onNear-IR (NIR) spectroscopy,7,8 that can
be used at most to discriminate PE from PP. Ironically, the
chemical similarity of PE and PP, while complicating analytical
tasks, does not result into thermodynamic compatibility of
mixtures,9 and with the only exception of some finely dispersed

reactor blends (like e. g. “High-Impact PP”, see below) phase-
separated polyolefin blends have limited, low value-added
applications. The addition of compatibilizers,10 now commer-
cially available at affordable prices (e. g., block copolymers
produced by tandem catalysis under “chain shuttling”
conditions11), can mitigate the problem and facilitate mechan-
ical recycling, but the wealth of information at molecular level
that is needed to design high performance polyolefin multi-
materials is beyond the reach of simple (and inexpensive)
analytical tools.
Thorough determinations of polyolefin microstructure are

only feasible by means of 13C Nuclear Magnetic Resonance
(NMR) spectroscopy.12,13 Compared with NIR and even 1H
NMR, 13C NMR data acquisition is technically more complex
and time demanding; however, with modern high-temperature
cryoprobes the process can be accomplished in few
minutes.14−16 Quantitative 13C NMR spectra of polyolefin
monomaterials readily provide access to the relative amounts
and sequence distributions of constitutional and configurational
units.12,13,17 For multimaterials, on the other hand, the
inherently limited resolution of the spectra results into extensive
resonance overlaps denying access to important parts of the
information. In all cases, data analysis with conventional
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methods is time and labor intensive, and as such unsuited for
high throughput screenings. In this paper we introduce an
original Data Science (DS) aided approach laying the
foundation for automated ultrafast 13C NMR analyses of
polyolefins. The method is immediately applicable to mono-
materials; extension to virgin and postconsumer mixtures is in
progress, as explained in the final section.

■ EXPERIMENTAL SECTION
Synthesis and 13C NMR Characterization of the

Polyolefin Materials. All olefin polymerization experiments
were performed in a Freeslate Parallel Pressure Reactor (PPR)
setup with 48 reaction cells, fully contained in a triple MBraun
glovebox operating under nitrogen. Full details on the setup and
operating protocols were reported before.18−21 The polyolefin
samples were characterized by means of quantitative 13C NMR
spectroscopy using a Bruker DRX 400 setup equipped with a
high-temperature cryoprobe for 5 mm OD tubes and a
preheated robotic sample changer. The spectra were taken
sequentially with automated tuning, matching, and shimming.
Acquisition conditions were: 45° pulse; acquisition time, 2.7 s;
relaxation delay, 5.0 s; 2 K transients. Broad-band proton
decoupling was achieved with a modified WALTZ16 sequence
(BI_WALTZ16 32 by Bruker). Conventional determinations of
sample composition were carried out according to known
literature methods.22

Fingerprint Extraction. The quantitative 13C NMR
spectrum of any polyolefin material, be it known or unknown,
undergoes a meticulous processing procedure to extract a signal
referred to as “Fingerprint” (FP). Initial preprocessing steps of
denoising, baseline correction and smoothing are carried out to
minimize artifacts arising from the data collection process,
thereby ensuring the reliability and accuracy of subsequent
analyses. In the denoising step, a discrete wavelet transform is
applied to the spectrum (DWT)23 with a Haar wavelet function.
The noise level is estimated from the wavelet coefficients, and a
threshold is applied to remove noise through soft thresholding.
The denoised signal is then reconstructed by applying the
inverse wavelet transform. Following the denoising procedure, a
baseline correction is performed: this involves identifying noise
regions at both ends of the spectrum and fitting a polynomial on
them.24 This polynomial baseline is then subtracted from the

original spectrum to correct for any drift. To further enhance the
signal, a Savitzky-Golay filter25 is applied, which smooths the
spectrum while preserving its features. The mean and standard
deviation of the smoothed spectrum are calculated to set a noise
threshold, above which the signal is retained. The preprocessing
procedure just described ensures the extraction of a meaningful
FP containing all and only the relevant information necessary for
analytical purposes.
To obtain a FP that is truly representative of the spectrum, the

signal is processed approximating each peak in the spectrum
using Voigt profiles,26 which combine the characteristics of
Gaussian and Lorentzian functions to accurately represent the
shape of each spectral peak. To this aim the reconstructed
spectrum S̃ (λ) can be intended as composed by a sum of these
functions:
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where Vk(λ; σk, γk) represents the Voigt profile for the k-th peak.
The parameters σk and γk are optimized with respect to the
difference between the reconstructed and preprocessed spectra
through the minimization of a designed loss function which
combines two key components: the area difference and the
shape difference between the original and reconstructed spectra.
The first component, La, minimizes the area difference:
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while the second component, Ls, focuses on the shape difference,
using a logarithmic scale to emphasize discrepancies in peak
shapes:
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The overall objective function, L, can be expressed as a
weighted sum of these two components:

L w L wLa a s s= + (4)

Table 1. Proposed Microstructural Categorization of Commercial Polyolefin Materials

class sub-class nature compositiona notes

high density polyethylene
(HDPE)

homopolymer pure high-molar-mass HDPE samples ideally feature one single 13C NMR resonance

linear-low-density
polyethylene (LLDPE)

E/B-
LLDPE

copolymer x(B) < 10% random copolymers of ethene (E) and 1-butene (B)

E/H-
LLDPE

copolymer x(H) < 10% random copolymers of ethene (E) and 1-hexene (H)

E/O-
LLDPE

copolymer x(O) < 10% random copolymers of ethene (E) and 1-octene (O)

low-density polyethylene
(LDPE)

homopolymer the type and distribution of short and long side-chain branches is variable, mainly
depending on the process

isotactic polypropylene (iPP) homopolymer if desired, the degree of stereoregularity can be added as a microstructural feature
PP samples made with heterogeneous Ziegler−Natta catalysts are monomaterials
only in a first approximation (see text)

raco-PP copolymer x(E) <10% random isotactic copolymers of propene (P) with ethene (E)
the degree of stereoregularity of the PP homosequences can be added as a
microstructural feature

ethylene/propylene rubber
(EPR)

copolymer 40% < x(E) <
60%

random copolymers of ethene (E) and propene (P)
reactor blends of iPP and EPR are commercially known as “high-impact PP” (HIPP)

ax(Y) = mole fraction of (co)monomeric units Y. N/A = not applicable.
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where wa and ws are weights that balance the importance of the
area and shape differences. The result of this process is an
analytical replica of the original spectrum that best fits the data
while preserving the essential features of the peaks. This
reconstructed spectrum serves as the basis for the subsequent
analyses, including the construction of “Fingerprint Envelopes”
(see below).

Fingerprint Envelope (FPE) Construction for Copoly-
mer Monomaterials. Libraries of discrete FP’s for mono-
material copolymer samples at variable composition belonging
in each (sub)class of Table 1 were utilized to create a continuous
2D function, that we denominated “Fingerprint Envelope”
(FPE), modeling the evolution of the FP with composition. This
function has several key utilizations:
1. It can be used to extract the FP of any individual sample in
a given (sub)class within the set composition limits.

2. In the opposite direction, it allows to determine the
composition of any individual sample in the (sub)class by
matching the experimental FP with synthetic replicas
within the FPE, according to a procedure described in
detail below.

3. In case of monomaterials (demonstrated to be so by an
independent method such as e.g. GPC) whose nature is
unknown, the matching procedure can be executed
scanning the entire FPE archive and to deliver both
chemical identity and composition.

4. Last but not least, the FPE representation is amenable to
data augmentation techniques.

To construct the FPE from a proper library of FP’s we employ
a robust interpolation technique ensuring that the FPE
accurately represents the continuous variation of the spec-
trum−and correspondingly of the FP−with varying composi-
tion, and addressing at the same time the issue of potential
artifacts from both the analytical reconstruction and the
interpolation itself. Taken the fingerprints related to a specific
PO (sub)class, a random subset n from the data set of
analytic reconstructions is selected. This subset is chosen to be
half the size of the complete data set:

,
1
2n n| | = | |

Next, we fit an interpolation model f n(λ, m) to n for each
iteration. This two-step process is repeated multiple times to
account for the variability and ensure robustness. The final
interpolation model f(λ, m) is obtained by fitting a Bivariate
Spline on the data set obtained over N iterations:
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where Bi(λ) and Cj(m) are spline basis functions, and aij are the
coefficients optimized to fit interp.

Matching Procedure. The principal task of this phase
involves developing a robust methodology to match an
experimental FP with a database of known ones for accurate
identification and quantitation purposes. Recall that from the
“Fingerprint Envelopes”, it is possible to extract the fingerprint
of any member of a PO (sub-) class with a chosen
microstructure, provided that the microstructure falls within

the interval defined by the minimal and maximal compositions
of spectra used to build the Envelope. Given an experimental
spectrum, the key steps in this procedure involve first extracting
its related experimental fingerprint. This object is represented by
a preprocessed spectrum where only the significant parts are
preserved, corresponding to the stage before the analytical
reconstruction in the preprocessing phase. The next step is to
compare this experimental fingerprint with the fingerprints
available in our database using a reliable and efficient matching
function capable of handling the variability inherent in
experimental data.
In particular, let S̃ be the generic fingerprint extracted from the

Envelope and S′′ be the fingerprint of the experimental
spectrum. The distance between the two signals is evaluated in
terms of the area under the curve within defined domains. This is
achieved with a two-components distance function that
measures the differences in area distribution under the
significant peaks of the spectra. For corresponding peaks
(peaks with the same positions), the area difference should be
minimal, and all peaks should overlap for perfect matching. The
first term of this distance function, the Peak Domain Difference,
is calculated by evaluating the Frobenius norm of the differences
across all peak domains:
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where K is the total number of peak domains, andDpeaks =∑KDk
represents the regions where S′′ (λ,m) > 0. The secondmeasure,
the Residual Domain Difference, is similarly calculated:
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where the residual domain Dresidual encompasses areas without
significant peaks. The combined metric ΔApeaks + ΔAresidual
quantifies the discrepancy between the “synthetic” and the
experimental signal.

■ RESULTS AND DISCUSSION
General Considerations and Brief Illustration of the

Analytical Workflow. Machine Learning and Deep Learning
applications in NMR are numerous, and a number of well-
working protocols have been reported for the identification and
quantitation of small molecules (either neat or in mixtures), as
well as for structural elucidations of biomacromolecules.27−30

The case of synthetic macromolecules, on the other hand, is
conceptually and practically different because molecular
structure is statistically distributed, and chain properties like
molar mass or microstructure can only be quantified as averages
that can take any values within more or less wide ranges. In
practice, for polyolefin resins this means that no two samples
have identical microstructures.13

On the other hand, polyolefin monomaterials are amenable to
a rather simple chemical and microstructural categorization
(Table 1). Although the table is not exhaustive, it can be safely
stated that it covers >90% by weight of all virgin and
postconsumer polyolefins on the market (Figure 1).
For each (sub)class in Table 1, the 13C NMR spectrum

represents a diagnostic “fingerprint” (short notation “FP”)
consisting of a unique set of resonances. In the case of
homopolymers, in a first approximation, the fingerprint is
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univocal. In that of copolymers, instead, relative resonance
integrals in the set are a nonlinear function of chemical
composition, which is a continuous variable. The literature
teaches how to assign the resonances and determine sample
composition from their integrals.22 In principle, the inverse
procedure can be utilized to calculate the spectra of copolymer
samples at any composition; in practice, however, the task is
complex and impractical because the various resonances feature
different resolutions (from the minimum level of constitutional
diads up to hexads or even higher).
Aiming to implement an automated DS-aided analytical tool

we opted for an empirical approach leveraging the High
Throughput Experimentation (HTE) infrastructure of our
laboratory.18,31 In brief, our protocol was as follows (for full
details see Experimental Section):
a) Adequately large libraries of copolymer samples at
variable composition in the commercially relevant range
of all copolymer (sub)classes were prepared with
competent catalysts;

b) Quantitative 13C NMR spectra of all samples in each
library were recorded under identical conditions and
converted into a discrete collection of digital FP’s

c) A continuous function, that we denominated “Fingerprint
Envelope” (short notation “FPE”), was constructed by
interpolation of the discrete FP’s in each library;

d) Amathematical procedure was implemented for matching
the experimental FP of any sample in a given (sub)class
with its synthetic replica in the FPE.

Automatically executing step (d) over the entire FPE
portfolio, added with the univocal FP’s of the homopolymers,
returns the microstructural 13C NMR analysis of any unknown
polyolefin monomaterial belonging in the (sub)classes of Table
1; the process only takes few seconds.
In view of the additivity of 13CNMR spectra, the approach can

be extended to multimaterials, which are a significant fraction of
the virgin polyolefin market and practically the entirety of
postconsumer streams. However, long computational times and
large covariance-related errors in quantitative applications due
to the aforementioned limitations in spectral resolution
represent major drawbacks. A Deep Learning (DL) tool making
use of Neural Network (NN) architectures is a more convenient
option; a first perspective account of this part, which is still work
in progress, is provided in the last part of this section.

Automated Analysis of Polyolefin Monomaterials.
Qualitatively, the concept of 13C NMR FP is general and
holds for any polyolefin monomaterial in Table 1, irrespective of
whether it is a homopolymer or a copolymer; quantitatively,
however, the difference between the two cases is profound. As
already noted above, the FP of a homopolymers is univocal at a
level of description that disregards the inevitable presence of
defects13; whereas such defects do have important effects on
material properties, they can be ignored for the purpose of this
study, at least in a first approximation. The case of LDPE, with its
complex branch-on-branch architecture resulting from radical
polymerization, is peculiar because relative resonance integrals
depend on the process, but their chemical shifts are idiosyncratic
and as such adequate for identification purposes.22 Copolymer
chains, instead, are made of two or more comonomeric units,
and FPE’s are mandatory to account for the continuously
distributed value(s) of average composition.22 Importantly, we
found out that catalyst-related differences in comonomer
sequence distributions at a given composition are inconsequen-
tial in the execution of the FP matching process.
FPE’s for the five (sub)classes of copolymers in Table 1

(namely: E/B-, E/H- and E/O-LLDPE; EPR; raco-PP) were
built from libraries of digital FP’s extracted from the 13C NMR
spectra of copolymers at variable composition by means of a

Figure 1. Polyolefin market shares (by weight)1: High-density PE
(HDPE), 22%; linear-low-density PE (LLDPE), 21%; low-density PE
(LDPE), 13%; PP, 40%; others, 5%. The share of PP includes the
isotactic homopolymer, random copolymers, and “high-impact” PP
(HIPP). See text and Table 1.

Figure 2. Experimental FP’s of the E/H-LLDPE samples in Table S1 (left) and interpolating E/H-LLDPE FPE (right).
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robust interpolation procedure (see Experimental Section). The
complete workflow is highlighted in the main text for the
subclass of E/H-LLDPE materials, chosen as a representative
example. For E/B-LLDPE, E/O-LLDPE, EPR and raco-PP
materials we refer to the Supporting Information (SI) file
(Tables S3−S7 and Figure S1).
Thirty-two E/H-LLDPE samples with compositions in the

commercially relevant range (Table S1) were prepared in a HTE
polymerization platform using zirconocene catalysts and
analyzed conventionally by quantitative 13C NMR spectroscopy
in solution (see Experimental Section). The discrete FP’s
extracted from the spectra and the continuous interpolating FPE
function are shown in Figure 2.
Automated determinations of composition for a validation

library of 30 more E/H-LLDPE samples (Table S2) gave very
good results, as the correlation plot in Figure 3 demonstrates.

Polyolefin Multimaterials. Rigorously speaking, all virgin
polyolefin grades on the market produced with heterogeneous
catalyst systems and/or in reactor cascades are mixtures. In
several cases, though, their complex nature cannot be
appreciated from 13C NMR microstructure; in particular,
homopolymers with unimodal or multimodal molar mass
distributions are microstructurally indistinguishable. Propene
homopolymers made with heterogeneous Ziegler−Natta
catalysts are also a peculiar case: whereas they always contain
a minor amount of poorly stereoregular (“atactic”) PP chains

along with the largely predominant “highly isotactic” PP
ones,13,32,33 the 13C NMR spectra are deceptively similar to
those of true iPP monomaterials made with molecular catalysts,
to which for the scope of the present study the extracted FP’s can
be approximated. In a general case, though, the 13C NMR
spectrum of a polyolefin mixture (multimaterial) can be
described as the weighted sum of the spectra of individual
components. The overall FPmix can be extracted like for a
monomaterial, and reproduced synthetically according to the
following expression:

w mFP FP( , )
i

N

i i i kmix ,=
(7)

where N is the total number of components, λ is the frequency
domain of the spectrum, and FPi(λ, m̅i, k) represents the FP of
the ith-component.
Virgin multimaterials usually consist of only few components

of known nature, and applying eq 1 for analytical purposes is
relatively straightforward. Heterophasic reactor blends of iPP
and EPR, commercially known as “High-Impact PP” (HIPP)34

(Table 1, see note in the last row), are a convenient example
combining high commercial relevance with ease of approach:
indeed, as noted before, in a first approximation the univocal FP
of iPP can be used for Ziegler−Natta PP too, and the only
unknowns in eq 1 are the weight w(EPR) and the composition
x(E) of the EPR component. Application to a test set of 30HIPP
samples (Table 2) gave very nice results, as illustrated by the
correlation plots in Figure 4.
Postconsumer mixtures, on the other hand, represent a much

more complex analytical challenge because both the number and
the identity of the components are typically unknown. eq 1 may
still be used to unravel the composition of a mixture as that
corresponding to the best match between experimental and
calculated FPmix, e. g. based on the cost function described in the
Experimental Section (eq 5): calculations for all possible
mixtures with a defined number of components N should be
carried out so as to find out the set of FPi(λ, m̅i, k) and wi
corresponding to the minimum distance. A grid search is
probably more advisible than a minimization procedure, due to
the nonconvexity of the cost function and because, in case of
very unbalanced mixtures with components present in very high
and very low relative amounts, strong covariance effects may
generate many local minima in which minimization algorithms
easily happen to get trapped.
On the other hand, a high-resolution grid (required for

accurately scanning the variables space) boosts processing time

Figure 3. Correlation plot between conventional and automated
measurements of composition for the E/H-LLDPE samples of Table
S2.

Table 2. Library of HIPP Samples Utilized to Test the FP Matching Procedure Based on Eq 1 (See Text)a

sample # w(EPR), % x(E), mol % sample # w(EPR), % x(E), mol % sample # w(EPR), % x(E), mol %

HIPP-T1 23 60 HIPP-T11 19 57 HIPP-T21 17 65
HIPP-T2 27 62 HIPP-T12 24 60 HIPP-T22 20 62
HIPP-T3 22 63 HIPP-T13 21 59 HIPP-T23 18 67
HIPP-T4 23 63 HIPP-T14 17 59 HIPP-T24 19 47
HIPP-T5 25 60 HIPP-T15 19 55 HIPP-T25 25 47
HIPP-T6 25 61 HIPP-T16 27 55 HIPP-T26 17 53
HIPP-T7 22 63 HIPP-T17 21 63 HIPP-T27 15 54
HIPP-T8 27 58 HIPP-T18 14 74 HIPP-T28 16 54
HIPP-T9 30 57 HIPP-T19 17 68 HIPP-T29 25 59
HIPP-T10 18 58 HIPP-T20 21 64 HIPP-T30 29 59

aThe values of w(EPR) and x(E) were determined by conventional 13C NMR methods.35
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to several hours for comparatively simple mixtures already.
Whatever the choice, we conclude that the approach is
impractical.
NN models can offer a convenient, albeit nontrivial

alternative. Developing a NN capable of identifying the
monomaterial components of a polyolefin multimaterial from
the respective FP’s is the necessary first step; successfully
exploiting this task would restrict the matching procedure to the
relevant FPE’s only, thus strongly reducing the computational
demand. On the other hand, moving such a step is a real
challenge: in fact, the neural structures must be able to focus on
the informative parts of the spectrum (i.e., peak integrals and
positions) and distinguish relevant features from background
noise. This includes extracting general patterns from the
peculiarities of random instrumental variations (such as e.g.
white noise and chemical shift drifts), notwithstanding extensive
peak superpositions. Attention layers, particularly those
developed within the broader framework of transformer
architectures, appear to be well-suited to the task; these
structures offer the potential to accurately capture the necessary
spectral features, provided that they are trained on adequately
large amounts of data. The latter condition can be fulfilled by
augmenting the experimental FPE’s in the monomaterials
portfolio with virtually any numbers of synthetic FP’s; then,
framing the problem as a classification task, the NN can be
trained to recognize the presence or absence of a certain
monomaterial FP in the FPmix of a multimaterial. Preliminary
tests carried out on all five (sub-) classes of copolymer
monomaterials in our archive ended up with excellent results,
thus demonstrating that the approach is feasible.

■ CONCLUSIONS AND OUTLOOK
13C NMR spectroscopy is the most powerful technique for
quantitative absolute elucidations of polyolefin microstructure;
however, technical complexity, lengthy operation and high costs
limit routine applications with virgin materials in industrial
practice, where quality controls can be operated with faster and
simpler relative characterization methods (albeit often down-
stream of 13C NMR calibrations). Ironically, it is for mixed
polyolefin wastes, with their extreme variability of composition,
that the analytical power of 13C NMR is unrivaled, and
automated ultrafast determinations of 13C NMR microstructure
would enable superior mechanical recycling solutions. Modern

R&D approaches to polyolefin catalysis and materials science,
where the quest for more sustainable products and processes
calls for rapid innovation, can also greatly benefit from such
methods.
In the previous sections we noted how DS applications to

polyolefin 13C NMR analysis must preliminarily address the
formidable complication represented by the statistical nature of
synthetic polymers (of which polyolefins are a most important
class), and introduced a novel integrated HTE/DS approach to
the problem. Moving from a basic categorization of polyolefin
monomaterials according to chemical structure (Table 1), we
defined two key concepts and the corresponding mathematical
expressions, namely the 13C NMR “Fingerprint” (FP) and
“Fingerprint Envelope” (FPE). The 13C NMR spectrum of a
polyolefin monomaterial is unique, and its digital representation
is an idiosyncratic FP that univocally defines chemical identity
and composition (in case of copolymers). The latter, though, is a
continuous, statistically distributed variable whose description
requires a bidimensional mathematical function, that we
denominated FPE with the word “Envelope” meant to indicate
that it contains all possible FP’s of a given polyolefin (sub)class.
Access to state-of-the-art HTE tools and methods enabled us to
generate libraries of polyolefin monomaterial samples at variable
composition for all copolymer (sub)classes in Table 1, and from
the corresponding discrete FP’s to construct the continuous FPE’s
by means of an interpolative method. We then implemented a
matching algorithm to scan the FPE portfolio, including
homopolymers and copolymers, and locate the synthetic replica
of any experimental FP, ending up with the identification and
(for copolymers) the exact composition of the corresponding
sample.
To the best of our knowledge, this workflow represents the

first automated tool reported in the literature for the fast 13C
NMR analysis of polyolefin monomaterials. Application only
takes few seconds, to be compared with several minutes (or
more) for conventional elaborations of 13C NMR data.
Moreover, hyphenation with the operating software of the
spectrometer can lead to very substantial reductions of
acquisition time, because acquisition can be automatically
discontinued as soon as the DS tool is able to finalize the analysis
within a desired accuracy.
Extension to multimaterials, on the other hand, is more

complex. As repeatedly noted, the 13C NMR spectra of
polyolefin mixtures suffer from extensive resonance overlaps,

Figure 4. Correlation plots between conventional and automated measurements of composition for the HIPP samples of Table 2 (see text).
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and unraveling FPmix functions in terms of summations of
monomaterial FP’s leads to solutions with large covariance-
related errors and can take an impractically long computational
time.We have achieved preliminary indications that an approach
based on a NN model bears much more promise, as will be
reported in due course.
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