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Abstract 

Background

Occurrence of antimicrobial-resistant Salmonella strains has been reported worldwide, 

because of inappropriate use of antimicrobial products in either humans or animals. The 

presence of multidrug resistant Salmonella in pig production systems had been reported 

in Antioquia, Colombia.

Aim

To identify antimicrobial resistance genes (ARG) in different Salmonella spp. strains 

isolated from pig productions in Antioquia, Colombia. Methods: Samples were received at 

the Diagnostic Unit of the Faculty of Agrarian Sciences at the University of Antioquia, from 

January 1, 2019, to January 2021. A total of 28 isolates of Salmonella spp. were included, 

which presented phenotypic resistance to more than one antibiotic used in pig farms. 

Whole genome sequencing (WGS) was performed in the Unit of Genomic of Agrosavia 

using an automated pipeline from the GHRU- Sanger Institute, employing the Illumina 

MiSeq platform.

Results

WGS revealed 34 ARGs among these isolates. In 25 isolates (89%) more than 

two ARGs were found. Genes encoding resistance were found for 10 different 

groups of antibiotics (beta-lactam, aminoglycosides, chloramphenicol, rifampi-

cins, lincosamides, fluoroquinolones, tetracyclines, sulfonamides and trimetho-

prim). The most frequently observed MDR profile in Typhimurium isolates was 

AMP-CEX-CEP-CEF-EFT-CEQ-FLU-ENR-TE-FFC-SXT.
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Conclusion

The presence of multi-drug resistant Salmonella strains in pigs destined for human con-

sumption in Antioquia, Colombia was determined. This research emphasizes the utmost 

importance of epidemiological tools to understand the presence and spreading of antimi-

crobial resistance genes in pig farms. Additionally, it highlights the critical need for devel-

oping educational programs and public policies to help reduce the spread of antimicrobial 

resistance in production systems.

Author summary
Recent research has raised alarms about antimicrobial resistance in Salmonella found in 
pigs from farms in Antioquia, Colombia. We used whole-genome sequencing to identify 
34 resistance genes in 28 Salmonella isolates, revealing that 89% of these isolates carried 
more than two resistance genes, affecting various antibiotics. This situation poses signif-
icant risks, as multidrug-resistant Salmonella in pigs could directly or indirectly impact 
human health and lead to potential economic losses in pig production.

Our findings highlight the urgent need to implement better management practices on 
farms and responsible antibiotic use in pig production. Properly addressing these issues 
is essential to ensure food safety and protect public health. Continuous surveillance and 
effective control measures are crucial to combat this growing problem. By prioritizing 
these actions, we can help mitigate the risks associated with antimicrobial resistance and 
safeguard both livestock and consumers.

Introduction
The increased incidence of Salmonella spp. has a significant impact on public and animal 
health [1]. Human salmonellosis has been mainly associated with food animal production 
(beef, pork, chicken, and eggs) [2]. Globally, Salmonella serovar Typhimurium and its mono-
phasic variant, serovar I 4, [3], 12:i:-, are responsible for the high incidence of human illness 
[4] and both serovars are commonly associated with swine.

There are nearly 10 million pigs in Colombia, 89.5% of which are from industrial produc-
tion farms, while the remaining 10.5% are from smaller operations [5]. It is estimated that 
the consumption per capita of pork in Colombia in 2021 was 12.2 kg, and over 500 tons are 
produced in Colombia each year [3]. Exports for this same year reached around 100 tons of 
pork destined for the Ivory Coast and Hong Kong [6]. For 2021, official figures report a profit 
of 5,536,335 swine heads with an increase of 6.6% compared to the previous year [7]. The 
Antioquia region of Colombia is considered the largest producer of pork in the country and is 
responsible for ~11% of the swine inventory [8].

The occurrence of antimicrobial-resistant Salmonella infections has been reported globally 
[9]. Human Salmonella infections caused by antibiotic-resistant strains have been associated 
with severe disease and more significant adverse outcomes, including increased rate of hospi-
talizations, longer length of hospital stays, and higher mortality [10]. In swine, antimicrobial 
agents are critical in treating serious infections such as salmonellosis, colibacillosis, and myco-
plasmal pneumonia [11]. However, in many developing countries, antimicrobials are used in 
swine and other food animal production for non-clinical purposes, e.g., as feed proficiency 
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enhancers and growth promoters [12], which, added to the ease of obtaining antibiotics in the 
country, has resulted in an overuse of antimicrobials [13].

Recently, antimicrobial resistance (AMR) in Salmonella isolates from pig production in 
Colombia was demonstrated, presenting multidrug resistance (resistance to ≥ 3 classes of 
antibiotics) in 44% of isolates [14]. These results underline how crucial it is to comprehend 
the dynamics of antimicrobial usage in pig production and to assess the rise of Salmonella 
resistance in Antioquia. This information is critically needed to improve judicious antimicro-
bial usage in the livestock sector [14,15]. Additionally, this knowledge is required to inform 
veterinarians, managers, and employees of piggeries on the cautious use of antibiotics to 
maintain pig disease susceptibility, which will benefit the consumer and may lead to a reduced 
production costs related to ailments brought on by AMR bacteria and their treatment [16].

This study aimed to genomically characterize antimicrobial resistance and virulence factors 
in Salmonella spp. isolates from pig productions in Antioquia, Colombia. Furthermore, a 
comparative analysis was conducted between phenotypic resistance profiles and their corre-
sponding genotypic attributes.

Materials and methods

Endorsement of the Ethics Committee
The Ethics Committee for Animal Experimentation (CEEA) of the Universidad de Antioquia granted 
the ethical endorsement to perform this study according to minute No. 141 of August 3, 2021.

Sample collection and Salmonella isolation
A total of 28 Salmonella spp. isolates were included. These were recovered from fecal sam-
ples, rectal swabs, and intestinal tissue samples from commercial pig farms in the department 
of Antioquia, Colombia. The samples were received at the Diagnostic Unit of the Faculty of 
Agrarian Sciences at the University of Antioquia, Colombia. The samples arrived at the lab-
oratory routinely, and the inclusion period extended from January 1, 2019, to January 2021, 
during which they were preserved and processed.

Isolation and identification
In brief, 10-25 g of feces and gut tissue samples were transferred to 225 mL of buffered peptone 
(BPW) water, and 9 mL of BPW was added to rectal swabs. Samples were homogenized for 2 min-
utes and incubated at 35 °C for 18-24 hours. For selective enrichment, 100 μL were inoculated in 
10 mL of Rappaport-Vassiliadis broth, and then incubated at 42 °C for 18 to 24 hours. After incu-
bation, broth cultures were plated on Hektoen agar and xylose lysine deoxycholate agar (XLD) and 
incubated at 35 °C for 18-24 hours. Blue or blue-green colonies (with or without black center) on 
Hektoen agar and transparent to pinkish-red colonies (with or without black center) on XLD were 
presumptive. These presumptive positive colonies underwent biochemical tests (TSI, LIA, citrate, 
and SIM) and serological tests (Check and Trace Salmonella) for Salmonella confirmation [17–19].

Identification of presumptive bacterial isolates and antimicrobial 
susceptibility testing
Salmonella spp. isolates from pigs were sent to the Global Health Research Unit- Colombia 
(Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), CI Tibaitatá, Mos-
quera, Colombia) to be sequenced (Table 1). The presumptive Salmonella isolates were eval-
uated for identification and antibiotic susceptibility testing using the Vitek2 Compact System 
with GN ID and AST-N272 cards (BioMerieux, Lyon, France) according to the manufacturer’s 
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instructions. Minimum inhibitory concentration (MIC) was interpreted according to Clinical 
and Laboratory Standards Institute (CLSI) 2020 guidelines [20].

Whole Genome Sequencing
An overnight culture from a single colony of each Salmonella isolate was prepared in 1 ml of 
lysogeny broth (LB). The DNA from each Salmonella isolate was extracted using the PureLink 
Genomic DNA Mini Kit (Invitrogen, USA) according to the manufacturer’s instructions. The 
purity was assessed by measuring the absorbance ratio at OD 260/280 NanoDrop (Thermo 
Fisher Scientific), and the yield was established with a Qubit 4.0 Fluorometer (Thermo Fisher 
Scientific, USA). The library preparation was made using NEBNext Ultra II FS DNA Library 
Prep with Sample Purification Beads (New England Biolabs, UK) according to the manufac-
turer’s instructions. Immediately, libraries were pooled, quantified, and normalized down to 
4nM using the Tape Station System (Agilent, USA). Subsequently, the denaturation library 
was loaded onto an Illumina MiSeq (San Diego, USA) reagent cartridge using a reagent kit 
v2 and 300 cycles (150 bp paired-end sequencing) with a Standard Flow Cell. All isolates 
sequenced had a 50X coverage, <=150 contigs, an average GC content of 51%, an N50 score 
>50000, and a total assembly length between 4.5–5.2 Mega base pairs (Mbp).

Genome analysis
The sequencing products were processed using an automatic pipeline from GHRU - The 
Centre for Genomic Pathogen Surveillance (https://gitlab.com/cgps/ghru/pipelines). The first 

Table 1. Resistance patterns found in 28 Salmonella isolates from commercial swine farms in the Antioquia, Colombia.

Serotype(s) No. Of Isolates AMPa CEXb CEPc CEFd CFPZe GENf CEQg FLUh ENRi TEj FFCk SXTl MARm NEOn

Typhimurium 5
I, 4, [3],12: 
i: -

3

I, 4, [3],12: 
i: -

2

Altona 1
I, 4, [3],12: 
i: -

3

I, 4, [3],12: 
i: -

3

I, 4, [3],12: 
i: -

2

Altona 1
Altona 1
I, 4, [3],12: 
i: -

1

Typhimurium 1
I, 4, [3],12: 
i: -

1

Typhimurium 1
Typhimurium 1
Typhimurium 1
Typhimurium 1

a: ampicillin, b: cefalexin, c: cephalothin, d: ceftiofur, e: cefoperazone, f: gentamicin, g: cefquinome, h: flumequine, i: enrofloxacine, j: tetracycline, k: florfenicol, l: trimetho-
prim, m: marbofloxacine, n: neomicyn.

https://doi.org/10.1371/journal.pntd.0012830.t001

https://gitlab.com/cgps/ghru/pipelines
https://doi.org/10.1371/journal.pntd.0012830.t001
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pipeline is for assembly and includes the read quality assessed with FastQC v0.11 [21], iden-
tification of species with BactInspector v0.1.3 [22] and contamination using Confidr v0.7.2 
[23]. The sequences were trimmed and assembled using Trimommatic v0.39 [24], Mash v2.2 
[25], Seqtk v1.3 [26], FLASH v1.2.1 [27], Ligther v1.1 [28], and SPAdes v3.14.0. [29], in that 
order. The assembly’s quality was determined with the software Quast v5.0.2 [30]. All running 
parameters were set as default, expect trimommatic min_length, set as 30% of raw reads size, 
all databases in docker containers, as described in the official pipeline page  
(https://gitlab.com/cgps/ghru/pipelines/dsl2/pipelines/assembly). Good quality assemblies 
were considered when fastqc read quality was not “FAIL” in any of the evaluated parameters, 
bactinspector showed species name as expected for the isolate, no contamination was reported 
form Confindr, and assembly quality had less than 150 contigs per assembly with an N50 
above 50000 bp.

Prediction of AMR was performed in the second pipeline that uses ARIBA [31] against 
ResFinder 4.0. [32], PlasmidFinder v2.1 [33], and VFDB [34] respectively (https://gitlab.com/
cgps/ghru/pipelines/dsl2/pipelines/amr_prediction). For MSLT prediction MLST ARIBA 
software was used along with PubMLST databases [35]. All the software used in this automatic 
pipeline were run with default parameters, their databases were in Docker containers and 
updated to January 2022. In silico serovar prediction, was performed by SISTR v1.1.1 [36] and 
SeqSero2 v1.2.1. [37] packages with default parameters.

Additional core genome phylogenetic analysis was conducted using EnteroBase [38] on 
August 11th, 2023. Short-read sequences were assembled using the EnteroBase ToolKit (EtoKi) 
[38]. The genomic relatedness of the study strains to publicly available isolates on Enterobase 
was visualized with a GrapeTree plot with filters on the core genome multilocus sequence 
types (cgMLST) [39]. Swine isolates of serovars Typhimurium and 1, 4,[3],12:i:- from this 
study were compared to isolates of these serovars collected in Colombia (any source) and to 
isolates collected from swine (any location).

Virulence factor identification
For this analysis, the virulence factor database was used (VFDB; https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC8728188/). For the final analysis serovar Typhimurium isolate LT2 was 
used as a reference, as serovar Altona (n = 3) is not present on this database, and serovar I 1,4, 
[3],12:i:- (n = 20) should match closely with Typhimurium (n = 11). Two isolates (1802 and 
1803) were removed from the VF analysis as they had poor quality sequencing metrics.

To compare the genomes to this database, SPADES was used to assemble the shot reads. 
Then BLAST compared these sequences to the VFDB database, where the query coverage was 
set to 75% and the percent nucleotide identity was set to 80%.

Results

Origin and Identification of strains and serotypes
A total of 653 swine samples were collected between 2019 and 2021 from farms across various 
municipalities in Antioquia, with 22.8% (149/653) testing positive for Salmonella. From the 
positive samples (n = 149), we selected 28 representative isolates based on antimicrobial resistance 
profiles observed during phenotypic evaluation while the samples were processed in our diag-
nostic facility. The goal of this study was to assess the utility of genomics analysis for investigating 
Salmonella from swine. Of the 28 samples, 8 were gut tissue, 15 were fecal samples, and 5 were 
rectal swabs. The distribution of these isolates across towns was as follows: Don Matías (n = 7), 
Amalfi (n = 3), Angelópolis (n = 4), Caldas (n = 2), Entrerríos (n = 1), Medellín (n = 1), San Pedro 
de los Milagros (n = 1), Santa Rosa de Osos (n = 6), Santo Domingo (n = 1), Támesis (n = 1), and 

https://gitlab.com/cgps/ghru/pipelines/dsl2/pipelines/assembly
https://gitlab.com/cgps/ghru/pipelines/dsl2/pipelines/amr_prediction
https://gitlab.com/cgps/ghru/pipelines/dsl2/pipelines/amr_prediction
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8728188/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8728188/
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Valparaíso (n = 1) (see Fig 1). Whole genome sequencing analysis identified three serotypes: Typh-
imurium (n = 10, 36%), Altona (n = 3, 11%), and I 4,[3],12:i:- (n = 15, 53%).

Comparison with global serovar Typhimurium isolates
GrapeTree plots were used to visualize whether the serovar Typhimurium isolates from 
this study are related to 2265 serovar Typhimurium isolates also from swine that are 
publicly available (S1 Fig). Of the 11 serovar Typhimurium isolates from this study, two 
lineages were identified. The major lineage included ten isolates tightly clustered with one 
another and a median pairwise allelic difference (PAD) of 65 from the nearest common 
isolate. The other lineage included the remaining single serovar Typhimurium isolate 
(isolate 4351) and had a PAD of 19 from the nearest common isolates from Chile, Ecua-
dor, and the United States. We next looked at serovar Typhimurium isolates from Colom-
bia that were available on Enterobase and compared these to our swine isolates (Fig 2). 
A total of 88.6% (164/189) were from humans, and only a few non-human isolates were 

Fig 1. The geographical map depicts the location of Salmonella isolates in the different municipalities of Antioquia, Colombia. The base map shapefile used in 
Qgis 3.34 was sourced from the publicly database Colombia en Mapas (https://www.colombiaenmapas.gov.co/).

https://doi.org/10.1371/journal.pntd.0012830.g001

https://www.colombiaenmapas.gov.co/
https://doi.org/10.1371/journal.pntd.0012830.g001
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present in this analysis, including poultry (n = 5), rodent (n = 2), plant (n = 2), shellfish 
(n = 1), and unspecified meat (n = 1). Notably, none were from swine except for the iso-
lates in the current study. All 11 isolates were clustered tightly with human isolates (PAD 
of < 15), especially isolate 4351, which clustered within a PAD of < 5, indicating a high 
relatedness to these isolates.

Comparison of serovar I 4, [3],12: I; - isolates from swine
A total of 2443 swine isolates matching to I,4, [3],12: I; - were plotted on a GrapeTree plot for 
visualizing phylogenetic analysis (Fig 3). Isolates from this study formed two distinct lineages, 
where 18 isolates clustered together nearest to seven isolates from Ecuador (PAD of 5). The 
remaining two isolates that formed the second, more minor lineage, was within a PAD of 10 
from each other and five swine isolates from Brazil.

Comparison of serovar I 4, [3],12: I; - isolates from Colombia
Enterobase contains 32 isolates of serovar I 4, [3],12: I; - isolated from Colombia, and 20 iso-
lates identified in this study. These 52 isolates had phylogenetic relationships visualized by a 
Grape Tree plot, showing core genome MLST identities (Fig 4). This GrapeTree plot resulted 
in two lineages of isolates from this study, where 18 clustered within 15 PADs of one another 
and other human isolates. The remaining two isolates (1638 and 4843) comprised the second, 
more minor lineage with PADs of less than four from two different human isolates. Notably, 
all isolates of serovar I 4,[3],12:I;- collected from Colombia outside this project have been 
from humans.

Fig 2. Serovar Typhimurium isolates from Colombia are most similar to human isolates. All Salmonella serovar 
Typhimurium isolates from Colombia in the Enterobase database are shown on a GrapeTree plot using cgMLST 
profiles to show phylogenetic distance. White circles highlighted in red are isolates from this study. (Scale bar) Num-
ber of cgMLST pairwise allelic differences (PADs). “Missing” on the figure legend indicates the source type was not 
included in the metadata for included samples.

https://doi.org/10.1371/journal.pntd.0012830.g002

https://doi.org/10.1371/journal.pntd.0012830.g002
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Phenotypic characterization of antimicrobial resistance
All 28 isolates were resistant to at least one antimicrobial (Table 1), and 15 different resistance 
patterns were found in the 28 isolates. Of these, 26 (93%) had an MDR profile. The most fre-
quently observed MDR profile was AMP-CEX-CEP-CEF-EFT-CEQ-FLU-ENR-TE-FFC-SXT, 
present in five (18%) serotype Typhimurium isolates. This profile includes six different classes 
of antibiotics. For serotype I 4, [3],12: i: - the most frequent pattern observed was FLU-TE-
FFN (n = 4, 14%), and in the serotype Altona the pattern with the highest number of resistant 
antibiotics was NEO-FLU-ENR-MAR-TE-FFC (n = 1,3,6%).

Identification of antimicrobial resistance genes
The complete sequencing of the 28 Salmonella isolates revealed a great diversity of AMR 
genes, as seen in Table 2. In 25 isolates (89%), more than two resistance genes were found. 
Whereas in only three isolates (11%), only one resistance gene was present. In total, genes 
encoding resistance were found for ten different groups of antibiotics (beta-lactams, ami-
noglycosides, chloramphenicol, rifampicin, lincosamidas, fluoroquinolones, tetracyclines, 
sulfonamides, and trimethoprim) which will be described below.

Genotypic resistance to beta-lactams
Genes encoding resistance to extended-spectrum betalactamases (ESBL) were found in 17 (61%) 
isolates. blaTEM was the most common gene (n = 14, 50%), followed by the blaOXA-1 genes (n 
= 6, 21%), blaOXA-10 (n=3, 10%), blaOXA (n = 1, 3,5%) and blaCTX-M (n = 4, 14%). A total of 8 
isolates presented combinations of the genes bla TEM, blaOXA-1, and blaCTX-M (Table 2).

Fig 3. Serovar I, 4,[5], 12:i:-isolates from swine are closely related to isolates from Ecuador and Brazil. All 
Salmonella serovar I, 4,[5], 12:i:- isolates from swine in the Enterobase database are shown on a GrapeTree plot using 
cgMLST profiles to show phylogenetic distance. White circles highlighted in red are isolates from this study. (Scale 
bar) Number of cgMLST pairwise allelic differences (PADs). “Missing” on the figure legend indicates the country of 
sample origin was not included in the metadata for included samples.

https://doi.org/10.1371/journal.pntd.0012830.g003

https://doi.org/10.1371/journal.pntd.0012830.g003


PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012830 January 31, 2025 9 / 18

PLOS NegLected trOPicaL diSeaSeS Genomic characterization of Salmonella from pig farms

Genotypic resistance to aminoglycosides
The most remarkable diversity of AMR genes was found for those encoding resistance to 
aminoglycosides. The gene aac(3) was detected in a single isolate (3.5% in the same way as its 
variations aac(3)-II (n = 1, 3.5%) and aac(3)-Iid (n = 1, 3.5%) and in a total of 7 isolates (25%) 
the gene aac(6’)lb-cr was evidenced. The following genetic cases were observed: aadA (n = 
2.7%), aadA1 (n = 17, 61%), aadA13 (n = 8, 28%), aadA2 (n = 6, 21%), aadA 12 (n =1, 3.5%). 
The aph(3’)-lb gene was found in 11 isolates (39%), followed by the aph(3’)-la (n = 5, 18%) 
and aph(3’)-lla (n = 1, 3.5%) genes. Additionally, the aph(6)-ld gene (n = 11, 39%) was also 
detected (Table 2).

Genotypic resistance to chloramphenicol, rifampicines, lincosamides, and 
fluoroquinolones
The floR gene (n = 21, 75%) was widely found among the isolates. Other genes that confer 
resistance to chloramphenicol were also detected: catA1 (n = 9, 32%), catB3 (n = 7, 25, and 
cmlA (n = 7, 25%). Regarding resistance to rifampicin, the arr gene was found (n = 4, 14%). In 
the Resistance to incosamidas, the cassette gene InuF was evidenced in only one isolate (3.5%). 
On the other hand, associated with resistance to fluoroquinolones, the qnRb gene was found 
in most isolates (n = 22, 78%) (Table 2).

Genotypic resistance to tetracyclines, sulfonamides and trimethoprim
The tetA gene that confers resistance to tetracyclines was the most found among the isolates 
(n = 24, 86%). The presence of the tetB (n = 1, 3.5%) and tetM (n=1, 3.5%) genes was less 

Fig 4. Serovar I, 4[5], 12:i:- isolates from Colombia show divergence of two clusters. All Salmonella serovar 1, 
4[5], 12:i:- isolates from Colombia in the Enterobase database are shown on a GrapeTree plot using cgMLST profiles 
to show phylogenetic distance. White circles highlighted in red are isolates from this study. (Scale bar) Number of 
cgMLST pairwise allelic differences (PADs). “Missing” on the figure legend indicates the source type was not included 
in the metadata for included samples.

https://doi.org/10.1371/journal.pntd.0012830.g004

https://doi.org/10.1371/journal.pntd.0012830.g004


PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012830 January 31, 2025 10 / 18

PLOS NegLected trOPicaL diSeaSeS Genomic characterization of Salmonella from pig farms

Table 2. AMR genes combinations and phenotypic resistance patterns in Salmonella serovars recovered from swine production in Antioquia, Colombia.

Salmonella 
strain

Serovar AMR gene profiles Phenotypic resistance 
patterns

1507 Typhimurium aac(6’)lb-cr, aph(3’)-lb, aph(6)-ld, aadA, bla CTX-M, bla OXA-1, 
bla TEM, catA 1, catB 3, dfrA14, floR, sul2, qnRb, tet (A)

AMP, CEX, CEP, CEF, CFPZ, 
ENR,TE, FFC, STX, FLU

1804 Typhimurium aac(6’)lb-cr, aph(6)-ld, bla OXA-1, bla TEM, catA 1, dfrA14, tet 
(A),sul2

AMP, TE, SXT

1805 Typhimurium aac(6’) lb-cr,aadA1,aph(3’)-lb, aph(6)-ld, bla OXA-1, bla TEM, 
catA 1, catB 3, dfrA14, sul2, tet (A)

AMP, CEF, TE, SXT

1806 Typhimurium aac (6’) lb-cr, aadA1, aph(3’)-lb, aph(6)-ld,bla OXA-1, bla TEM, 
catA 1, catB 3, dfrA14, sul2, tet (A)

AMP, TE, SXT

1808 Altona qnRb TE, SXT, FLU
2502 I,4, [3],12: i: - aadA1, aadA2, aph(3’)-lb, cmlA, dfrA12, floR, sul3, tet (A) AMP, ENR, TE, SXT, FLU
3108 I, 4, [3],12: i: - aac(3)-ll, aadA2, aph(3’)-lla, aph(3’)-la, bla TEM, cmlA, 

dfrA12, floR, Inu(F)
AMP, GEN, NEO, TE, FFC, 
SXT, FLU

3469 I, 4, [3],12: i: - floR,qnRb, tet (A) TE,FFC, FLU
3977 Typhimurium aac(6’)lb-cr, aadA, aadA13, aph(3’)-lb, aph(6)-ld, bla CTX-M, 

bla OXA-1, bla TEM, catA 1, catB 3, dfrA14, floR, sul2, tet (A)
CEP, CFPZ, CEF, TE, FFC, 
SXT, FLU

4320 I, 4, [3],12: i: - aph(3’)-lb, floR, qnRb, tet (A) TE, FFC, FLU
4351 Typhimurium aph(3’)-lb, aph(6)-ld, sul2, tet (A) TE
4416 I, 4, [3],12: i: - floR,qnRb, tet (A) TE, FFC, FLU
4452 I, 4, [3],12: i: - aadA1, aadA13, arr, bla OXA-10, cmlA, dfrA14, floR, qnRb, 

tet (A)
AMP, ENR, MAR, TE, FFC, 
FLU

4594 Typhimurium aac(6’)lb-cr, aadA, aadA13, aph(3’)-lb, aph(6)-ld, bla CTX-M, 
bla OXA-1, bla TEM, catA 1, catB 3, dfrA14, floR, sul2, tet (A)

AMP, CEX, CEP, CFPZ, CEF, 
CFQ, ENR, TE, FFC, SXT, FLU

4843 I, 4, [3],12: i: - aac(3)-ll, aadA2, aph(3’)-lla, aph(3’)-la, bla TEM, dfrA12, floR, 
tet (B)

AMP, ENR, MAR, TE, FFC

5226 I, 4, [3],12: i: - aadA2, dfrA12, floR, qnRb, tet (a) TE, FFC, SXT, FLU
5672 I, 4, [3],12: i: - aadA13, aadA1, arr, bla OXA-10, cmlA, dfrA14, floR, qnRb, 

tet (A)
AMP, ENR, TE, FFC, FLU

5678 I, 4, [3],12: i: - aadA13, aadA1, bla OXA-10, cmlA, dfrA14, floR, qnRb, tet (A) AMP, ENR, TE, FFC, FLU
5781 I, 4, [3],12: i: - aadA1, aadA2, bla TEM, cmlA, floR, qnRb, sul3, tet (A) AMP, CEF, TE, FFC, FLU
5782 I, 4, [3],12: i: - aadA1, aadA2, bla TEM, cmlA, floR, qnRb, sul·, tet (A) AMP, CEF, TE, FFC, FLU
5785 I, 4, [3],12: i: - aadA13, aadA1, aadA2, bla TEM, cmlA, floR, qnRb, sul3, tet 

(A)
AMP, CEF, TE, FFC, FLU

6113 Altona qnRb FLU, TE, FLU
6114 I, 4, [3],12: i: - qnRb FLU, ENR, TE, FFC, NEO, 

FLU
6245 I, 4, [3],12: i: - aadA1, aadA2, aph(3’)-la, floR, qnRb, tet (A) NEO, ENR, MAR, TE, FFC, 

FLU
6246 Altona aadA2, aph(3’)-la, floR, qnRb, tet (A) NEO, ENR, MAR, TE, FFC, 

FLU
6322 Typhimurium aadA13, aph(3’)-lb, aph(6)-ld, bla TEM, catA 1, dfrA14, floR, 

qnRb, sul2, tet (A)
AMP, CEX, CEP, CEF, CFPZ, 
ENR,TE, FFC, STX, FLU

6323 Typhimurium aadA13, aadA1, aph(3’)-lb, aph(6)-ld, bla TEM, catA1, dfrA14, 
floR, qnRb, sul2, tet (A)

AMP, CEX, CEP, CEF, CFPZ, 
ENR,TE, FFC, STX, FLU

6667 Typhimurium aac(3)-ll, aac(6’)lb-cr, aadA13, aadA1, aph(3’)-lb, aph(6)-ld, bla 
CTX-M, bla OXA, bla TEM, catA1, catB 3, dfrA14, qnRb, tet (A)

AMP, CEX, CEP, CEF, CFPZ, 
ENR,TE, FFC, STX, FLU

AMP: ampicillin, CEX: cefalexin, CEP: cephalothin, CFPZ: cefoperazone, CEF: ceftiofur, CFQ: cefquinome, GEN: gentamicin, FLU: flumequine, ENR: enrofloxacine, 
TE: tetracycline, FFC: florfenicol, SXT: trimethoprim-sulfamethoxazole, MAR: marbofloxacine, NEO: neomicyn.

https://doi.org/10.1371/journal.pntd.0012830.t002

https://doi.org/10.1371/journal.pntd.0012830.t002
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prevalent. For sulfonamide resistance, the sul2 (n = 12, 43%), sul3 (n = 5, 18%) and sul1 (n = 1, 
3.5%) genes were present. Additionally, two genes that confer resistance to trimethoprim were 
detected: dfrA14 (n = 12, 43%) and dfrA12 (n = 4, 14%) (Table 2).

Virulence genes
In all serovar Altona isolates (n = 3), genes responsible for adherence and effector delivery 
systems, including the stcABCD, safABCD, and pefABCD operons were absent. Additional 
virulence factors that were absent only in Altona included: flgB (motility), STM3026 (adher-
ence, std cluster), STM0290 (sciW; effector delivery), STM0283 (effector delivery/secretion), 
gogB (effector delivery), sseI/srfH (effector delivery), ratB (adherence), mig-5 (antimicrobial), 
sspH2 (effector delivery), sodCI (stress survival), and lpfD (adherence). Unsurprisingly, Typh-
imurium and I 4,[3],12:i:- isolates have very similar virulence factors. The main difference is 
the expected absence of fljA and fljB motility genes in I 4,[3],12:i:-. The sspH1 gene was absent 
from all 28 genomes.

Discussion
In Colombia, several studies have documented that the prevalence of Salmonella spp. In 
pig farms exceeds 25% [40–43]. Antioquia, as the leading pig producer in the country, has 
experienced relatively low disease prevalence, primarily due to advancements in technology 
and enhanced biosecurity measures on swine farms [42]. However, it is important to note that 
there are currently no regulations or action plans for antimicrobial use in pig production, nor 
strategies for reducing antimicrobial use in Colombia.

Among the isolates evaluated, three serotypes were found: Typhimurium, I 4, [3],12:i:-, and 
Altona. Serotype Typhimurium is frequently found in pigs, slaughterhouses, and pork prod-
ucts [44] and is one of the most prevalent serovar worldwide [45]. It is responsible for 17.4% 
of human salmonellosis in the European Union, North America, and Oceania, but this differs 
in South America, where the Meleagridis serovar is the most reported in the region [4,46]. Sal-
monella I, 4, [3],12: i:-, a monophasic variant of serotype Typhimurium, is one of the five most 
commonly reported serovars in human diseases worldwide [47]. Additionally, this serovar is 
widely associated with swine production, especially in Europe and the United States, suggest-
ing a potential link between human infections and consumption of contaminated pork prod-
ucts [48]. Salmonella Altona was the least found serotype. An outbreak in humans associated 
with this serotype was reported in the United States, affecting 68 people across 20 states in 
2011 [49], where the risk from contact with live poultry was highlighted, especially for young 
children [50]. This is the first study to report the presence of serotype Altona in Colombia.

In this study, patterns like the ACSuGSTTm (ampicillin, chloramphenicol, sulfonamides, 
gentamicin, streptomycin, tetracycline, and trimethoprim) predominated among serotype 
I, 4, [3],12: i:-, isolates, representing 67% (10/15) of the cases. Globally, serotype I, 4, [3], 12: 
i:-, has displayed three prominent lineages, all associated with swine but exhibiting distinct 
antimicrobial resistance profiles. The “Spanish clone” presents the ACSuGSTTm phenotypic 
pattern [51], whereas the “USA clone” lacks an extensive MDR pattern but shows resistance 
to quinolones and extended-spectrum cephalosporins [52]. The “European clone” has been 
documented in multiple EU countries, characterized by a predominant ASSuT pattern (ampi-
cillin, streptomycin, sulfonamides, and tetracycline) [53].

The highest rate of phenotypic resistance is recorded for tetracyclines (100%), which is one 
of the most widely used antimicrobials in pig feed in Colombia. In commercial pig operations, 
tetracyclines are used for therapeutic purposes to treat septicemia and intestinal and respiratory 
infections [54,55]. Resistance to tetracyclines is frequent in both commensal and pathogenic 
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bacteria, primarily because of the acquisition of blatet genes [56–58]. In this study, a high pres-
ence of the blatetA gene was found (86%), concordant with multiple investigations in swine con-
ducted in China, where the gene was present in 64% and 95% of the isolates evaluated [59,60].

The production of beta-lactamases is considered the primary mechanism of resistance 
to beta-lactam antibiotics [61], especially in gram-negative pathogens [62]. The literature 
describes that Salmonella isolates harboring ESBL enzymes have emerged globally recently, 
with the blaCTX-M [63] group being critical. Despite this, the blaTEM gene was the most found 
in this study (50%), and the blaCTX-M gene was only evidenced in 14% of the isolates.

Prior investigations have documented that chloramphenicol resistance primarily arises 
through inactivation by chloramphenicol acetyltransferase (CAT), which is encoded by the 
catA1, catA2, and catB genes [64]. Although these genes were identified in our study, they did 
not exhibit high prevalence. Instead, our study reveals the prominence of the floR gene (75%) 
as the principal factor in conferring chloramphenicol resistance. This gene has been previ-
ously documented in serotype Typhimurium and its monophasic variant (I 4,[3],12:i:) [65], 
with the floR gene assuming a pivotal role within the cohort of multidrug resistance genes 
concomitant with SGI1 [66].

Despite their toxicity, and the residues in tissues, antibiotics such as aminoglycosides, have 
been used to treat undifferentiated diarrhea in weaned piglets and swine dysentery caused by 
Brachyspira hyodysenteriae [67]. In this study, the aph genes were identified in most isolates, 
underscoring a notable genetic diversity with a total of 6 distinct gene. Most aph(3’) enzymes 
are widespread among pathogenic microorganisms and, together with the enzyme aph(6) 
(also found in this study), are highly related to resistance to streptomycin [68]. Two recent 
studies conducted in Brazil revealed the presence of the aph(3’)-lb gene in samples of humans 
and contaminated food [69,70]. The aph(3’)-lb gene was the most commonly associated with 
aminoglycoside resistance in this study.

The qnRb gene, conferring resistance to the quinolones, was widely distributed among our 
isolates, and was found in all the three serotypes. In contrast, studies conducted in Thailand 
and China showed a low distribution of the gene among the isolates analyzed [71,72]. This 
gene imparts reduced resistance levels to quinolones [73], and resistance is directly related to 
the expression levels of gene [74]. On the other hand, resistance to trimethoprim is mediated 
by genes encoding dihydrofolate reductase variants (dhfr and dfr) that have decreased affinity 
for the antimicrobial agent [75]. The most found gene was dfrA14, previously reported in 
Salmonella isolates from raw chicken in Brazil, Chile, and Thailand [76].

In veterinary medicine, the development of antimicrobial resistance is closely related to the 
excessive use of antimicrobial agents, which facilitates microorganisms with newly acquired 
mutations or resistance genes to survive and proliferate [77]. Evidence shows that food from 
animal sources at all stages of food processing contain many resistant bacteria [78]. The concern 
focuses on the horizontal transmission of genes, being the main responsible for the transmis-
sion of AMR, which results in a rapid dissemination of AMR between bacteria and species [79]. 
Globally, a crisis unfolds as we repeatedly observe a gene in a specific organism, subsequently 
leading to global reports of the gene appearing in other organisms and locations [80].

Reduced and prudent use of antimicrobials in animal production could limit the selec-
tion of resistant bacteria and may lead to a reversal of susceptibility [81]. Countries such as 
Denmark have made significant progress in controlling AMR by implementing management 
programs in the veterinary sector as early as 1998. As a result, in Denmark, the amount of 
antimicrobials consumed per kilogram of produced pork fell by 50% between 1994 and 2013 
[82]. In Colombia, there is a need for improved and controlled use of antibiotics and sur-
veillance strategies to help reduce the high levels of AMR observed in production animals 
[83]. This study illustrates that the Salmonella isolates assessed in pigs harbor a diverse array 
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of antimicrobial resistance genes. This is also a problem for veterinarians as the emergence 
of AMR and MDR can increase the spread of resistant pathogens within animal production 
systems causing treatment failures that can put animal health at risk [84]. The contribution of 
individual countries in reducing AMR will be essential to mitigate the global problem since 
antibiotic resistance spreads on a macroscopic scale. Antimicrobial resistance genes (ARGs) in 
plasmids can facilitate the spread from a resistant bacterium to a susceptible one, allowing the 
development of new resistant organisms. On the other hand, individual resistant organisms 
and colonies spread around the world as colonized or infected patients travel. The mode of 
spread is on the rise with the increasing globalization [85].

An earlier molecular characterization conducted in serovars Typhimurium and 
1,4,[3],12:i:- found the sspH1 gene in 77% of isolates as a virulence determinant related to the 
prophage [86], a finding not observed in this study. Additionally, previous studies found an 
association between the presence of the sspH1 gene and phenotypic MDR [87]. However, this 
association was not identified in our study, as the presence of the sspH1 gene was not detected 
in any of the isolates.

The phylogenetic comparison of isolates from this study to other isolates from swine or 
Colombia was limited due to the low number of swine isolates from Colombia and elsewhere 
in South America compared to other countries, such as the United States, where whole 
genome sequencing is performed more routinely. The few publicly available isolates present 
were found to be genetically like to the isolates of this study, suggesting that strains of both 
serovars Typhimurium and I 4, [3],12: i: - could be commonly identified in this region. There 
was no concordance between AMR profiles in the more minor lineages containing only one 
or two isolates when compared to the remaining study strains of either serovar Typhimurium 
or I 4, [3],12: i: - but further analysis is required to determine the genomic differences between 
clades observed on the GrapeTree plots for both serovars. Due to a limited number of studies 
investigating the burden of Salmonella in Colombia [88], human isolates make up most data 
on Enterobase, which limits the information that can be obtained through the newly acquired 
WGS data presented here. Thus, doing regular surveillance of Salmonella from swine produc-
tion in Colombia, increasing the number of comparable isolates and identifying strains related 
to human outbreaks, could increase the efficiency in detecting related isolates and in support-
ing targeted and improved Salmonella control for swine producers.

The limitation of resources in this study precluded the phenotypic and genome sequenc-
ing analysis of all Salmonella isolates. The authors believe that employing such technology 
would be of significant value for molecular epidemiology studies. These would enhance the 
understanding of the dynamics of antimicrobial resistance in Salmonella isolates in Antioquia, 
Colombia. Furthermore, complete genome sequencing could provide deeper insights into the 
genetic mechanisms driving resistance, facilitate the identification of novel resistance genes, 
and support the development of more targeted and effective control strategies. Addressing 
this limitation in future research could greatly contribute to a more nuanced understanding of 
resistance patterns and inform public health and policy interventions.

Conclusion
This study, conducted through whole-genome sequencing, not only identified the presence 
of multidrug-resistant Salmonella in pigs intended for human consumption in Antioquia, 
Colombia but also allowed for a comprehensive analysis of genetic diversity and precise iden-
tification of resistance genes. This advanced approach provided a more detailed and complete 
understanding of virulence and antimicrobial resistance factors, emphasizing the significance 
of whole-genome sequencing in comprehensively addressing the issue of resistance in pig 
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production and its impact. Furthermore, the authors underscore the imperative for the for-
mulation of public policies aimed at regulating antibiotic use within pig production systems 
in Colombia. They also advocate for the establishment of educational programs designed to 
enhance producer awareness regarding the rational use of antibiotics.

Supporting information
S1 Fig.  Serovar Typhimurium isolates from swine form two distinct clusters. All Salmo-
nella serovar Typhimurium isolates from swine in the Enterobase database are shown on a 
GrapeTree plot using cgMLST profiles to show phylogenetic distance. White circles high-
lighted in red are isolates from this study. (Scale bar) Number of cgMLST pairwise allelic 
differences (PADs).”Missing” on the figure legend indicates the country of sample origin was 
not included in the metadata for included samples.
(TIF)
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