Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1991 Sep;441:593–614. doi: 10.1113/jphysiol.1991.sp018769

Horizontal interactions between visual cortical neurones studied by cross-correlation analysis in the cat.

Y Hata 1, T Tsumoto 1, H Sato 1, H Tamura 1
PMCID: PMC1180216  PMID: 1816388

Abstract

1. To explore the functional significance of horizontal neural connections in the extent of a 'hypercolumn' of the cat visual cortex, we carried out cross-correlation analysis of spike trains recorded simultaneously from a pair of neurones separated horizontally by less than 1 mm. 2. Significantly correlated firings, which were found in sixty-eight pairs of cells among 327 pairs analysed, were classified into three types on the basis of their functional implications: (1) excitatory interactions, (2) inhibitory interactions and (3) common inputs to both neurones of a pair from other sources. 3. Of these three types, common inputs were encountered most frequently. Excitatory interactions were always accompanied by common inputs. Inhibitory interactions were observed least frequently. 4. The proportion of cell pairs with correlated firings was high in pairs with a horizontal separation of less than 200 microns and decreased markedly with a horizontal separation of more than 400 microns. 5. Regarding laminar locations of cells, common inputs and excitatory interactions were often observed in layers II + III and V, whereas laminar bias was not seen in inhibitory interactions. 6. With respect to difference in orientation preference between two cells, all the three types of correlations were observed, mostly in cell pairs with a difference of less than 45 deg. In particular, common inputs and excitatory interactions were often seen in cell pairs with matched orientation preferences, but inhibitory interactions were found mostly in those with slightly different orientation preferences. In addition, common inputs and excitatory interactions tended to be found between cells with the same eye preference. 7. These results suggest that horizontal functional interactions exist mainly in a range of up to 400 microns as far as the extent of a hypercolumn of the visual cortex is concerned, and these interactions operate effectively between cortical cells with similar receptive field properties except for inhibitory interactions.

Full text

PDF
593

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aertsen A. M., Gerstein G. L. Evaluation of neuronal connectivity: sensitivity of cross-correlation. Brain Res. 1985 Aug 12;340(2):341–354. doi: 10.1016/0006-8993(85)90931-x. [DOI] [PubMed] [Google Scholar]
  2. Albus K. A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat. II. The spatial organization of the orientation domain. Exp Brain Res. 1975 Dec 22;24(2):181–202. doi: 10.1007/BF00234062. [DOI] [PubMed] [Google Scholar]
  3. Blakemore C., Tobin E. A. Lateral inhibition between orientation detectors in the cat's visual cortex. Exp Brain Res. 1972;15(4):439–440. doi: 10.1007/BF00234129. [DOI] [PubMed] [Google Scholar]
  4. Bolz Jürgen, Gilbert Charles D. The Role of Horizontal Connections in Generating Long Receptive Fields in the Cat Visual Cortex. Eur J Neurosci. 1989 May;1(3):263–268. doi: 10.1111/j.1460-9568.1989.tb00794.x. [DOI] [PubMed] [Google Scholar]
  5. Bryant H. L., Jr, Marcos A. R., Segundo J. P. Correlations of neuronal spike discharges produced by monosynaptic connections and by common inputs. J Neurophysiol. 1973 Mar;36(2):205–225. doi: 10.1152/jn.1973.36.2.205. [DOI] [PubMed] [Google Scholar]
  6. Bullier J., Henry G. H. Laminar distribution of first-order neurons and afferent terminals in cat striate cortex. J Neurophysiol. 1979 Sep;42(5):1271–1281. doi: 10.1152/jn.1979.42.5.1271. [DOI] [PubMed] [Google Scholar]
  7. Cleland B. G., Dubin M. W., Levick W. R. Sustained and transient neurones in the cat's retina and lateral geniculate nucleus. J Physiol. 1971 Sep;217(2):473–496. doi: 10.1113/jphysiol.1971.sp009581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Creutzfeldt O. D., Garey L. J., Kuroda R., Wolff J. R. The distribution of degenerating axons after small lesions in the intact and isolated visual cortex of the cat. Exp Brain Res. 1977 Mar 30;27(3-4):419–440. doi: 10.1007/BF00235514. [DOI] [PubMed] [Google Scholar]
  9. Creutzfeldt O., Ito M. Functional synaptic organization of primary visual cortex neurones in the cat. Exp Brain Res. 1968;6(4):324–352. doi: 10.1007/BF00233183. [DOI] [PubMed] [Google Scholar]
  10. Dickson J. W., Gerstein G. L. Interactions between neurons in auditory cortex of the cat. J Neurophysiol. 1974 Nov;37(6):1239–1261. doi: 10.1152/jn.1974.37.6.1239. [DOI] [PubMed] [Google Scholar]
  11. Ferster D., LeVay S. The axonal arborizations of lateral geniculate neurons in the striate cortex of the cat. J Comp Neurol. 1978 Dec 15;182(4 Pt 2):923–944. doi: 10.1002/cne.901820510. [DOI] [PubMed] [Google Scholar]
  12. Ferster D. Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex. J Neurosci. 1986 May;6(5):1284–1301. doi: 10.1523/JNEUROSCI.06-05-01284.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fisken R. A., Garey L. J., Powell T. P. The intrinsic, association and commissural connections of area 17 on the visual cortex. Philos Trans R Soc Lond B Biol Sci. 1975 Nov 20;272(919):487–536. doi: 10.1098/rstb.1975.0099. [DOI] [PubMed] [Google Scholar]
  14. Gabbott P. L., Martin K. A., Whitteridge D. Connections between pyramidal neurons in layer 5 of cat visual cortex (area 17). J Comp Neurol. 1987 May 15;259(3):364–381. doi: 10.1002/cne.902590305. [DOI] [PubMed] [Google Scholar]
  15. Gilbert C. D. Microcircuitry of the visual cortex. Annu Rev Neurosci. 1983;6:217–247. doi: 10.1146/annurev.ne.06.030183.001245. [DOI] [PubMed] [Google Scholar]
  16. Gilbert C. D., Wiesel T. N. Clustered intrinsic connections in cat visual cortex. J Neurosci. 1983 May;3(5):1116–1133. doi: 10.1523/JNEUROSCI.03-05-01116.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gilbert C. D., Wiesel T. N. Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J Neurosci. 1989 Jul;9(7):2432–2442. doi: 10.1523/JNEUROSCI.09-07-02432.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gilbert C. D., Wiesel T. N. Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex. Nature. 1979 Jul 12;280(5718):120–125. doi: 10.1038/280120a0. [DOI] [PubMed] [Google Scholar]
  19. Gray C. M., Singer W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1698–1702. doi: 10.1073/pnas.86.5.1698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gustafsson B., McCrea D. Influence of stretch-evoked synaptic potentials on firing probability of cat spinal motoneurones. J Physiol. 1984 Feb;347:431–451. doi: 10.1113/jphysiol.1984.sp015074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. HUBEL D. H., WIESEL T. N. Integrative action in the cat's lateral geniculate body. J Physiol. 1961 Feb;155:385–398. doi: 10.1113/jphysiol.1961.sp006635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. HUBEL D. H., WIESEL T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962 Jan;160:106–154. doi: 10.1113/jphysiol.1962.sp006837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hata Y., Tsumoto T., Sato H., Hagihara K., Tamura H. Inhibition contributes to orientation selectivity in visual cortex of cat. Nature. 1988 Oct 27;335(6193):815–817. doi: 10.1038/335815a0. [DOI] [PubMed] [Google Scholar]
  24. Hubel D. H., Wiesel T. N. Receptive fields and functional architecture of monkey striate cortex. J Physiol. 1968 Mar;195(1):215–243. doi: 10.1113/jphysiol.1968.sp008455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hubel D. H., Wiesel T. N. Sequence regularity and geometry of orientation columns in the monkey striate cortex. J Comp Neurol. 1974 Dec 1;158(3):267–293. doi: 10.1002/cne.901580304. [DOI] [PubMed] [Google Scholar]
  26. Kisvárday Z. F., Martin K. A., Freund T. F., Maglóczky Z., Whitteridge D., Somogyi P. Synaptic targets of HRP-filled layer III pyramidal cells in the cat striate cortex. Exp Brain Res. 1986;64(3):541–552. doi: 10.1007/BF00340492. [DOI] [PubMed] [Google Scholar]
  27. Kisvárday Z. F., Martin K. A., Whitteridge D., Somogyi P. Synaptic connections of intracellularly filled clutch cells: a type of small basket cell in the visual cortex of the cat. J Comp Neurol. 1985 Nov 8;241(2):111–137. doi: 10.1002/cne.902410202. [DOI] [PubMed] [Google Scholar]
  28. Krüger J., Aiple F. Multimicroelectrode investigation of monkey striate cortex: spike train correlations in the infragranular layers. J Neurophysiol. 1988 Aug;60(2):798–828. doi: 10.1152/jn.1988.60.2.798. [DOI] [PubMed] [Google Scholar]
  29. LEVICK W. R., WILLIAMS W. O. MAINTAINED ACTIVITY OF LATERAL GENICULATE NEURONES IN DARKNESS. J Physiol. 1964 Apr;170:582–597. doi: 10.1113/jphysiol.1964.sp007351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. LeVay S., Gilbert C. D. Laminar patterns of geniculocortical projection in the cat. Brain Res. 1976 Aug 20;113(1):1–19. doi: 10.1016/0006-8993(76)90002-0. [DOI] [PubMed] [Google Scholar]
  31. Luhmann H. J., Greuel J. M., Singer W. Horizontal Interactions in Cat Striate Cortex: II. A Current Source-Density Analysis. Eur J Neurosci. 1990;2(4):358–368. doi: 10.1111/j.1460-9568.1990.tb00427.x. [DOI] [PubMed] [Google Scholar]
  32. Löwel S., Freeman B., Singer W. Topographic organization of the orientation column system in large flat-mounts of the cat visual cortex: a 2-deoxyglucose study. J Comp Neurol. 1987 Jan 15;255(3):401–415. doi: 10.1002/cne.902550307. [DOI] [PubMed] [Google Scholar]
  33. Martin K. A., Whitteridge D. Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat. J Physiol. 1984 Aug;353:463–504. doi: 10.1113/jphysiol.1984.sp015347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Matsubara J. A., Cynader M. S., Swindale N. V. Anatomical properties and physiological correlates of the intrinsic connections in cat area 18. J Neurosci. 1987 May;7(5):1428–1446. doi: 10.1523/JNEUROSCI.07-05-01428.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Michalski A., Gerstein G. L., Czarkowska J., Tarnecki R. Interactions between cat striate cortex neurons. Exp Brain Res. 1983;51(1):97–107. doi: 10.1007/BF00236807. [DOI] [PubMed] [Google Scholar]
  36. Moore G. P., Segundo J. P., Perkel D. H., Levitan H. Statistical signs of synaptic interaction in neurons. Biophys J. 1970 Sep;10(9):876–900. doi: 10.1016/S0006-3495(70)86341-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Perkel D. H., Gerstein G. L., Moore G. P. Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. Biophys J. 1967 Jul;7(4):419–440. doi: 10.1016/S0006-3495(67)86597-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rockland K. S., Lund J. S. Widespread periodic intrinsic connections in the tree shrew visual cortex. Science. 1982 Mar 19;215(4539):1532–1534. doi: 10.1126/science.7063863. [DOI] [PubMed] [Google Scholar]
  39. Schoppmann A., Stryker M. P. Physiological evidence that the 2-deoxyglucose method reveals orientation columns in cat visual cortex. Nature. 1981 Oct 15;293(5833):574–576. doi: 10.1038/293574a0. [DOI] [PubMed] [Google Scholar]
  40. Shatz C. J., Stryker M. P. Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation. J Physiol. 1978 Aug;281:267–283. doi: 10.1113/jphysiol.1978.sp012421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Shosaku A. Cross-correlation analysis of a recurrent inhibitory circuit in the rat thalamus. J Neurophysiol. 1986 May;55(5):1030–1043. doi: 10.1152/jn.1986.55.5.1030. [DOI] [PubMed] [Google Scholar]
  42. Sillito A. M. The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. J Physiol. 1975 Sep;250(2):305–329. doi: 10.1113/jphysiol.1975.sp011056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Somogyi P., Kisvárday Z. F., Martin K. A., Whitteridge D. Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat. Neuroscience. 1983 Oct;10(2):261–294. doi: 10.1016/0306-4522(83)90133-1. [DOI] [PubMed] [Google Scholar]
  44. Stevens J. K., Gerstein G. L. Interactions between cat lateral geniculate neurons. J Neurophysiol. 1976 Mar;39(2):239–256. doi: 10.1152/jn.1976.39.2.239. [DOI] [PubMed] [Google Scholar]
  45. Swindale N. V. A model for the formation of orientation columns. Proc R Soc Lond B Biol Sci. 1982 May 22;215(1199):211–230. doi: 10.1098/rspb.1982.0038. [DOI] [PubMed] [Google Scholar]
  46. Toyama K., Kimura M., Tanaka K. Cross-Correlation Analysis of Interneuronal Connectivity in cat visual cortex. J Neurophysiol. 1981 Aug;46(2):191–201. doi: 10.1152/jn.1981.46.2.191. [DOI] [PubMed] [Google Scholar]
  47. Toyama K., Kimura M., Tanaka K. Organization of cat visual cortex as investigated by cross-correlation technique. J Neurophysiol. 1981 Aug;46(2):202–214. doi: 10.1152/jn.1981.46.2.202. [DOI] [PubMed] [Google Scholar]
  48. Toyama K., Matsunami K., Ono T., Tokashiki S. An intracellular study of neuronal organization in the visual cortex. Exp Brain Res. 1974;21(1):45–66. doi: 10.1007/BF00234257. [DOI] [PubMed] [Google Scholar]
  49. Ts'o D. Y., Gilbert C. D., Wiesel T. N. Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J Neurosci. 1986 Apr;6(4):1160–1170. doi: 10.1523/JNEUROSCI.06-04-01160.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tsumoto T., Creutzfeldt O. D., Legéndy C. R. Functional organization of the corticofugal system from visual cortex to lateral geniculate nucleus in the cat (with an appendix on geniculo-cortical mono-synaptic connections). Exp Brain Res. 1978 Jul 14;32(3):345–364. doi: 10.1007/BF00238707. [DOI] [PubMed] [Google Scholar]
  51. Tsumoto T., Eckart W., Creutzfeldt O. D. Modification of orientation sensitivity of cat visual cortex neurons by removal of GABA-mediated inhibition. Exp Brain Res. 1979 Jan 15;34(2):351–363. doi: 10.1007/BF00235678. [DOI] [PubMed] [Google Scholar]
  52. Tsumoto T. Excitatory amino acid transmitters and their receptors in neural circuits of the cerebral neocortex. Neurosci Res. 1990 Nov;9(2):79–102. doi: 10.1016/0168-0102(90)90025-a. [DOI] [PubMed] [Google Scholar]
  53. Tsumoto T., Masui H., Sato H. Excitatory amino acid transmitters in neuronal circuits of the cat visual cortex. J Neurophysiol. 1986 Mar;55(3):469–483. doi: 10.1152/jn.1986.55.3.469. [DOI] [PubMed] [Google Scholar]
  54. Tsumoto T., Suda K. Laminar differences in development of afferent innervation to striate cortex neurones in kittens. Exp Brain Res. 1982;45(3):433–446. doi: 10.1007/BF01208604. [DOI] [PubMed] [Google Scholar]
  55. Wiesel T. N., Hubel D. H., Lam D. M. Autoradiographic demonstration of ocular-dominance columns in the monkey striate cortex by means of transneuronal transport. Brain Res. 1974 Oct 18;79(2):273–279. doi: 10.1016/0006-8993(74)90416-8. [DOI] [PubMed] [Google Scholar]
  56. von der Malsburg C. Self-organization of orientation sensitive cells in the striate cortex. Kybernetik. 1973 Dec 31;14(2):85–100. doi: 10.1007/BF00288907. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES