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We consider the effect of informative missingness on association tests that use parental genotypes as controls and
that allow for missing parental data. Parental data can be informatively missing when the probability of a parent
being available for study is related to that parent’s genotype; when this occurs, the distribution of genotypes among
observed parents is not representative of the distribution of genotypes among the missing parents. Many previously
proposed procedures that allow for missing parental data assume that these distributions are the same. We propose
association tests that behave well when parental data are informatively missing, under the assumption that, for a
given trio of paternal, maternal, and affected offspring genotypes, the genotypes of the parents and the sex of the
missing parents, but not the genotype of the affected offspring, can affect parental missingness. (This same as-
sumption is required for validity of an analysis that ignores incomplete parent-offspring trios.) We use simulations
to compare our approach with previously proposed procedures, and we show that if even small amounts of
informative missingness are not taken into account, they can have large, deleterious effects on the performance of
tests.

Introduction

The use of parental genotypes as controls for diseases
with early onset has become the design of choice in ge-
netic association studies because of concerns about spu-
rious association arising from unmeasured population
stratification in a traditional case-control study. Stan-
dard transmission/disequilibrium tests (TDTs) and other
association tests that use parental genotypes as controls
require genotype data on case probands as well as on
both parents (intact trios). For some diseases, this re-
quirement can cause difficulties, and a variety of ap-
proaches have been proposed to allow analysis of sam-
ples that include both intact trios and probands for
whom genotype data from one parent is missing (Clay-
ton 1999; Sun et al. 1999; Weinberg 1999; Cervino and
Hill 2000). Although the subset of intact trios obtained
by ignoring those families not having both parents avail-
able for genetic analysis can be analyzed with only min-
imal additional assumptions, methods allowing inclu-
sion of probands with missing parental information have

Received October 9, 2002; accepted for publication December 13,
2002; electronically published February 14, 2003.

Address for correspondence and reprints: Dr. Glen A. Satten, Mail-
stop F-24, Centers for Disease Control and Prevention, 4770 Buford
Highway, Chamblee, GA. E-mail: GSatten@cdc.gov

� 2003 by The American Society of Human Genetics. All rights reserved.
0002-9297/2003/7203-0017$15.00

often used strong additional assumptions. In particular,
most methods proposed to date assume that the distri-
bution of genotypes of the missing parents (conditionally
on genotypes of the offspring and the available parent,
if any) are not different from those parents whose ge-
notypes were observed. This assumption allows recon-
struction of the missing parents’ genotype, using the pa-
rental genotype frequencies estimated among those
parents who are observed. We will refer to the situation
in which genotype frequencies among missing parents
(conditional on offspring and the available parent, if
any) is the same as that among observed parents as
“missing at random” (MAR) (Little and Rubin 2002).

By contrast, informative missingness occurs when the
reason that a parent is missing is related to his or her
genotype at the locus of interest. Informative missing-
ness can occur for several reasons. First, alleles at the
locus may, in fact, cause or be proximal to a locus that
causes the disease of interest, which may lead to dif-
ferential missingness. For example, in a study of genetic
factors in an aggressive form of cancer, parents carrying
the disease-predisposing allele may be more likely to be
missing. Second, alleles at the locus may cause—or be
proximal to a locus causing a different disease that re-
sults in—parental missingness. In an era when the same
candidate genes are tested for involvement in a variety
of conditions, this coincidence cannot be ruled out. Al-
ternatively, in genome scans, use of a large number of
closely spaced markers increases the chance that a
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marker is linked to some locus that may cause parental
missingness by association with a disease other than the
one under study. Finally, if there is population substruc-
ture and if the propensity to be missing is correlated
with allele frequency in the subpopulations, then the
genotype frequencies in the intact trios will not be rep-
resentative of those among the missing parents. For ex-
ample, in a study of the leptin receptor gene, Chagnon
et al. (2000) found 192 available parents from 99 white
nuclear families but only 88 available parents from
115 African American families. Furthermore, the rarer
K109R allele of the leptin receptor gene was twice as
frequent in whites as in African Americans. As a result,
data for this allele are informatively missing in this
study. (It should be noted that Chagnon et al. analyzed
white and African American families separately and
hence their results are not in question.) The second and
third situations described above can affect the null dis-
tribution of an association test statistic and can, as a
result, lead to invalid inference, whereas the first situ-
ation only affects the alternative hypothesis (because, if
a marker locus is not associated with a disease-causing
locus, it is implausible that the parental missingness is
related to the disease of interest) and hence only affects
power.

Because there is no genotype information available
on the missing parents, it may appear that informative
missingness is intractable. However, we show that it is
possible, by utilizing natural constraints imposed on the
genotype of the missing parent by genotypes of the
available parent and the offspring, to fit flexible models
that allow for the effect of parental genotype on parental
missingness. In the present article, we use this modeling
approach to develop tests and related parameter esti-
mates that are valid when parental data are informa-
tively missing. Using simulated data, we compare the
power and size of our approach to those of existing
approaches when data are MAR, and we show that,
when data are informatively missing, the performance
of our approach is superior to approaches that assume
MAR.

In some studies, the proportion of probands with
missing parents will reflect the population proportion.
In other studies, the proportion of probands with miss-
ing parents may be part of the design, and, in particular,
probands with no available parents may be excluded.
The methods we propose here remain valid when sam-
pling is conditional on parental availability. We believe
the approach we use is generalizable to more compli-
cated missingness situations. In further work, we plan
to consider the design in which an unaffected sib is
sampled for each proband who has only one available
parent. Finally, some currently available methods,
such as the reconstruction-combined (RC)–TDT (Knapp
1999) and family-based association tests (FBATs)

(Rabinowitz and Laird 1999; Horvath et al. 2001)
do not require the MAR assumption. However, these
approaches can be substantially underpowered. For ex-
ample, both the RC-TDT and FBATs ignore data from
families with a single affected proband and only one
available parent. A recent proposal by Rabinowitz
(2002) is an improvement in this regard but still ignores
such families unless the lone parent is heterozygous.
Furthermore, interest in these approaches is motivated
by the idea that reconstruction of parental genotypes
inherently introduces bias. Although it is true that use
of the information in parental genotypes can introduce
bias, it can also lead to increased power. For this reason,
we consider here only approaches that are based, to
some degree, on successful reconstruction of parental
genotypes.

Association Tests with Parental Genotypes as Controls
in the Presence of Informative Missingness

We adopt an approach based on likelihoods for data on
the genotype Go of an offspring and a set of parental
genotypes , where Gf is the paternal ge-G p {G ,G }p f m

notype and Gm is the maternal genotype. We will assume
a locus with two alleles, one of which may confer ele-
vated risk either directly or by being in linkage dis-
equilibrium with a disease-predisposing locus. Then, Go

will denote the number of copies of the selected allele
in the offspring genotype (taking the value 0, 1, or 2),
with the same convention for Gf and Gm. Let the miss-
ingness pattern if neither parent isR { (r ,r ) p (1,1)f m

missing, if the father but not the mother isR p (0,1)
missing, if the mother but not the father isR p (1,0)
missing, and if both parents are missing. ForR p (0,0)
a given missingness pattern R, let and denote theo mG Gp p

observed and missing parental genotype information, re-
spectively, so that, for , ando mR p (1,0) G p G G pp f p

. If , then is the empty set andm oG R p (1,1) G G pm p p

. Finally, let denote the offspring phenotype withG Dp o

being affected. Following Weinberg (1999),D p 1o

we will refer to single-parent–single-offspring families
as “dyads” and to single offspring with no parents as
“monads.”

We first consider a prospective likelihood for data on
parental genotypes , offspring genotypes off-G G ,p o

spring disease status , and parental missingness R thatDo

loosely reflects the temporal sequence of events that gen-
erate the data. The joint probability of Gp, Go, Do, and
R can be written as:

L p P[G ]P[G FG ]P[DFG ,G ]P[RFD ,G ,G ] . (1)0 p o p o o p o o p

The likelihood in equation (1) applies to the target pop-
ulation and not necessarily to a study population in
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which sampling was conditional on offspring disease
status or, possibly, on missingness R.Do

We assume that

P[RFD ,G ,G ] p P[RFD ,G ] . (2)o o p o p

This is a plausible assumption in many settings, because
the offspring genotype can reasonably influence paren-
tal missingness only through the offspring phenotype
which is included in the conditioning. However, there
are situations in which this could be violated—for ex-
ample, if offspring genotype affected severity of off-
spring phenotype, which, in turn, affected parental miss-
ingness, or if offspring genotype affected age at onset,
which, in turn, affects parental missingness.

If we assume that equation (2) holds, it follows that

P[G FG ,D ,R] p P[G FG ,D ] , (3)o p o o p o

so that conditional probabilities of transmission are
the same in families with missing parents as in intact
trios. Note that, without equation (2), naive use of the
TDT with data from only those probands whose parents
were available would not be valid, since calculation of
the null distribution of offspring genotypes conditional
on parental genotypes would depend on parental
missingness.

When equation (3) holds, we can develop an analysis
scheme that reflects the way data are sampled in a ge-
netic association study. By design, only affected pro-
bands ( ) are sampled, and, in addition, there mayD p 1o

be some control of the number and type of missing data
patterns allowed. For example, an investigator may
specify the number of intact trios and the number of
dyads and may wish to exclude monads. To analyze
data from such a study, we consider the distribution of
the parental and offspring genotype data (Go,Gp ) con-
ditional on both the offspring phenotype Do and pa-
rental missingness R, which is denoted as “Lc” and writ-
ten, using equation (3), as

L p P[G ,G FD ,R] p P[G FG ,D ]P[G FD ,R] . (4)c o p o o p o p o

We will base inference on Lc; the first factor on the right
of the second equal sign contains the parameters of in-
terest, whereas the second contains nuisance parameters
that must be estimated if probands with missing paren-
tal data are included in the study population. It should
be noted that inference may be based on Lc, even if the
sampling was not conditional on parental missingness
R.

In principle, equation (1) would specify P[G FD ,R]p o

in terms of the population genotype frequencies and
mating probabilities that specify , as well as theP[G ]p

transmission parameters in (e.g., see ClaytonP[G FG ]o p

1999). Instead, we treat as a prim-P[G FD ,R p (1,1)]p o

itive quantity to be estimated. Define

P[R p (r ,r )FG ,D p 1]f m p o
v (G ) pR p P[R p (1,1)FG ,D p 1]p o

and note that

v (G )P[G FD p 1,R p (1,1)]R p p oP[G FD p 1,R] pp o ′ ′� v (G )P[G FD p 1,R p (1,1)]R p p o′Gp

(Satten and Kupper 1993; Satten and Carroll 2000).
Hence, we may write equation (4) as

P[G ,G FD p 1,R]o p o

v (G )P[G FD p 1,R p (1,1)]R p p op P[G FG ,D p 1] .o p o ′ ′{ }� v (G )P[G FD p 1,R p (1,1)]R p p o′Gp

To obtain a likelihood that uses only the observed pa-
rental data, we sum Lc over the parental genotypes that
are missing. Let

(1,1)L (G ,G ,G )c o f m

p P[G FG ,D]P[G FD p 1,R p (1,1)]o p p o

and define

(0,1)L (G ,G )c o m

v (G )P[G FD p 1,R p (1,1)](0,1) p p op P[G FG ,D p 1] ,� o p o ′ ′{ }� v (G )P[G FD p 1,R p (1,1)]Gf (0,1) p p o′Gp

(1,0)L (G ,G )c o f

v (G )P[G FD p 1,R p (1,1)](1,0) p p op P[G FG ,D p 1] ,� o p o ′ ′{ }� v (G )P[G FD p 1,R p (1,1)]Gm (1,0) p p o′Gp

and

(0,0)L (G )c o

v (G )P[G FD p 1,R p (1,1)](0,0) p p op P[G FG ,D p 1] .� o p o ′ ′{ }� v (G )P[G FD p 1,R p (1,1)]Gp (0,0) p p o′Gp

Then we may write the likelihood of the proband ge-
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Table 1

Model for Transmission Disequilibrium,
after Schaid and Sommer (1993)

G p {G ,G }p f m Go P[G FG ,D p 1]o p o

{2,2} 2 1

{1,2} or {2,1} 1

b1e
b b1 2e � e

2

b2e
b b1 2e � e

{0,2} or {2,0} 1 1

{1,1} 0
1
b b1 21 � 2e � e

1

b12e
b b1 21 � 2e � e

2

b2e
b b1 21 � 2e � e

{0,1} or {1,0} 0
1

b11 � e

1

b1e
b11 � e

{0,0} 0 1

notype and whatever parental genotype data is observed
as

N

obs R oiL p L (G ,G ) , (5)�c c oi pi
ip1

where Ri, Goi, and are the missingness indicator,oGpi

offspring genotype, and observed parental information
for the ith proband, respectively.

We use an unrestricted model for P[G FD pp o

that does not assume Hardy-Weinberg1, R p (1,1)]
equilibrium (HWE) or mating symmetry by allowing
eight parameters for the nine parental mating types (the
probability of the ninth parental mating type is deter-
mined by the requirement that the mating type fre-
quencies add to one). The term is asP[G FG ,D ]o p o

calculated by Schaid and Sommer (1993) and is given
in table 1. It can be written in terms of two param-
eters, b p Ln{P[D p 1FG p 1]/P[D p 1FG p 0]}1 o o o o

and , orb p Ln{P[D p 1FG p 2]/P[D p 1FG p 0]}2 o o o o

can be expressed in terms of a single parameter b if a
multiplicative model of genetic action(b p 2b,b p b)2 1

is assumed (for which case the maximization of
P[ for intact trio data closely resemblesG FG ,D p 1]o p o

the TDT). If does not depend on Gp, thenv (G )R p

and our likelihood re-P[G FD p 1,R] p P[G FD p 1]p o p o

duces to that of Weinberg (1999) (see also Cervino et
al. 2000), corresponding to MAR data (Little and Rubin
2002).

Because describes parentalP[G FD p 1,R p (1,1)]p o

genotypes among intact trios, it is easily estimated. The
odds are more difficult to estimate, and it is notv (G )R p

possible to fit a nonparametric model for , since,v (G )R p

in theory, the missing parents can be as different as
possible from the observed parents, within the con-
straint that their genotypes must be consistent with the
offspring and observed parental genotype data. How-
ever, we take the view that a reasonably simple process
should be generating missingness, which we can hope
to capture in relatively simple models for . Forv (G )R p

example, missingness of each parent may be determined
by their sex and genotype (and not their spouses’ ge-
notype) if missingness is due to morbidity associated
with the candidate locus. For loci that affect behavior,
a possible model is that missingness may be determined
by the total number of parental risk alleles. We propose
the following family of models:

g �g G �g G01 ff f fm mv (G ,G ) p e (6)(0,1) f m

and

g �g G �g G10 mf f mm mv (G ,G ) p e ; (7)(1,0) f m

if the sample also includes monads, we would use

g �(g �g )G �(g �g )G00 ff mf f mm fm mv (G ,G ) p e .(0,0) f m

This model allows for different proportions of missing
fathers and mothers (through the intercepts g01 and g10)
and for separate log-linear effects of paternal genotype
on paternal missingness (gff), maternal genotype on pa-
ternal missingness (gfm), maternal genotype on maternal
missingness (gmm), and maternal genotype on maternal
missingness (gmf). We have found that the parameters
in this model are identifiable in the simulations we have
conducted. It should be noted that this model represents
a considerable reduction in the potential number of pa-
rameters required to specify using an un-P[G FD ,R]p o

restricted model. The parameters in such a model are
not identifiable, and even replacing equations (6) and
(7) with models that have separate terms ,I[G p 1]f

, , and resulted in poorI[G p 2] I[G p 1] I[G p 2]f m m

convergence in some situations. The parameters g01 and
g10 (and if monads are included) drop out of theg00

conditional likelihood and hence do not need to be es-
timated. If and , then the model pre-g p g g p gff fm mm mf

dicts that the total number of risk alleles in the parental
generation determines missingness. If andg p gff mm

, then the effect of risk alleles on missingnessg p gfm mf

is the same for males and females. The intercepts g01

and g10 governing the main effects of sex can still differ,
so this condition corresponds to no gene-sex interaction
in missingness. If , then each parent’sg p g p 0fm mf

missingness depends only on his or her risk alleles.
Inference about parameters b can be performed using

any likelihood-based procedure, including score tests,
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Wald tests, or likelihood ratio tests. In addition, score
and Wald tests can be calculated using robust (or “sand-
wich”) variances. This is appealing, because both the
missingness model or the penetrance model (if b has a
single component) can be misspecified, in which case var-
iance estimates based solely on the information matrix
can be misleading (Kent 1982; White 1982). In our sim-
ulations, we found that the Wald test based on the robust
variance performed the best overall, followed by the ro-
bust score test of Boos (1992). An alternative approach
would be to maximize ,P[RFG ,D ]P[G FG ,D ]P[G FD ]p o o p o p o

as suggested (but not implemented) by Weinberg (1999).
This approach can be implemented using the expecta-
tion-maximization (EM) algorithm (Dempster et al.
[1977]) but involves estimating additional nuisance pa-
rameters (g01, g10, and g11). In general, conclusions from
this approach should be very similar to those presented
here, although in some simulations we have found
slightly elevated type 1 error rates with this likelihood
(results not shown).

When only intact trios are analyzed, it is possible to
develop approaches that are impervious to unmeasured
population stratification (e.g., the usual TDT and the
approach of Schaid and Sommer [1993]). When aver-
aging over parental genotypes, as we do here, there is
the possibility of introducing a bias due to unmeasured
population substructure. To understand how our ap-
proach handles this, consider likelihood LcFz, which is
like Lc but which additionally conditions on subpopu-
lation Z:

L p P[G FG ,D ]Pr[G FD ,R,Z] .cFz o p o p o

Because depends only on relative risk pa-P[G FG ,D ]o p o

rameters b and not absolute risks, we do not need to
condition on Z, under the assumptionP[G FG ,D ]o p o

that relative risks are constant across subpopulations.
When LcFz is averaged over Z, using the distribution

, it yields:P[ZFD ,R]o

L Pr[ZFD ,R]� cFz o
Z

p Pr[G FG ,D ]Pr[G FD ,R,Z]Pr[ZFD ,R]� o p o p o o
Z

p Pr[G FG ,D ]Pr[G FD ,R] p L ,o p o p o c

which is the likelihood we consider. In other words, the
conditional likelihood that is the basis of our inference
is also the marginal model that results from averaging
over population substructure. Thus, if the model for

is saturated, then this likelihood is valid un-P[G FD ,R]p o

der population stratification. Unfortunately, a fully sat-
urated model for cannot be fit when miss-P[G FD ,R]p o

ingness is informative. Hence, the results of maximizing
our conditional likelihood will be valid only to the ex-

tent that the model for captures the truth.Pr [G FD ,R]p o

In the “Simulation Examples” section below, we see
empirically that our approach does provide a sufficiently
rich description of parental genotypes that it remains
valid under population stratification.

Finally, there has been increasing interest in parent-of-
origin effects and maternal genotype effects. In principle,
these can be added to the model for , ac-P[G FG ,D ]o p o

cording to the methods of Weinberg et al. (1998), Wil-
cox et al. (1998), and Weinberg (1999). However, it is
not clear whether such effects can be estimated in the
presence of informative missingness, and these effects
are absent in the examples considered in the next section
(see the article by Weinberg [1999] for some speculation
on this topic). This is an area that deserves further study.

Simulation Examples

To compare our new tests and estimators with previously
proposed estimators, we conducted simulation studies
with various patterns of missing parental information
and varying population substructure. All data were gen-
erated using the prospective likelihood equation (1), and
rejection sampling was used to achieve sampling goals
for the number of trios and dyads. We have conducted
a large number of simulations, from which we report
the results of four scenarios that are chosen to illustrate
important points. The model choices for these scenarios
are summarized in table 2. For each scenario, we give
results obtained using five models for , to illustrate thevR

effects of complexity of the missingness model on the
size and power of our tests. These models are all versions
of equations (6 and 7), constrained as specified in table
3. Table 4 summarizes our simulation results obtained
using a 1-df model of genetic action corresponding to a
multiplicative increase in disease risk with each addi-
tional risk allele, with a nominal 5% size. Table 5 sum-
marizes our simulation results obtained using a 2-df
model of genetic action.

For each simulation, we generated 10,000 data sets,
each having an equal number of intact trios and dyads
(sample sizes given in table 2). We also give results for
three previously proposed methods. The first is the like-
lihood-based MAR proposal of Weinberg (1999; see
also Cervino and Hill [2000]). Here, we modify this
proposal to use a Wald test with a robust (sandwich)
variance estimate to conform to the statistic we use for
our approach; results using the likelihood-ratio statistic
originally proposed by Weinberg were generally similar
and are not shown. For comparisons with our 1-df test,
we also give results for the “robust” version of the 1-
TDT of Sun et al. (1999) and the TRANSMIT program
of Clayton (1999), which is available on the Internet.
The original proposal of Sun et al. (1999) was flawed
in that, as sample size increased (while keeping the pro-
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Table 2

Summary of Scenarios Used for Simulations

Scenario,
Subpopulation (z) Pr[rf p 1FGf p g,z] Pr[rm p 1FGm p g,z] Pr[Do p 1FGo p g,z]

Risk
Allele

Frequency
No. of

Trios/Dyads

1, 1 .70�.10I[g 1 0] .90�.10I[g 1 0] .05wI[g10] .15 200/200
1a, 1 .70�.10I[g 1 0] .90�.10I[g 1 0] .05wI[g10] .15 100/100
1b, 1 .70�.10I[g 1 0] .90�.20I[g 1 0] .05wI[g10] .15 200/200
2, 1 .50 .50 .05wg .15 200/200
3, 1 .99 .95 (.05 7 z)wI[g 1 0] .27 200/200
3, 2 .25 .51 (.05 7 z)wI[g 1 0] .14 200/200
4, 1 .99 .95 (.05 7 z)wI[g 1 0] .14 200/200
4, 2 .25 .51 (.05 7 z)wI[g 1 0] .27 200/200
4a, 1 .99 .95 (.05 7 z)wI[g p 2] .14 200/200
4a, 2 .25 .51 (.05 7 z)wI[g p 2] .27 200/200

Table 3

Summary of Parameter Constraints in Models for Missingness
Odds vR

Model,
No. of Parameters
in Model for vR

Effect of Missing
Parent’s Genotype

Effect of Available
Parent’s Genotype

1, 1 gff p gmm gfm p gmf p 0
2, 2 gff(gmm gfm p gmf p 0
3, 2 gff p gmm gfm p gmf

4, 3 gff(gmm gfm p gmf

5, 4 gff(gmm gfm(gmf

portion of intact trios and probands with single parents
constant), the statistic increasingly weighted probands
with single parents. In consultation with F. Sun, we give
a modified version of this statistic in Appendix A. We
also include results obtained by ignoring all data from
families with only one parent, which is valid, since equa-
tion (2) is satisfied for all simulations considered here.
Finally, we include the results of a model-selection pro-
cedure that automatically selects either one of the five
informative missingness models of table 3 or the MAR
approach, by minimizing the Akaike information cri-
terion (AIC) (Akaike 1985).

We first show how a small amount of informative
missingness can have a large, deleterious effect on the
standard association tests that assume MAR; we refer
to this situation as scenario 1. We generated data using
a dominant disease model with phenocopy, that is,

andPr [D p 1FG p 0] p 0.05 Pr [D p 1FG 1 0] po o o o

. The risk allele had a 15% frequency in the pop-0.05w

ulation, and we generated parental genotypes, using as-
sortative mating and departure from HWE correspond-
ing to a fixation index . Finally, each motherF p 0.05
had a 90% chance of being genotyped if she carried no
copies of the risk allele but had an 80% chance of being
genotyped if she carried one or two copies of the risk
allele; each father had a 70% chance of being genotyped
if he carried no copies of the risk allele but had a 60%

chance of being genotyped if he carried one or two
copies of the risk allele.

Tables 4 and 5 give the proportion of simulations
(expressed as a percent) for which the null hypothesis
was rejected, for three values of the relative risk w. When

, the null hypothesis of no association betweenw p 1
the locus and a locus that affects disease status holds.
Hence, a valid test should reject the null hypothesis in
∼5% of simulations. This is the case for the analysis
that uses only intact trios, but the 1-df MAR test rejects
the null hypothesis in almost 14% of simulations;
TRANSMIT rejects the null hypothesis in almost 15%
of simulations. At 7.3%, the size of the 1-TDT was
closer to the nominal value but was still inflated. The
2-df MAR test also performed poorly, rejecting the null
hypothesis in 110% of simulations. Each of the five
informative missingness models rejected the null hy-
pothesis at a rate close to (for 1 df) or slightly below
(for 2 df) the nominal rate for this scenario.

As tables 4 and 5 show, when , accounting forw 1 1
informative missingness can still result in a gain in
power over analysis that uses only intact trios. Inter-
estingly, the gain in power was similar for each of mod-
els 1–5, indicating that there is no penalty for fitting a
fairly rich model of informative missingness. Results for
the MAR, TRANSMIT, and 1-TDT tests are given in
parentheses, since they are misleading given the consid-
erable inflation in the size of the test under the null
hypothesis. The AIC procedure for 1 df shows a small
gain in power over models 1–5 but, when , thew p 1
size of the AIC model-selection procedure was signifi-
cantly elevated above the nominal 5%. The AIC per-
formed better for the 2-df tests, presumably because
these tests were slightly conservative.

The parameters in scenario 1a are identical to those
in scenario 1, except that only 100 cases and controls
were sampled in each simulation. The inflation in size
of the AIC procedure is increased for 1 df (results for
2-df tests are not presented, because the relatively low
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Table 4

Size ( ) or Power ( ) of 1-df Association Tests for Various Missing Parental Data Scenariosw p 1 w 1 1

ANALYSIS

RESULTS FOR SCENARIO

1 with w p 1a with w p 1b with w p 2 with w p 3 with w p 4 with w p 4a with w p

1.0 1.5 2.0 1.0 1.0 1.0 1.5 1.75 1.0 1.5 1.8 1.0 1.5 1.8 4.5

Intact Trios 5.0 38.5 84.1 5.1 5.1 5.1 56.6 85.6 5.0 41.1 70.1 5.1 40.6 70.7 47.2
MAR 13.9 (88.0) (99.8) 9.2 22.3 4.8 77.4 97.1 13.9 (24.7) (60.9) 13.7 (89.2) (98.7) (90.3)
TRANSMIT 14.9 (88.4) (99.8) 10.0 25.4 4.5 77.1 97.1 14.9 (23.8) (60.1) 18.2 (91.0) (99.0) (99.9)
1-TDT 8.4 (70.6) (97.9) 6.6 13.9 4.8 70.5 94.5 5.2 49.5 80.8 5.0 50.9 82.3 66.3
Model:

1 4.4 47.7 90.6 4.7 4.6 4.6 66.9 91.9 5.2 52.1 81.1 8.3 (37.1) (66.7) 35.3
2 4.3 48.2 90.9 4.7 4.7 4.6 66.6 92.0 5.3 52.1 81.0 8.5 (36.9) (66.5) 35.4
3 4.5 47.9 90.9 4.7 4.7 4.6 67.2 92.1 5.3 53.1 83.0 4.8 47.1 76.3 56.3
4 4.4 48.4 91.1 4.7 4.7 4.6 66.9 92.2 5.3 52.9 82.9 4.8 46.7 76.0 56.2
5 4.4 48.4 91.1 4.8 4.7 4.7 67.0 92.2 5.2 53.0 82.9 4.8 46.5 76.1 56.1

AIC 6.1 51.9 91.3 6.8 5.4 5.6 73.6 94.6 5.4 52.9 82.9 5.1 47.0 76.5 54.4

NOTE.—Parentheses indicate the test is invalid because of inflated size.

allele frequency and smaller sample size led to simulated
data sets with no offspring with two risk alleles). Pa-
rameters in scenario 1b are identical to those in scenario
1, except that the probability of a mother being seen if
she carried one or two copies of the risk allele was
lowered from 0.8 to 0.7. Here we see that the size of
the 1-TDT, MAR, and TRANSMIT tests are all well
above the nominal 5%. The 2-df AIC procedure is ap-
propriately sized at 4.9%. All five models in the con-
ditional likelihood approach do not exceed the nominal
size for scenarios 1a and 1b. The 1-df and 2-df tests
gave comparable power for this scenario.

In scenario 2, we considered a case where data were
truly missing at random. For this simulation, parents
had a 50% chance of being seen independent of ge-
notype or sex. Data were generated using the disease
model , but all other sim-gPr [D p 1FG p g] p 0.05wo o

ulation parameters are the same as in scenario 1. Be-
cause the MAR approach is valid for this scenario, all
methods have the appropriate size when . How-w p 1
ever, when , we see that there is a cost associatedw 1 1
with allowing for informative missingness, since the
MAR test has greater power than our tests. However,
allowing for informative missingness still results in an
improvement over the analysis that uses only intact
trios. Model selection based on the AIC recovers about
half of the power lost by allowing for the possibility of
informative missingness. The 2-df tests had notably less
power than the 1-df tests for this scenario, because the
data were generated using a log-linear disease-risk
model (see table 2).

Scenario 3 corresponds to a situation in which in-
formative missingness is the result of population strat-
ification. The parameters for this scenario are motivated
by the level of missingness found in the study of
Chagnon et al. (2002). Data were generated from an
admixture of two subpopulations, indexed by z p

, corresponding to whites and African Americans,1,2
respectively, but were analyzed assuming we were not
able to stratify on ethnicity. We used Pr [z p 1] p 0.8
and ,Pr [r p 1Fz p 1] p 98/99 Pr [r p 1Fz p 1] pf m

, and94/99, Pr [r p 1Fz p 2] p 29/115 Pr [r p 1Fz pf m

based on the proportions of available par-2] p 59/115
ents by race and sex reported by Chagnon et al. (2002).
Data were generated using the disease model Pr [D po

, based on Centers forI[g 0]11FG p g,z] p (0.05 ∗ z)wo

Disease Control data that the prevalence of obesity in
African Americans is approximately twice that of whites
(see Centers for Disease Control and Prevention Web
site). We used the frequency of the R allele at the K109R
RFLP in the leptin receptor gene as the risk allele re-
ported by Chagnon et al. (2002), corresponding to fre-
quencies 0.27 and 0.14 in whites and African Ameri-
cans, respectively. Again, the sizes of the MAR and
TRANSMIT tests are greatly elevated, while our ap-
proach preserves size. Interestingly, our modification of
the 1-TDT performs quite well in this situation, pre-
serving size and having nearly as great power as our
approach. Surprisingly, the power of the MAR test is
very low, lower even than that achieved by using only
intact trios. In this scenario, the 2-df tests have slightly
higher power than the 1-df tests

Scenario 4 is identical to scenario 3 except that the
allele frequencies in the two subpopulations were in-
terchanged. Here we do see a difference between the
four models, with the less-rich models (1 and 2) having
inflated size under the null hypothesis and markedly less
power (for the 1-df tests) than even the analysis that
only uses intact trios under the alternative, while the
richer models have a modest gain over intact trios. Note
that in this scenario the 1-TDT has moderately greater
power than the 1-df conditional approach, although
the 2-df approach has slightly higher power than the
1-TDT. The AIC procedure does not result in an in-
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Table 5

Size ( ) or Power ( ) of 2-df Association Tests for Various Missing Parental Data Scenariosw p 1 w 1 1

ANALYSIS

RESULTS FOR SCENARIO

1 with w p 1b with w p 2 with w p 3 with w p 4 with w p 4a with w p

1.0 1.5 2.0 1.0 1.0 1.5 1.75 1.0 1.5 1.8 1.0 1.5 1.8 4.5

Intact Trios 4.3 34.7 81.0 4.5 4.6 47.5 78.3 5.0 40.1 73.9 5.2 37.2 69.3 78.5
MAR 10.3 (81.5) (99.6) 17.0 3.8 67.0 93.9 10.1 (32.4) (73.0) 10.9 (84.4) (98.5) (98.7)
Model:

1 4.1 45.7 92.0 4.2 3.9 56.2 85.9 5.0 54.3 86.1 11.9 (54.4) (86.2) 71.5
2 4.1 46.0 92.2 4.2 3.9 56.0 85.9 5.0 54.3 86.2 11.9 (54.6) (86.3) 71.0
3 4.0 45.9 92.1 4.1 3.9 56.0 86.2 4.9 53.8 87.2 5.3 51.4 84.7 88.0
4 4.0 46.0 92.3 4.1 3.8 56.1 86.0 4.9 54.0 87.3 5.3 51.6 84.8 87.2
5 4.0 45.9 92.5 4.2 3.8 56.0 86.0 4.9 53.9 87.3 5.3 51.6 84.8 87.5

AIC 5.4 49.6 99.6 4.9 4.3 63.6 90.3 5.0 53.9 87.2 5.6 51.7 84.9 87.9

NOTE.—Parentheses indicate the test is invalid because of inflated size.

crease in power over use of models 3, 4, or 5. Finally,
scenario 4a differs from scenario 4 only in that the mode
of transmission is recessive rather than dominant (so
that results for from scenario 4 apply to scenariow p 1
4a as well). Note that a much higher effect (w p 4.5)
is required to achieve comparable power. The 1-TDT
has noticeably greater power than the 1-df conditional
approach, but the 2-df tests markedly outperform any
of the 1-df tests

Although we have presented only four scenarios,
some general conclusions can be drawn. First, our sim-
ulations show that it is possible to account for infor-
mative missingness of parental genotypes and still gain
power over an analysis that uses only intact trios. When
the MAR assumption is true, allowing for informative
missingness can incur a loss in power. However, when
missingness is informative, the MAR-based approaches
can give misleading results and can even result in lower
power than our new procedure. Second, it is important
to use a rich enough model of missingness to guarantee
appropriate test size. Fortunately, it appears that fitting
rich models, such as our models 3–5, does not generally
incur a decrease in test power (although we have seen
rare cases in which this does, in fact, happen). Finally,
the AIC model-selection procedure can result in a mod-
est increase in power when data are MAR, but it has a
slightly inflated size for 1-df tests

Comparison of tables 4 and 5 indicates that, when
the genetic mechanism is not multiplicative, the 2-df
tests give similar (in scenario 1) or superior (in scenarios
3 and 4) performance compared with 1-df tests. This
gain in power is especially striking when the mechanism
is recessive (scenario 4a). However, when the 1-df test
corresponds to the correct mechanism (as in scenario
2) the 2-df test has inferior performance. These conclu-
sions are in concordance with those of Weinberg et al.
(1998) and suggest the use of 2-df tests when the mech-
anism is unknown or is suspected to be not multipli-

cative, especially if there is a chance that the mode of
inheritance is recessive.

Although we have considered only hypothesis testing,
our conditional-likelihood approach can also be used
to estimate parameters in the relative risk model. Al-
though we have not examined the coverage of CIs for
parameter estimates under the alternative hypothesis,
our results, in tables 4 and 5, when indicatew p 1
appropriate coverage of 95% CIs under the null hy-
pothesis (since Wald tests correspond to determining
whether the 0 is contained in a CI for b).

Discussion

Genetic association studies that use parental genotypes
as controls require genotype data from both parents;
when these data are missing, they must be inferred in
some way. Previous methods have assumed that the con-
ditional distribution of parental genotypes among the
missing parents was the same as that among the parents
who were observed. We have shown that this assump-
tion, when violated, may result in tests and estimation
procedures that are severely biased. In particular, the
chance of rejecting the null hypothesis when it is actually
true (the size of the test) can be greatly inflated. We have
proposed a conditional-likelihood approach that allows
parental missingness to be informative. We have shown,
through simulation studies, that the parameters in our
model are identifiable and that it performs adequately
in situations in which standard procedures fail. Finally,
we have shown that use of the AIC to select the miss-
ingness model has close-to-appropriate size and in-
creases the power of our procedure.

In the present article, we have considered only nuclear
families with a single affected proband. Incorporating
information on additional sibs (independent of affection
status) can potentially increase the power of our pro-
cedure. Unfortunately, sibs may themselves be subject
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to informative missingness. We plan to consider this, as
well as association tests for quantitative traits, in future
work. Finally, informative missingness can affect other
genetic studies. For example, parametric linkage anal-
yses of pedigree data in which some founders are miss-
ing also typically assume that the distribution of ge-
notypes of the missing spouses of founders are the same
as for those founders whose genotypes are observed.
We plan to consider the effect of informative missing-
ness on linkage analyses as well.

Acknowledgments

We thank Fengzhu Sun for useful discussions regarding the
1-TDT. We thank Clarice Weinberg for useful comments.

Appendix A

Modified 1-TDT of Sun et al. (1999)

Sun et al. (1999) have proposed tests of transmission
disequilibrium that use probands with only one parent
(among other situations). These 1-df tests are not like-
lihood based but are, instead, based on comparing the
relative occurrence of probands who have more risk al-
leles than their one available parent with probands who
have fewer risk alleles than their one available parent.
Sun et al. propose the following test statistic that com-
bines data from intact trios and probands with only one
parent. Let b (c) denote the number of heterozygous
parents who transmit (do not transmit) the risk allele to
their offspring. Let bf (cf) denote the number of probands
whose mothers are missing and who have more (fewer)
copies of the risk allele than their father. Let bm (cm)
denote the number of probands whose fathers are miss-
ing and who have more (fewer) copies of the risk allele
than their mother. Let M(P) denote the number of pro-
bands with one parent available when that parent is the
mother (father). Sun et al. proposed the test statistic

2

b � c � M(b � c ) � P(b � c )[ ]f f m m

T p .2 2(b � c) � M (b � c ) � P (b � c )f f m m

This test should not be used, because the contribution
from families with one parent has different scaling with
sample size than the contribution from families with
both parents. As the sample size increases, this statistic
will increasingly favor the data from families with only
one parent. After consultation with F. Sun (personal
communication), we modified the statistic to replace M
by and to replace P by , so thatM/(M � P) P/(M � P)
the contribution of families with both parents and that
of families with only one parent were the same. The

resulting statistic is reported in the simulation results as
the 1-TDT.
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The URLs for data presented herein are as follows:

Centers for Disease Control and Prevention, http://www
.cdc.gov/nccdphp/dnpa/obesity/trend/prev_char.htm (for
prevalence of obesity)

David Clayton’s Genetics Programs, http://www-gene.cimr
.cam.ac.uk/clayton/software/ (for TRANSMIT)
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