Table 7.
The efficacy of various machine learning algorithm models.
| AUC | Accuracy | Sensitivity | Specificity | F1 | |
|---|---|---|---|---|---|
| LR | |||||
| Train | 0.811 | 0.801 | 0.723 | 0.841 | 0.737 |
| Test | 0.723 | 0.711 | 0.663 | 0.857 | 0.681 |
| NN | |||||
| Train | 0.851 | 0.811 | 0.689 | 0.831 | 0.724 |
| Test | 0.861 | 0.828 | 0.716 | 0.837 | 0.767 |
| RF | |||||
| Train | 0.741 | 0.788 | 0.632 | 0.743 | 0.661 |
| Test | 0.807 | 0.796 | 0.593 | 0.821 | 0.613 |
| SVM | |||||
| Train | 0.756 | 0.721 | 0.754 | 0.756 | 0.673 |
| Test | 0.656 | 0.746 | 0.704 | 0.803 | 0.676 |
LR, Logistic regression; NN, Neural network; RF, Random forest; SVM, Support vector machine.