Skip to main content
. 2019 Nov 30;146(1):153–185. doi: 10.1007/s00432-019-03098-5

Table 2.

Comparison between classical nodule detection method and deep learning-aided method

Method Author Sensitivity False positive rate AUC Data set
Classical detection methods
 Conventional detection techniques Giger et al. (1988) 80% 2.7 per image b Authors’ compiled data set
Giger et al. (1990) 57.6% 3.7 per image Authors’ compiled data set
 Neural network Lo et al. (1993a) 0.782 Authors’ compiled data set
Torres et al. (2015) 80% 8 per scan LIDC–IDRI, ITALUNG-CT, and ANODE09
Gupta et al. (2018) 85.6% 8 per scan 0.957 LIDC–IDRI
66.3% 8 per scan 0.831 AAPM-SPIE-LUNGx
70.4% 8 per scan 0.847 ELCAP
68.9 8 per scan 0.804 PCF
 CNN Lo et al. (1993b) 80% 2.6 per image 0.88 Authors’ compiled data set
 Associative learning neural networks Lo et al. (1998) 80% 2.5 per image Authors’ compiled data set
 MTANN Suzuki et al. (2003) 80.3% 4.8 per scan Authors’ compiled data set
Tajbakhsh and Suzuki (2017)a 100% 2.7 per scan 0.8806 Authors’ compiled data set
 KNN Murphy et al. (2009) 80.0% 4.2 per scan NELSON
 SVM Tan et al. (2011) 83.8% 4.0 per scan LIDC
Setio et al. (2015) 94.1%/98.3% 1.0/4.0 per scan LIDC–IDRI
Bergtholdt et al. (2016) 85.9% 2.5 per scan LIDC–IDRI
Teramoto and Fujita (2018) 83.5% 5 per scan East Nagoya Imaging Diagnosis Center
 Linear discriminant classifier + GentleBoost classifiers Jacobs et al. (2014) 80% 1.0 per scan NELSON
Deep learning-aided method
 2D deep CNN Setio et al. (2016) 85.4%/90.1% 1/4 per scan LIDC–IDRI
Jiang et al. (2018) 80.06%/94% 4.7/15.1 per scan LIDC–IDRI
Tajbakhsh and Suzuki (2017)a 100% 22.7 per scan 0.7755 Authors’ compiled data set
Nam et al. (2019) 69.9%, 82.0%, 69.6%, and 75.0% 0.34, 0.30, 0.02, and 0.25 per image 0.885, 0.924, 0.831, and 0.880 Authors’ compiled data set (evaluated on four external validation data sets)
 3D deep CNN Dou et al. (2017) 92.2% 8.0 per scan LIDC
 Ensemble method Teramoto et al. (2016) 90.1% 4.9 per scan Authors’ compiled data set
Setio et al. (2017) 96.9%/98.2% 1.0/4.0 per scan LIDC–IDRI

aTajbakhsh and Suzuki compared performance of MTANN and CNN, which were listed in two entries in the table

bThe sign “–” means missing data