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Crossover Interference in Humans
E. A. Housworth1 and F. W. Stahl2

1Departments of Mathematics and Biology, Indiana University, Bloomington; and 2Institute of Molecular Biology, University of Oregon, Eugene

Crossing-over between homologous chromosomes facilitates proper disjunction of chromosomes during meiosis I.
In many organisms, gene functions that are essential to crossing-over also facilitate the intimate chromosome pairing
called “synapsis.” Many organisms—including budding yeast, humans, zebrafish, Drosophila, and Arabidopsis—
regulate the distribution of crossovers, so that, most of the time, each chromosome bundle gets at least one crossover
while the mean number of crossovers per chromosome remains modest. This regulation is obtained through crossover
interference. Recent evidence suggests that the organisms that use recombination functions to achieve synapsis have
two classes of crossovers, only one of which is subject to interference. We statistically test this two-pathway hypothesis
in the CEPH data and find evidence to support the two-pathway hypothesis in humans.

Introduction

Crossovers in many model organisms (e.g., budding
yeast, Drosophila melanogaster, Neurospora crassa,
and Caenorhabditis elegans) are subject to interference:
a crossover at one location discourages crossovers from
occurring nearby. Both conceptual and mathematical
models for the distribution of crossovers subject to inter-
ference are well established (Bailey 1961; Mortimer and
Fogel 1974; Foss et al. 1993; McPeek and Speed 1995;
Zhao et al. 1995b). Recently, several experiments and
analyses have suggested two distinct recombinational
pathways in meiosis in some, if not most, organisms.
On the one hand, mutations in MSH4 in Saccharomyces
cerevisiae reduce crossing-over only by 50%–70% but
completely abolish interference (Ross-Macdonald and
Roeder 1994). On the other hand, mutations in the
MSH4 homolog, HIM-14, in C. elegans completely
eliminate crossing-over in that organism (Zalevsky et
al. 1999). This evidence suggests that yeast has two
recombinational pathways, only one of which is shared
by C. elegans. Furthermore, yeast seems to use early
recombination events to achieve synapsis (Loidl et al.
1994; Weiner and Kleckner 1994), whereas C. elegans
uses cis-acting “pairing centers” for this purpose (Mc-
Kim et al. 1993; Villeneuve 1994). Additional support
for the hypothesis of separate “pairing” and “disjunc-
tion” recombinational pathways with only the second
subject to interference comes from other model organ-
isms. Drosophila has cis-acting pairing centers (Hawley
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1980), seems not to need double-strand–break repair
to establish chromosome synapsis (Dernburg et al.
1998), shows strong interference (Foss et al. 1993;
Zhao et al. 1995b), and seems to have only one recom-
binational pathway (Copenhaver et al. 2002). Statis-
tical evidence supports the two-pathway hypothesis in
Arabidopsis thaliana (Copenhaver et al. 2002) and in
budding yeast (M. German, J. Swanson, A. Malkova,
J. McCusker, E. A. Housworth, H. Foss, F. W. Stahl,
and J. Haber, unpublished data).

Although there is no direct evidence that humans use
recombination to achieve synapsis during meiosis, it does
seem likely, since mice do (Romanienko and Camerini-
Otero 2000). In the present article, we statistically test
the two-pathway hypothesis of recombination in CEPH
data. The statistical test addresses the hypothesis that
some of the crossovers (putatively, those in the pairing
pathway and occurring early in meiosis) occur indepen-
dently of all other crossovers whereas the remaining ones
(putatively, those crossovers in the disjunction pathway
and occurring late in meiosis) are subject to interference.
The statistics can only answer questions about the fit of
the various models to the data. Further molecular experi-
ments are necessary to verify the nature of the cross-
overs.Table 1 summarizes the properties that distinguish
organisms that use recombination functions to achieve
synapsis (group II) from those that do not (group I).

Methods

The present study uses the data analyzed for interference
by Broman and Weber (2000). The data consist of nearly
precise locations of crossovers in 80–92 products of mei-
osis for the maternally and paternally inherited chromo-
somes in eight CEPH families. The crossovers are located
using 18,000 polymorphisms in these families, and only
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Table 1

Two Groups of Eukaryotes

Organism
Telomere
Bouquet Dmc1a

Evidence
of Initiation Interference

Group Ib:
D. melanogaster Noc No Lated x2e

C. elegans Nof No Lateg Strong
N. crassa Noh No Not available x2f

Group IIi:
S. cerevisiae Yesf Yes Early and latej x2 plus randomk

Homo/Mus Yesf Yes Early and latel x2 plus randomm

A. thaliana Yesf Yes Not available x2 plus randomn

NOTE.—Eukaryotes that require recombination functions to achieve meiotic synapsis
(group II) differ from those that do not (group I) by several identified properties. The
early prophase stage called “bouquet,” in which telomeres are clustered, has been sought
but not found in group I. Genes for the strand-invasion protein called “Dmc1” in S.
cerevisiae are lacking in group I. Evidence for meiotic double-strand breaks, which initiate
recombination, is found only in zygotene-pachytene in group I, even though it is evident
earlier in prophase in group II. The frequency distribution of intercrossover distances (if
available) is well described by the counting model for group I, whereas, for group II, the
fit of the counting model to the data is significantly improved by adding a class of
crossovers that are not subject to interference.

a For review, see Copenhaver et al. 2002. See also Takanami et al. 2000, Gerton
and DeRisi 2002, and online databases.

b Recombination functions not required for synapsis (not known for N. crassa)
(for review, see Copenhaver et al. 2002).

c For review, see Zickler and Kleckner 1998; see also Walker and Hawley 2000.
d Page and Hawley 2001; Liu et al. 2002.
e Foss et al. 1993.
f For review, see Zickler and Kleckner 1998.
g Immunofluorescent foci indicative of a peak of double-strand breaks in pachytene,

rather than in leptotene or zygotene (A. Villeneuve, personal communication).
h Singleton 1953. This issue has not been recently addressed in Neurospora.
i Recombination functions required for synapsis (for review, see Copenhaver et

al. 2002).
j Xu et al. 1997.
k M. German, J. Swanson, A. Malkova, J. McCusker, E. A. Housworth, H. Foss,

F. W. Stahl, and J. Haber, unpublished data.
l Moens et al. 2002.
m Present article.
n Copenhaver et al. 2002.

those meiotic products with a maximum distance of !14
cM between informative markers were used. The data
have been carefully groomed to remove genotyping er-
rors (Broman et al. 1998). This grooming is necessary
because the vast majority of apparent tight double recom-
binants are due to genotyping errors. Apparent tight dou-
ble recombinants that involve phase errors, involve both
parental chromosomes at the same locus, or involve tight
triple recombinants indicative of an error in marker order
are almost surely due to genotyping errors. The data were
also groomed using cryptic duplicate markers (i.e., mark-
ers at the same locus and corresponding to the same poly-
morphism but having distinct PCR primers). When there
was a discrepancy between two cryptic duplicate mark-
ers, the typing that did not give a tight double recombi-
nant was retained. Grooming also involved several cycles

of identification of tight double recombinants and marker
reordering. One major statistical prediction of the two-
pathway hypothesis is the presence of rare but true tight
double recombinants. Any true tight double recombinants
disposed of by these latter grooming methods weakens
the evidence supporting the two-pathway hypothesis.
Thus, our analysis of the two-pathway hypothesis using
the extensively groomed CEPH data should be viewed as
conservative.

We extended the analytical methodology of Broman
and Weber (2000) to a mixture model (for details, see
appendix A). The idea is to compute the probability of
seeing a particular pattern of intercrossover distances
for any given level of interference (m) and any given
probability that a randomly chosen crossover is interfer-
ence free (p) rather than subject to interference ( ).1 � p
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Figure 1 Statistical density functions for intercrossover distances. For the two-pathway model, the density for intercrossover distances
is given by and is shown by the solid curve for and2 ∗ ∗ ∗ 2 ∗p f (xFp,0) � 2p(1 � p)[1 � F (xFp,0)][1 � F (xF1 � p,m)] � (1 � p) f (xF1 � p,m) m p 5.5

(the values estimated for maternal chromosome 2). For the interference-only model, the density is given by and is shown∗p p 0.06 f (xF1,m)
by the dashed curve for (the maternal average value under the interference-only model). The dotted curve shows the density for them p 3.2
interference-free model ( ).m p 0

The probability of the data for particular values of m
and p is the product of these probabilities over all the
patterns in the sample. We can then find the m and p
values that maximize the probability of observing the
given data. We also find the value of the interference
parameter, m, that best fits the data under an interfer-
ence-only model. A simple likelihood-ratio test is used
to evaluate whether the two-pathway model fits the data
significantly better than the interference-alone model.
The P values for the likelihood-ratio statistic are calcu-
lated using simulations, since the null hypothesis that
there are no interference-free crossovers ( ) lies onp p 0
the boundary of the parameter space.

Figures 1–3 demonstrate the differences between the
two-pathway and interference-only models. The degree
of differentiation will depend on the percentage of inter-
ference-free crossovers and the values of the interference
parameters used. Figure 1 shows the density distribution
of the intercrossover distances between a random pair of
crossovers for the two-pathway model with p p 0.06
and (corresponding to our estimates for ma-m p 5.5
ternal chromosome 2), for an interference-only model
with (the average level of interference for them p 3.2
maternal chromosomes under an interference-only mod-

el), and for the interference-free ( ) model. How-m p 0
ever, unlike the interference-only and interference-free
distances, the intercrossover distances under the two-
pathway model along one meiotic product do not rep-
resent independent samples from the shown distribu-
tion. Figure 2 shows the cumulative distribution (the
probability of seeing the next crossover !X morgans
away) for small distances. Figure 3 shows the proba-
bility of a tight double recombinant in an interval, given
no flanking marker recombination, for the two-pathway
model, the interference-only model, and the interfer-
ence-free model.

There is evidence for variation in the recombination
rate per Mb between chromosomes. Kaback et al. (1999)
concluded that interference is stronger on longer chro-
mosomes of budding yeast. Another plausible expla-
nation for this relationship is that interference in the
disjunction pathway is the same for all chromosomes
but that each chromosome of a group II organism must
enjoy the same average number of crossovers in the
pairing pathway, independently of length. More specif-
ically, each chromosome must have the same average
number of double-strand breaks in the pairing pathway,
to achieve synapsis, and the same proportion of these



Housworth and Stahl: Crossover Interference in Humans 191

Figure 2 Cumulative probability for the distance to the next crossover. The cumulative distribution functions for the densities in figure 1 are
shown for the two-pathway model with and (solid line), for the interference-only model with (dashed line), and forp p 0.06 m p 5.5 m p 3.2
the interference-free model (dotted line).

will have crossover resolutions. With a recombination
rate, a, of disjunction crossovers per unit of physical
distance and a fixed average amount of pairing-pathway
crossing-over, b, per chromosome, the mathematical
model for the estimation of the genetic distance X, in
morgans, from the physical distance L, in Mbp, would
be . Thus, the proportion, p, of crossoversX p aL � b
that are in the pairing pathway on any one chromosome
is predicted to be , or inversely pro-b/(aL � b) p b/X
portional to the genetic length of the chromosome. The
regression of genetic length on physical length for ma-
ternal and paternal human chromosomes supports this
alternative explanation (see fig. 4). This demonstration
allows us to pool the data from all the chromosomes,
obtaining greater statistical power for testing the two-
pathway hypothesis. We then test whether the pooled
data fit the two-pathway hypothesis with the proportion
of pairing-pathway crossovers inversely proportional to
the genetic length of the chromosome better than the
interference-only model with a single interference pa-
rameter. We also consider whether a model that includes
separate interference parameters for each chromosome
fits the data substantially better than the two-pathway
hypothesis.

The interference parameter, m, is the number of

noncrossover resolutions (simple gene conversions)
required in the repair of double-strand breaks be-
tween pairs of crossover resolutions. If A is the rate
of double-strand breaks in the disjunction pathway
per Mb, then a p A/(m � 1). Thus, our proposed
model, X p aL � b, alone is not enough to provide
an estimate of the interference level, m, even though
it does provide an estimate of the proportion of inter-
ference-free crossovers, p, for each chromosome.

Results

Table 2 contains the results for the chromosomes an-
alyzed individually. The significance of the two-path-
way model for any one chromosome is often based on
only one meiotic product whose recombination pattern
would be highly unlikely in the interference-only mod-
el. In contrast, simulations show that, for a data set of
92 products of meiosis, a chromosome of length 1 mor-
gan, and two crossover pathways with parameters
p p 0.08 and m p 6, we would estimate p to be 0
roughly one-fourth of the time. Thus, we lack the sta-
tistical power to adequately assess the two-pathway
hypothesis on the individual chromosomes.
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Figure 3 Probability of a double crossover in an interval, given no marker recombination—for the two-pathway model with p p 0.06
and (solid line), for the interference-only model with (dashed line), and for the interference-free model (dotted line).m p 5.5 m p 3.2

When the maternal chromosomes are pooled and the
proportion of pairing, interference-free crossovers is mod-
eled as , the two-pathway hypothesis is strong-p p b/X
ly supported ( ; ; testm p 5.7 � 0.5 b p 0.088 � 0.017
statistic 64.8; ). If we completely throw out theP ! .01
top 9–13 meiotic products that have the greatest like-
lihood ratio in support of the two-pathway hypothesis
(and that involve relatively tight double recombinants),
the remaining data still strongly support the two-path-
way hypothesis over the interference-only model. For
paternal chromosomes, the combined data also strongly
support the two-pathway hypothesis ( ;m p 5.0 � 0.5

; test statistic 22.2; ). How-b p 0.030 � 0.12 P ! .01
ever, the strong statistical support for the two-pathway
hypothesis in paternal chromosomes comes from three
meiotic products whose recombination patterns, involv-
ing relatively tight double recombinants, are much more
likely under the two-pathway hypothesis than under an
interference-only model. Since it is not reasonable to
throw out only data that support the two-pathway hy-
pothesis, we calculated a trimmed sum for which we
threw out the top 5% of the data that best support the
two-pathway hypothesis and also threw out the top 5%
of the data that best support the interference-only model.
The remaining data strongly support the two-pathway
hypothesis.

Furthermore, consideration of the likelihood values
under the two-pathway hypothesis and under a model
using separate interference parameters for each chro-
mosome clearly supports the two-pathway model. For
the data from maternal chromosomes, the log likeli-
hood value for the two-pathway hypothesis is �3,153,
whereas, for the model using separate interference pa-
rameters for each chromosome, the value is �3,152.
The difference is trivial, and the Akaike information
criterion (AIC) for model selection would clearly in-
dicate that the two-pathway model should be used,
owing to its simplicity. For paternally inherited chro-
mosomes, the values are �1,789 and �1,787, and the
two-pathway hypothesis would again clearly be sup-
ported under the AIC.

For the individual chromosome analyses, we did not
calculate SEs or CIs for our parameter estimates. Such
SEs and CIs are largely meaningless if the data have been
excessively groomed, since, in that case, our estimates of
the proportion of interference-free crossovers, p, would
be downwardly biased. Moreover, whereas the average
distance between markers is ∼0.5 cM, the maximum dis-
tance between informative markers for any one product
of meiosis can be as great as 13.9 cM in the data that
we used for the present analysis. Our analysis has not
included the possibility that tight double recombinants
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Figure 4 Model for recombination rates in humans. The least-squares regression line for the estimation of genetic length from the physical
lengths of the maternal (circles) ( ) and paternal (crosses) ( ) chromosomes. The maternal analysisX p 0.0125L � 0.241 X p 0.0070L � 0.163
includes the X chromosome, whereas the paternal analysis includes only the autosomes.

exist but are unobserved in these intervals (fig. 3). Fur-
thermore, when there is a significant proportion of inter-
ference-free crossovers in the pairing pathway, the estima-
tor for the interference parameter for individual chromo-
somes on the basis of 80–92 meiotic products is notice-
ably skewed, and, thus, the SE does not adequately reflect
our uncertainty in the estimate. Simulations to determine
these CIs require large amounts of computer time, be-
cause the mixture-model analysis of any one data set is
computationally intensive. The important conclusion of
this work is simply the strong statistical support for two
recombinational pathways, only one of which involves
interference.

Discussion

Our estimates of b values based on the intercepts of
the regressions of the genetic length on the physical
length for the maternal and paternal chromosomes ex-
ceed our estimates based on maximum-likelihood esti-
mation from fitting the model to the data. If we view
the genetic lengths as being subject to random mea-
surement error but the physical lengths of the chromo-
somes as practically fixed, it is appropriate to consider
CIs for the intercept based on the regression of genetic

lengths on the physical lengths. For the regression of
the maternally and paternally inherited chromosomes,
the 95% CIs for the intercept are (�0.002, 0.485) and
(0.018, 0.308), respectively. Our maximum-likelihood
estimates for b are within these intervals. Furthermore,
these interval estimates for the intercept share consid-
erable overlap, which suggests that the differences in
maternal- and paternal-chromosomal genetic lengths
are largely due to the very different estimates of the
rate of interference-associated crossovers per megabase,
a, in males and females.

The possibility that there are two recombinational
pathways, only one of which is subject to interference,
has several important implications for genetic studies.
One implication is for gene-mapping algorithms. Sev-
eral authors have demonstrated that the use of models
of interference in gene-mapping methods increases the
power of those methods, so that fewer genotypes need
be scored to accurately order and map genes (Goldgar
and Fain 1988; Goldgar et al. 1989; Weeks et al. 1993;
Goldstein et al. 1995; Lin and Speed 1999). When the
level of interference is assumed to be slightly different
from the true interference level used to generate the
data, the error rate for these improved mapping meth-
ods increases only minimally (Goldstein et al. 1995;
Lin and Speed 1999). However, if some crossovers are



194 Am. J. Hum. Genet. 73:188–197, 2003

Table 2

Separate Chromosome Analyses

CHROMOSOME

RESULTS FOR FEMALES RESULTS FOR MALES

ma p Testb

Length
(cM) ma p Testb

Length
(cM)

1 4.5 0 0 345 3.4 0 0 188
2 5.5 .06 8.5*** 322 8.3 .03 16.1*** 194
3 5.0 .07 2.52** 268 5.4 0 0 169
4 8.1 .09 2.89** 257 7.5 .03 4.70** 151
5 5.7 .03 8.76*** 243 5.1 .06 4.18** 129
6 4.0 .06 1.06* 246 7.3 0 0 119
7 6.9 0 0 224 2.9 0 0 117
8 1.2 0 0 223 6.1 .03 .62 (NS) 104
9 � .06 14.1*** 185 4.3 .06 3.02** 118
10 5.4 .06 3.30*** 206 3.3 0 0 129
11 4.6 0 0 179 1.9 0 0 107
12 5.7 0 0 209 5.0 .03 1.06* 119
13 6.8 .04 2.46* 115 2.8 0 0 76
14 7.9 0 0 147 4.3 0 0 101
15 4.8 0 0 132 7.1 .04 1.91* 78
16 5.5 .08 4.75** 164 9.1 0 0 84
17 5.2 .03 1.40* 147 7.4 0 0 79
18 8.7 .07 5.08** 155 4.7 0 0 86
19 6.9 0 0 106 4.7 0 0 76
20 � .21 4.43** 118 2.0 0 0 59
21 3.3 0 0 59 � 0 0 39
22 2.6 0 0 53 1.9 0 0 28
23 6.0 0 0 177

a The number of simple gene conversions between crossovers. The interference parameter,
m, is estimated as a continuous parameter in the gamma distribution modeling intercrossover
distances and thus is not restricted to be an integer.

b Significance (if comparison is to be made) is approximate and is based on simulations.
NS p not significant ( ).P 1 .10

* .P ! .10
** .P ! .05
*** .P ! .01

not subject to interference, then the error rate of meth-
ods when a fixed and substantial level of interference
is assumed will increase to unacceptable levels, because
interference-only models essentially rule out all pos-
sibility of tight double recombinants (figs. 1 and 2). A
second implication is for the removal of genotyping
errors. Under the two-pathway hypothesis, the only
way to remove isolated nonobvious genotyping errors
(those not involving phase errors, tight triple recombi-
nants, or double tight recombinants on both maternal
and paternal chromosomes at the same locus) is by
biologically verifying the genotype, because tight dou-
ble recombinants are expected to happen occasionally
by chance. A third implication is for following the
transmission of a mutation through a pedigree. The
transmission of tight flanking markers is less of a guar-
antee of the transmission of the mutation under the
two-pathway model than under the interference-only

model, owing to the increased chance that a tight dou-
ble recombinant may occur in the interval under scru-
tiny (fig. 3). We are pursuing the molecular verification
of our model’s predictions in yeast.
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Appendix A

Mathematical Details

The methodology for calculating the probability of a given set of intercrossover distances along a single product
of meiosis involves extending the methodology of Broman and Weber (2000).

Interference-Free and Interference-Only Models

Consider what happens along the tetrad. Let be the intercrossover distances along the tetrad, wherex ,x , … ,x0 1 n

is the distance from the “start” of the tetrad to the first crossover and is the distance from the last crossoverx x0 n

to the “end” of the tetrad. If there were no interference, the mathematical model for the probability density function
for these distances would be the exponential distribution, , where l is the rate of the Poisson-distributed�lxe
crossovers (the double-strand breaks are assumed to follow a Poisson distribution, and, if the crossover and
noncrossover resolutions are independent of each other [as they are in the interference-free model], then the cross-
overs are also Poisson distributed). If there is interference, then the mathematical model for the intercrossover
distances is the model for the sum exponential interrecombination distances, where m noncrossover reso-m � 1
lutions (simple gene conversions) are required between pairs of crossovers. This distribution is a scaled version of
the x2 distribution, so the counting model is also often called “the x2 model.” The exponential distribution and
the x2 distribution are both members of the family of gamma distributions. The density for the gamma distribution
with a given rate l and shape n will be denoted throughout as

nl
n�1 �lxf(xFl,n) p x e .

G(n)

The Two-Pathway (Mixture) Model

Assume that we have a mixture of independent types of crossovers. Suppose that a type occurs with probability
q and interference parameter l (the number of obligate simple gene conversions between any two crossovers of this
type). The amount of crossing-over on a tetrad is twice that on a single product, so the density for the intercrossover
distances for this type is given by a gamma distribution with rate and shape : .2q(l � 1) l � 1 f[xF2q(l � 1),l � 1]

The distribution of the length to the first crossover is determined by the requirement of stationarity (i.e., the
start of the chromosome plays no special role in determining where the first crossover will be, and, starting from
the other end, we would get the same probability for the observed collection of distances). Under this assump-
tion, the distribution for the distance to the first crossover is , where F isg(xFq,l) p 2q[1 � F(xF2q(l � 1),l � 1)]
the cumulative distribution function of the gamma density function f.

The distribution of the length from the last crossover to the end of the tetrad is calculated as a right-
censored distribution (i.e., the probability of not seeing a crossover in an interval of that length) and is just

.1 � F[xF2q(l � 1),l � 1]
If we had tetrad data, then we could find the likelihood of the observed intercrossover distances, ,x ,x , … ,x0 1 n

under the two-pathway hypothesis by considering each of the possible divisions of n crossovers into the twon2
types (pairing and disjunction), multiplying the probabilities of the intercrossover distances for each type calculated
separately, and summing over all the possible divisions. For analyses involving single meiotic products, we haven2
a further complication. We assume no chromatid interference (a reasonable assumption; see Zhao et al. 1995a).
In that case, each chromatid has a 50:50 chance of getting each crossover, independently of which ones get the
neighboring crossovers. Thus, the crossovers on the tetrad get thinned, each with probability 1/2, to form the
crossover distribution on the product that we observe. Because the sum of gamma-distributed random variables
each with the same rate is gamma-distributed with that same rate but with its shape parameter equal to the sum
of the shape parameters of its components, we see that the density for the intercrossover distances is

� f[xF2q(l � 1),k(l � 1)]∗f (xFq,l) p .� k2kp1
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This density is for the distances between observed crossovers of a given type. We still have to handle the ends.
On the “starting” end, we have probability 1/2 of getting the first crossover on the tetrad, which follows the
distribution required for stationarity. If the product failed to get the first crossover on the tetrad, then the additional
distances are intercrossover distances modeled via the gamma family. Using properties of the convolutions involved,
we obtain the density for the distance from the start to the first crossover:

�1 1∗ ∗g (xFq,l) p g(xFq,l) � g(yFq,l)f[x � yF2q(l � 1),k(l � 1)]dy p q[1 � F (xFq,l)] ,� �k�12 2kp1

where is the cumulative distribution function for . The distribution for the intercrossover distance from the∗ ∗F f
last crossover to the end of the chromosome is obtained as a right-censored observation of the intercrossover
distances along a single meiotic product. Thus, the distribution is just .∗[1 � F (xFq,l)]

Finally, the probability that a product has no crossovers of a given type is a right-censored observation from the
density of the distribution for the distance to the first crossover. Thus, the probability of seeing no crossover on a
chromosome of length L is given by , where is the cumulative distribution function for .∗ ∗ ∗[1 � G (LFq,l)] G g

Data Analysis

If the intercrossover distances, including the ends, for a single product of meiosis are , wherex ,x , … ,x0 1 n

is the length of the chromosome, then we consider each of the possible ways ton…x � x � x � x p L 20 1 2 n

assign the crossovers to the pairing ( ) and disjunction ( ) types. Given such an as-q p p,l p 0 q p 1 � p,l p m
signment, we form two sets of intercrossover distances, and , for the pairing and disjunctiony ,y , … ,y z ,z , … ,z0 1 j 0 1 k

types of crossovers, respectively. Note that will equal , because of the division into two types, andj � k n � 1
that .… …y � y � y � y p z � z � z � z p L0 1 2 j 0 1 2 k

We calculate the probability of the intercrossover distances for the two types separately:

∗1 � G (LFp,0) if j p 0
∗ ∗Pr (y ,y , … ,yFp,0) p g (y Fp,0)[1 � F (y Fp,0)] if j p 10 1 j 0 1

j�1{ ∗ ∗ ∗[ ]g (y Fp,0) f (yFp,0) [1 � F (yFp,0)] otherwise�0 i jip1

and

∗1 � G (LF1 � p,m) if k p 0
∗ ∗Pr (z ,z , … ,z F1 � p,m) p g (z F1 � p,m)[1 � F (z F1 � p,m)] if k p 1 .0 1 k 0 1

k�1{ ∗ ∗ ∗[ ]g (z F1 � p,m) f (z F1 � p,m) [1 � F (z F1 � p,m)] otherwise�0 i kip1

We sum these probabilities over all the possible divisions, to obtain the probability of the observed pattern undern2
the two-pathway hypothesis:

Pr (x ,x , … ,x Fp,m) p Pr (y ,y , … ,yFp,0) Pr (z ,z , … ,z F1 � p,m) ,�0 1 n 0 1 j 0 1 k
(y ,y ,…,y ),(z ,z ,…,z )0 1 j 0 1 k

where the sum is taken over all the possible divisions of the n crossovers into two types.n2
The likelihood of the model parameters given a data set that consists of the intercrossover distances for a collection

of meiotic products is the product of the probabilities of the individual meiotic patterns:

Likelihood(p,mFdata) p Pr [x (i),x (i), … ,x (i)Fp,m] .� 0 1 ni
i

The likelihood is a function of the parameters m and p and can be maximized to find estimates for m and p. This
optimization takes place over a two-dimensional parameter space. We use optimization algorithms that avoid
calculating the derivative (gradient) of this likelihood function. (We use the golden-section algorithm to calcu-
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late the optimum along any line, and we use a version of Powell’s method to determine the directions of the
lines [Press et al. 1986].)
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