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Recent Advances in Human Quantitative-Trait–Locus Mapping:
Comparison of Methods for Selected Sibling Pairs
Karen T.Cuenco,1 Jin P. Szatkiewicz,2 and Eleanor Feingold1

Departments of 1Human Genetics and 2Biostatistics, University of Pittsburgh, Pittsburgh

During the past few years, there has been a great deal of new work on methods for mapping quantitative-trait loci
by use of sibling pairs and sibships. There are several new methods based on linear regression, as well as several
more that are based on score statistics. In theory, most of the new methods should be relatively robust to violations
of distributional assumptions and to selected sampling, but, in practice, there has been little evaluation of how the
methods perform on selected samples. We survey most of the new regression-based statistics and score statistics
and propose a few minor variations on the score statistics. We use simulation to evaluate the type I error and the
power of all of the statistics, considering (a) population samples of sibling pairs and (b) sibling pairs ascertained
on the basis of at least one sibling with a trait value in the top 10% of the distribution. Most of the statistics have
correct type I error for selected samples. The statistics proposed by Xu et al. and by Sham and Purcell are generally
the most powerful, along with one of our score statistic variants. Even among the methods that are most powerful
for “nice” data, some are more robust than others to non-Gaussian trait models and/or misspecified trait parameters.

Introduction

As recently as a few years ago, there were only two
primary statistical methods for QTL linkage analysis us-
ing sibships: Haseman-Elston regression (Haseman and
Elston 1972) and maximum-likelihood variance-com-
ponents analysis (e.g., see Amos 1994; Almasy and Blan-
gero 1998). The Haseman-Elston method, on the one
hand, was derived under the assumption of a population
sample of pairs with normally distributed trait values,
but the regression framework makes it quite robust to
selected sampling and to non-Gaussian trait distribu-
tions (for extended discussion, see Feingold 2002). Var-
iance-components analysis, on the other hand, has much
higher power than Haseman-Elston regression under
ideal conditions but is not very robust to selected sam-
pling and deviations from distributional assumptions
(for discussion, see Feingold 2001). Recently, there has
been an explosion of new methods that aim to equal the
power of variance-components analysis while retaining
the robustness of Haseman-Elston regression. One set
of new methods are the regression-based statistics, es-
sentially improvements on the original Haseman-Elston
method. New regression-based methods have been de-
veloped by Drigalenko (1998), Elston et al. (2000), Xu
et al. (2000), Forrest (2001), Visscher and Hopper
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(2001), Sham and Purcell (2001), and Sham et al. (2002).
The other set of new methods are the score statistics,
based on the derivative of the usual variance-compo-
nents likelihood. The three primary articles on these
methods were authored by Tang and Siegmund (2001),
Putter et al. (2002), and Wang and Huang (2002a), with
extensions by Tang and Siegmund (2002), Wang (2002),
and Wang and Huang (2002b). The new score statistics
are more computationally convenient than variance
components, and they can be constructed in such a way
as to be robust as well.

Theoretical reviews of most of the new regression-
based and score-based statistics have appeared in arti-
cles by Feingold (2001, 2002). A number of other ar-
ticles have compared limited subsets of these methods
by using theory or simulations—including articles by
Allison et al. (2000), Palmer et al. (2000), Goldstein et
al. (2001), Visscher and Hopper (2001), Zhang et al.
(2001), Ghosh and Reich (2002), and Zhang et al.
(2002). Despite the fact that most of the new statistics
should, in theory, be appropriate for selected samples,
there has been very little actual testing on such samples.
In the present article and its companion (Szatkiewicz et
al. 2003 [in this issue]), we undertake a comprehensive
simulation-based comparison of the new statistics. We
limit ourselves to sibling pairs, for simplicity, but many
of the general results are applicable to larger sibships
as well. We perform simulation studies using both pop-
ulation and selected samples and estimate the type I
error and the power of each statistic. We consider 11
different trait distributions, some of them substantially
non-Gaussian, and we also consider robustness of the
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Table 1

Genetic Models

PARAMETER

VALUE FOR MODEL

1 2 3 4 5 6 7 8 9 1′ 2′

Model-defining:
Type of inheritancea Add Dom Rec Add Dom Rec Add Dom Rec Add Dom
Locus heritability .2 .2 .2 .2 .2 .2 .2 .2 .2 NA NA
Allele frequency .1 .1 .1 .5 .5 .5 .9 .9 .9 .1 .1
Trait means �1, 0, 1 0, 1, 1 0, 0, 1 �1, 0, 1 0, 1, 1 0, 0, 1 �1, 0, 1 0, 1, 1 0, 0, 1 �1.6, 0, 1.6 0, 1.6, 1.6
Environmental SD .849 .785 .199 1.414 .866 .866 .849 .199 .785 NA NA
Environmental correlation .25 .25 .25 .25 .25 .25 .25 .25 .25 NA NA

Calculated:
Overall mean �.8 .19 .01 .0 .75 .25 .8 .99 .81 �1.32 .295
Overall SD .949 .877 .222 1.581 .968 .968 .949 .222 .877 2.047 1.393
Skewness .168 .140 .880 .0971 �.0991 .102 �.168 �.880 �.140 �1.587 1.504
Kurtosis .101 .0240 3.802 .0556 �.0714 �.031 .101 3.802 .0240 5.268 9.406
Overall correlation .3 .3 .3 .3 .3 .3 .3 .3 .3 .25 .26

NOTE.—NA p not applicable.
a Add p additive; Dom p dominant; Rec p recessive.

methods to misspecification of trait parameters. Our
selected samples in the present article consist of sibling
pairs ascertained on the basis of at least one sibling in
the top 10% of the trait distribution. We defer consid-
eration of discordant sibling pairs to the companion
article (Szatkiewicz et al. 2003 [in this issue]), because
of important statistical differences between samples as-
certained on the basis of a single individual and samples
ascertained on the basis of more than one individual.

Methods

Statistics Considered

Here, we briefly define the 12 QTL-mapping statistics
that we consider in the present article. More detailed
description of the statistics can be found in the reviews
by Feingold (2001, 2002), as well as in the original ar-
ticles cited below.

Some notation and definitions are common to all of
the statistics. Let be the estimated mean identity-by-pi

descent (IBD) sharing for sibling pair i; takes the valuepi

0, , or 1 for a fully informative pair but can take in-1
2

termediate values if multipoint estimates are used. Let
be the squared trait difference for sib-2Y p (x � x )iD i1 i2

ling pair i. Analogously, let Y p [(x � m) � (x �iS i1 i2

be the mean-corrected squared trait sum. The re-2m)]
gression of on produces a slope estimate. We defineY piD i

negative one times this slope estimate as and letˆ ˆb bD S

be the slope estimate from a regression of on . UnderY piS i

population sampling, and are estimates of the sameˆ ˆb bD S

parameter (Drigalenko 1998). This slope parameter
should be 0 under the null hypothesis of no linkage and
should be positive (as we have defined the sign) under
the alternative hypothesis. The first eight methods de-

scribed below are based on different methods of com-
bining the information from these two regressions.

Original Haseman-Elston (ORIGINAL.HE).—The
method of Haseman and Elston (1972) simply regres-
ses on and estimates the slope, which is equiva-Y piD i

lent to � . A negative estimate suggests that the traitb̂D

is linked to the locus marker. A one-sided t test is used
to test for any significant departure from 0.

Trait-sum regression (TRAIT.SUM).—For comparison
to the other statistics, we include the one-sided t test
based on the regression of on , although we do notY piS i

expect this statistic to be particularly powerful.
Trait-product regression (TRAIT.PRODUCT).—Driga-

lenko (1998) suggested doing the two regressions de-
scribed above and averaging the two slope estimates—or,
equivalently, doing a single regression with the mean-cor-
rected trait product, , as the dependent(X � m)(X � m)i1 i2

variable. This method was further developed by Elston et
al. (2000). We consider the one-sided t test based on the
trait-product regression.

Forrest’s method (FORREST).—Rather than a simple
average of the two regression slope estimates, it is more
statistically desirable to use an average that is weighted
by the variances of the estimates. Forrest (2001) sug-
gested a test based on the weighted average

2 2j jD Sˆ ˆ ˆb p b � b ,S D2 2 2 2j � j j � jD S D S

where and are the variances of and . These2 2 ˆ ˆj j b bS D D S

weights are optimal under the assumption that the co-
variance, , of is 0, which is true for a popu-2 ˆ ˆj (b ,b )DS D S

lation sample from a normal distribution but which is
not necessarily true otherwise (Feingold 2002). FOR-
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Figure 1 Scatterplots of population and selected samples from models 1, 2, and 1′

REST estimates all the parameters simultaneously, using
iterative least squares.

Visscher and Hopper’s method (V&H).—Visscher and
Hopper (2001) proposed a test based on the same
weighted slope estimate as Forrest (2001) but with the
variances, and , estimated separately, by performing2 2j jS D

the two regressions separately.
Xu et al.’s method (XU).—Xu et al. (2000) proposed

a method very similar to that of Forrest (2001) and
Visscher and Hopper (2001), but their weighted average
slope allows for a nonzero covariance between andb̂D

, using the formulab̂S

2 2 2 2j � j j � jS DS D DSˆ ˆ ˆb p b � b .D S2 2 2 2 2 2j � j � 2j j � j � 2jD S DS D S DS

Xu et al. estimate the parameters by performing the two
regressions separately, similar to V&H. The covariance
can be estimated by combining the residuals of the two
regressions.

Sham and Purcell’s method (S&P1).—The variances
and can actually be calculated analytically as func-2 2j jD S

tions of the sibling trait correlation, r, under traditional
QTL models. Sham and Purcell (2001) proposed taking
advantage of this, rather than estimating the variances
from data as in FORREST, V&H, and XU. The primary

method outlined by Sham and Purcell (2001) regresses
the dependent variable

Y YiS iD�2 2(1 � r) (1 � r)

on , where the trait values and are standardizedp x xi i1 i2

to have a variance of 1 before calculation of andYiS

.YiD

Sham and Purcell’s robust method (S&P2).—Sham
and Purcell also suggested a variant of their method,
regressing

Y Y 4riS iD� �2 2 2(1 � r) (1 � r) 1 � r

on , with the intercept fixed at 0. This variant1p �i 2

should be more robust to selected sampling. The t sta-
tistic for the test of the regression slope is

1� A p �i i( )2
.

2 21 11 2� ( )� A � p � � � A p �i i i in ( ) ( )[ ] [ ]{ }2 2

* * *



866 Am. J. Hum. Genet. 73:863–873, 2003

Table 2

SD and Type I Error for Population Samples

STATISTIC

SD AND TYPE I ERROR UNDER MODEL

1 2 3 1′ 2′

SD
Error
(%) SD

Error
(%) SD

Error
(%) SD

Error
(%) SD

Error
(%)

Group I:
ORIGINAL.HE 1.01 1.17 1.01 1.07 .99 1.00 1.00 1.02 1.00 1.12
TRAIT.SUM 1.01 1.16 .99 1.03 .99 .94 1.01 1.05 1.00 .84
TRAIT.PRODUCT 1.02 1.16 1.00 1.00 .99 .88 1.00 1.03 1.00 .86

Group II:
XU 1.01 1.12 1.01 1.03 .99 .89 1.00 .89 .99 .94
V&H 1.01 1.12 1.01 .99 .85 .26 .72 .12 .63 .01
FORREST 1.01 1.12 1.01 1.02 .86 .34 .75 .15 .69 .04

Group III:
S&P1 1.01 1.13 1.01 1.05 .99 .94 1.00 1.01 1.00 .93
S&P2 1.02 1.12 1.01 1.04 .99 .93 1.00 1.06 1.00 .93
SCORE1 .96 .70 1.01 .76 1.29 3.53 1.10 1.87 3.26 23.00
SCORE2 .94 .65 1.01 .63 .92 .58 .92 .55 .93 .50
SCORE3 1.01 1.10 1.01 1.00 .99 .92 .99 1.06 1.00 .90
SCORE4 1.01 1.12 1.01 1.03 .99 .94 1.00 .99 .98 .84

The final four methods that we consider are score
statistics based on the usual variance-components like-
lihood. Score statistics were proposed by Tang and Sieg-
mund (2001), Wang and Huang (2002a), and Putter et
al. (2002). The score statistics proposed in their articles
are very similar to each other but have minor differences
in how they parameterize the likelihood and how they
alter the statistic to make it robust. Instead of consid-
ering precisely the statistics in the aforementioned arti-
cles, we take the Tang and Siegmund (2001) statistic as
our starting point and propose four variations on pos-
sible ways to make it robust (or not). This allows us to
draw careful conclusions about what kind of “robusti-
fication” is most desirable.

Asymptotic score statistic (SCORE1).—Tang and
Siegmund (2001) derived a score statistic of the form

1�A p �( )i i 2
i ,

21�r�2n 2 2(1�r )

where is the same function as defined above for S&P2.Ai

The denominator of this statistic is based on asymptot-
ic likelihood theory, so this version of the score statis-
tic should not be robust to selected sampling or
nonnormality.

Score statistic with partially empirical variance
(SCORE2).—Tang and Siegmund (2001) proposed

making their statistic robust by using the empirical var-
iance of in the denominator—that is,Ai

1�A p �( )i i 2
i .

1 2��Ai�2 2 i

The factor of is the SD of p when a perfectly infor-1
�2 2

mative marker is assumed. Thus, this version of the sta-
tistic should be robust to selected sampling but should
yield a conservative test when there is imperfect IBD
information.

Score statistic with fully empirical variance
(SCORE3).—We propose that the best version of the
score statistic should have the same form as SCORE2
but with the empirical SD of p in place of the factor of

:1
�2 2

1� A p �( )i i 2

.
21 12� ( )� A � p �( )i in 2

This version should have correct type I error even with
imperfect IBD information. A slightly different alter-
native would be to replace the in the denominator of1

2

SCORE3 with , which would give very slightly higherp̄

type I error and slightly higher power than SCORE3 as
we have defined it. Note that the S&P2 statistic, de-
scribed above, is very similar to SCORE3 but has a cross-
product term subtracted from the denominator. Again,
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Table 3

SD and Type I Error for Selected Samples

STATISTIC

SD AND TYPE I ERROR UNDER MODEL

1 2 3 1′ 2′

SD
Error
(%) SD

Error
(%) SD

Error
(%) SD

Error
(%) SD

Error
(%)

Group I:
ORIGINAL.HE 1.00 1.00 1.00 .90 1.01 1.18 1.01 .97 1.00 .75
TRAIT.SUM 1.00 .89 1.00 1.10 .99 .79 1.02 1.00 1.00 1.03
TRAIT.PRODUCT 1.00 .90 1.01 1.00 .99 .84 1.02 1.00 1.00 .98

Group II:
XU 1.00 1.01 1.00 .97 1.00 1.05 1.01 .93 .99 .98
V&H 1.11 1.66 1.05 1.20 .90 .55 .87 .35 .75 .08
FORREST 1.13 1.83 1.15 2.10 .91 .60 .91 .41 .79 .13

Group III:
S&P1 1.00 .94 1.00 1.00 1.00 1.03 1.01 .93 .99 .84
S&P2 1.00 1.04 1.01 1.20 1.00 1.05 1.02 1.10 .99 .85
SCORE1 1.62 7.21 1.90 11.00 2.75 19.48 3.25 24.00 7.63 37.54
SCORE2 .93 .64 .93 .76 .92 .68 .94 .63 .92 .50
SCORE3 1.00 .98 1.00 1.20 .99 1.01 1.01 1.10 .99 .80
SCORE4 .99 .87 .86 .34 .98 .88 .83 .17 .93 .48

that should yield a statistic with slightly higher type I
error and power than SCORE3.

* * *

Score statistic with empirical mean and variance
(SCORE4).—Both Wang and Huang (2002a) and Putter
et al. (2002) proposed using in place of in both the1p̄ 2

numerator and the denominator of the score statistic.
When applied to our parameterization of the score sta-
tistic, that yields the expression

( )¯� A p � pi i

.
1 2 2� ( ) ( )¯� A � p � pi in

We emphasize that SCORE4 is not identical to either
Wang and Huang’s or Putter et al.’s statistics. Our
SCORE4 should behave very similarly to SCORE3 in
many cases, although it could have incorrect type I error
in some situations, because correlations between andp̄

the values are not accounted for in the denominator.pi

That is, the denominator of SCORE4 is not actually the
correct SD of the numerator—there are missing covar-
iance terms. It would also be possible to consider a score
statistic that incorporates the covariance terms, but we
did not include such a statistic in our study.

For the following discussion, it is useful to classify our
12 statistics into three groups. The group I statistics
(ORIGINAL.HE, TRAIT.SUM, and TRAIT.PRODUCT)
use simple binary weights of the two regression slopes.
These methods are all expected to have suboptimal power
because of suboptimal weighting. The group II statistics
(FORREST, V&H, and XU) use empirical variances to

weight the two slopes. The group III statistics (S&P1,
S&P2, SCORE1, SCORE2, SCORE3, and SCORE4) use
the sibling trait correlation to achieve weighted statistics
without calculation of empirical variance estimates.

All of the statistics that we consider, except ORIGI-
NAL.HE, use an estimate of the trait mean, m. Group
III statistics additionally use estimates of the trait vari-
ance, , and sibling correlation, r. Sensitivity to these2j

estimates may have an important effect on power.

Simulations

We studied the type I error and the power of each
statistic under 11 trait models, which are described in
table 1. All of the models are diallelic. Models 1–9 are
standard mixture-of-normals models; the trait value is
equal to the genotype mean plus a normally distributed
“environmental” variance. There is an additional sibling
correlation of 0.25 in each model, to account for envi-
ronmental and polygenic components. The means and
the variances were chosen to give each model a locus
heritability of 0.2. Note the symmetry between certain
pairs of models—between 1 and 7, between 2 and 9,
between 3 and 8, and between 5 and 6. This symmetry
means that type I error and power within each pair are
identical for population samples, though not for selected
samples. Models 1′ and 2′ were generated by simulating
data under models 1 and 2, respectively, and then taking
the signed square, , of each trait value. This yieldsx FxF
overall trait distributions that are somewhat skewed and
have high kurtosis. Models 3 and 8 also have skewness
and kurtosis in the same range as models 1′ and 2′.

Under each of the models, we simulated data for nu-
clear families with two children, and we ascertained fam-
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Table 4

Power for Population Samples

STATISTIC

POWER UNDER MODEL

1 2 3 4 5 6 7 8 9 1′ 2′

Group I:
ORIGINAL.HE .61 .60 .23 .59 .57 .57 .58 .22 .56 .09 .15
TRAIT.SUM .15 .19 .07 .19 .19 .20 .16 .07 .16 .03 .04
TRAIT.PRODUCT .53 .55 .27 .54 .55 .57 .53 .25 .51 .15 .36

Group II:
XU .71 .73 .39 .72 .72 .70 .71 .37 .69 .21 .54

Group III:
S&P1 .71 .73 .42 .72 .71 .70 .71 .40 .69 .21 .44
S&P2 .71 .73 .41 .72 .71 .70 .71 .40 .69 .21 .43
SCORE3 .71 .73 .41 .72 .71 .69 .71 .40 .69 .21 .43

Table 5

Power for Selected Samples

STATISTIC

POWER UNDER MODEL

1 2 3 4 5 6 7 8 9 1′ 2′

Group I:
ORIGINAL.HE .84 .82 .72 .58 .33 .75 .29 .04 .28 .39 .23
TRAIT.SUM .61 .66 .24 .35 .15 .55 .10 .01 .12 .17 .18
TRAIT.PRODUCT .85 .87 .76 .57 .31 .80 .23 .03 .23 .70 .62

Group II:
XU .89 .88 .92 .64 .36 .83 .29 .02 .31 .77 .75

Group III:
S&P1 .90 .89 .93 .65 .36 .84 .28 .03 .31 .73 .65
S&P2 .91 .91 .97 .66 .37 .86 .28 .03 .31 .69 .68
SCORE3 .91 .91 .94 .65 .37 .85 .28 .03 .30 .69 .67

ilies by two different methods. The first ascertainment
scheme was simply population sampling—all families
were used. The second scheme selected only those fam-
ilies in which at least one sibling fell in the top 10% of
the trait distribution. We simulated data sets of 1,500
families for the population sampling and 500 families
for the selected sampling. Figure 1 shows examples of
simulated bivariate trait distributions for both sampling
schemes under several of the models. To study type I
error, we used 10,000 data sets, and, to study power,
we used 1,000 data sets. The nominal type I error rate
was set at 0.01. Marker data was simulated using eight
equifrequent alleles, with the marker at recombination
fraction (v) 0 for the power study and at forv p 0.5
the type I error study. We also did power simulations at

for models 1 and 2 only.v p 0.05
As discussed above (see the “Statistics Considered”

subsection), most of the statistics require that some trait
parameters (mean m, variance , and sibling correlation2j

r) be specified. In general, theory suggests that these
should be population parameter values, even for selected
samples. However, if one is using a selected sample, pop-
ulation parameter estimates may not be available. In that
situation, parameter values must be guessed or adopted
from previous studies in other populations. Using mod-

els 1 and 1′ only, we examined the robustness of the
statistics to misspecification of parameters. We varied
one parameter at a time while holding the other two
parameters at the correct population values. Sibling cor-
relation was set at 0.1 and 0.5, trait variance was set at
values ranging from half the true value to twice the true
value, and trait mean was set at the true mean � 1 SD.
We also did a limited number of studies in which two
parameters at a time were misspecified. Finally, we
checked the performance of the statistics when sample
estimates of the parameters are used.

Results

Type I Error

Table 2 shows the SD and type I error of each statistic,
based on the 10,000 simulated data sets of population
samples.Table 3 shows the same information for the se-
lected samples. All statistics had mean 0 for all models
and for all sampling schemes. We show results for mod-
els 1–3, 1′, and 2′ only. Results for models 4–9 were very
qualitatively similar to those for models 1–3. All of the
statistics in these tables were computed with the known
population values of the parameters (trait mean m, var-



Cuenco et al.: QTLs with Selected Sibling Pairs 869

Table 6

Power for Population Samples—Sensitivity Analyses under Model 1

STATISTIC

POWER, ASSUMING

r p .1 r p .5 m p �1.75 m p .15 2j p .45 2j p 1.8
CORRECT POPULATION

PARAMETER VALUES

Group I:
ORIGINAL.HE .61 .61 .61 .61 .61 .61 .61
TRAIT.SUM .15 .15 .04 .05 .15 .15 .15
TRAIT.PRODUCT .53 .53 .15 .17 .53 .53 .53

Group II
XU .71 .71 .65 .63 .71 .71 .71

Group III
S&P1 .63 .69 .49 .47 .71 .71 .71
S&P2 .61 .65 .41 .42 .71 .67 .71
SCORE3 .61 .65 .41 .42 .71 .67 .71

Table 7

Power for Population Samples—Sensitivity Analyses under Model 1′

STATISTIC

POWER, ASSUMING

r p .1 r p .5 m p �3.37 m p .73 2j p 2.095 2j p 8.38
CORRECT POPULATION

PARAMETER VALUES

Group I:
ORIGINAL.HE .09 .09 .09 .09 .09 .09 .09
TRAIT.SUM .03 .03 .04 .02 .03 .03 .03
TRAIT.PRODUCT .15 .15 .09 .05 .15 .15 .15

Group II:
XU .21 .21 .11 .18 .21 .21 .21

Group III:
S&P1 .20 .13 .12 .15 .21 .21 .21
S&P2 .19 .12 .11 .13 .20 .20 .21
SCORE3 .19 .12 .11 .12 .20 .20 .21

iance , and sibling correlation r). The CIs for the es-2j

timated error rates in the tables are on the order of
�0.2% (i.e., an estimated error rate of 1.00% has a
95% CI of ∼0.80%–1.20%). We note first that the type
I error and the SD for SCORE1 and SCORE2 are in-
correct for essentially all models and sampling schemes.
SCORE2 is always conservative (with low type I error)
because of the perfect-IBD assumption; SCORE1 is
highly variable, presumably because the asymptotic-nor-
mality assumption underlying it is inappropriate for
many of these trait distributions. V&H and FORREST
have incorrect type I error for the most non-Gaussian
models (3, 1′, and 2′) under population sampling and
for all models under selected sampling; this is due to the
omission of the covariance term in the weighting. Finally,
SCORE4 has low type I error for some models under
selected sampling, because of the missing covariance in
the denominator of the statistic; the size of the covari-
ance term depends heavily on the values, and, forAi

some models and sampling schemes, it can be quite large.
As predicted, S&P2 and SCORE3 are very similar, with
S&P2 having a slightly higher type I error rate for most
models. We did limited experiments (results not shown)

with a version of SCORE3 that replaces in the de-1
2

nominator with (see the “Methods” section) andp̄

found that it has type I error rates that are just about
identical to those of S&P2.

Power

Table 4 gives the power for all models for the pop-
ulation samples, and table 5 gives the power for the
selected samples. Again, all of the statistics in these tables
were computed with the known population values of the
parameters. To make comparisons simpler, we omitted
from the power tables the statistics that did not have
correct type I error. The number of replicates for the
power study was 1,000, so the 95% CI for a power
estimate of 50% is ∼47%–53%. The general qualitative
results are quite similar for the two sampling schemes.
The group I statistics have lower power than the group
II and group III statistics in almost all cases. This is
attributable to the suboptimal weighting of the sum and
difference regression slopes in the group I statistics. All
of the group II and group III statistics have essentially
identical power, with the exception that XU has notice-
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Table 8

Power for Selected Samples—Sensitivity Analyses under Model 1

STATISTIC

POWER, ASSUMING

r p .1 r p .5 m p �1.75 m p .15 2j p .45 2j p 1.8
CORRECT POPULATION

PARAMETER VALUES

Group I:
ORIGINAL.HE .84 .84 .84 .84 .84 .84 .84
TRAIT.SUM .61 .61 .64 .14 .61 .61 .61
TRAIT.PRODUCT .85 .85 .80 .91 .85 .85 .85

Group II:
XU .89 .89 .79 .78 .89 .89 .89

Group III:
S&P1 .88 .88 .88 .89 .90 .90 .90
S&P2 .83 .87 .63 .85 .91 .90 .91
SCORE3 .82 .87 .62 .85 .91 .89 .91

Table 9

Power for Selected Samples—Sensitivity Analyses under Model 1′

STATISTIC

POWER, ASSUMING

r p .1 r p .5 m p �3.37 m p .73 2j p 2.095 2j p 8.38
CORRECT POPULATION

PARAMETER VALUES

Group I:
ORIGINAL.HE .39 .39 .39 .39 .39 .39 .39
TRAIT.SUM .17 .17 .32 .00 .17 .17 .17
TRAIT.PRODUCT .70 .70 .59 .31 .70 .70 .70

Group II:
XU .77 .77 .70 .27 .77 .77 .77

Group III:
S&P1 .76 .54 .74 .50 .73 .73 .73
S&P2 .63 .58 .21 .52 .73 .58 .69
SCORE3 .63 .57 .21 .52 .72 .58 .69

ably higher power for models 1′ and 2′. We did limited
experiments (results not shown) with a version of
SCORE3 that replaces in the denominator with (see1 p̄2

the “Methods” section) and found, as predicted, that it
has power rates that are just about identical to those of
S&P2. We also did power simulations at forv p 0.05
models 1 and 2 only (results not shown); although the
overall power is lower than at , the relative powerv p 0
of the different statistics is unchanged.

Sensitivity

All of the statistics except ORIGINAL.HE use esti-
mates of the mean (m) parameter. In addition, all of the
group III statistics involve the sibling correlation (r) and
variance ( ) parameters. To assess the robustness of the2j

statistics to misspecification of the trait parameters, we
first tried using the sample parameter values for each
data set, rather than the known population values. The
use of sample parameter values does not change the type
I error (results not shown). For population samples, as
one would expect, the use of sample parameter estimates
also has no effect on power. For selected samples, there
is a drastic reduction in power for all statistics and all

models (results not shown). This is not surprising, since
sample estimates calculated from selected samples are
generally quite far off from the correct population
values.

We next investigated the effect of misspecifying one
parameter at a time. For each run, we set two of the
parameters to the population values and set the third
parameter to an arbitrary “wrong guess” (see the “Meth-
ods” section). We performed these sensitivity studies for
models 1 and 1′ only. Tables 6–9 give the power results
(type I error was not sensitive to parameter misspecifi-
cation for any of the statistics). For each table, we gen-
erated a single set of 1,000 data sets and analyzed them
under different assumed parameter values. Table 6
shows power results for model 1 with population sam-
pling, table 7 shows the results for model 1′ with pop-
ulation sampling, and tables 8 and 9 give the results for
selected sampling.

For the population samples (tables 6 and 7), misspe-
cification of the variance has very little effect. Misspe-
cification of the correlation does reduce power slightly
for the group III statistics. Misspecification of the mean
substantially reduces the power of the group III statistics
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and reduces the power of XU slightly. ORIGINAL.HE,
which does not depend on the mean, has roughly equiv-
alent power to XU when the mean is misspecified for
model 1 but not for model 1′. Overall, XU seems to be
the statistic with the best power in the context of pa-
rameter misspecification.

For the selected samples from model 1 (table 8), mis-
specification of the variance again has very little effect.
Misspecification of the correlation slightly decreases the
power of the group III statistics. Misspecification of the
mean causes moderate decreases in power, and S&P1
seems to be the most resistant to this effect. ORIGI-
NAL.HE and TRAIT.PRODUCT perform just about as
well as the group II and group III statistics do when the
parameters are misspecified. Overall, in table 8, S&P1,
TRAIT.PRODUCT, and ORIGINAL.HE appear to be
the most robust statistics. For selected samples from
model 1′ (table 9), we obtain fairly similar results, and
S&P1 again appears to have the most robust power.
For this model, however, ORIGINAL.HE and TRAIT
.PRODUCT are not as powerful. Note that misspecifi-
cation actually increases the power in some cases, pre-
sumably because the population trait parameters are op-
timal only under normality assumptions.

We did a limited study of the effects of misspecifying
two parameters at a time. Detailed results are not shown,
but the general qualitative result was that power was
driven by how badly the mean was misspecified. This is
consistent with the “one parameter wrong” runs de-
scribed above, in which the mean had, by far, the greatest
effect on power.

Discussion

We have performed the most comprehensive comparison
to date of sibling-pair QTL-mapping statistics. We used
simulation to evaluate the type I error and the power of
12 different statistics under both population sampling
and selected sampling. Seven of the statistics (ORIGI-
NAL.HE, TRAIT.SUM, TRAIT.PRODUCT, XU, S&P1,
S&P2, and SCORE3) have consistently correct type I
error over all the models and the sampling schemes that
we considered. If one considers the results for perfectly
known trait parameters only, then the statistics with the
highest power are XU, S&P1, S&P2, and SCORE3; they
are just about equivalent, except that XU has higher
power for the nonnormal trait models that we studied.
This suggests that any of those statistics would be ap-
propriate for most studies, with a possible preference for
XU, depending on the trait distribution. However, when
the effect of parameter misspecification is taken into ac-
count, the picture changes somewhat. For population
samples, XU appears to have the most robust power,
but, if one has a population sample, then one also has
decent estimates of the population parameters. Param-

eter misspecification is a much more important issue for
selected samples, and S&P1 seems most robust in that
case.

Our results are basically consistent with those of pre-
vious studies. The finding that the group I statistics are
not as powerful as the group II statistics was demon-
strated previously by a number of different authors,
including Xu et al. (2000), Forrest (2001), and Visscher
and Hopper (2001). Neither Forrest (2001) nor Visscher
and Hopper (2001) observed incorrect type I error for
their methods, but they looked only at population sam-
ples from a limited number of distributions. The sen-
sitivity of TRAIT.PRODUCT to misspecification of the
mean was examined by Palmer et al. (2000) and Zhang
et al. (2002). The approximate equivalence, based on
analytical arguments, of XU, S&P1, and S&P2 was
noted by Sham and Purcell (2001). The similarity (again
based on analytical arguments) between S&P2 and the
score statistics was noted by Feingold (2001).

There are, of course, limitations to our study in the
types of samples considered, in the models considered,
and in the statistics considered. In terms of the types of
samples, the most important limitation is that we con-
sidered sibling pairs only. Real studies generally include
larger sibships as well. Of the more powerful statistics
considered, XU and the score statistics generalize to
larger sibships, whereas S&P1 and S&P2 do not. It is
possible that the different methods for the handling of
larger sibships result in substantial power differences,
so further study of these methods is very important. A
method that was developed specifically for extended
pedigrees is the regression-based method of Sham et al.
(2002), which we discuss in further detail below.

An additional limitation in the types of samples con-
sidered is that we studied one-tailed sampling (one sib-
ling in the top 10%), ignoring two-tailed sampling (one
sibling in the top 10% or in the bottom 10%). We
expect that the statistical-performance results for one
tail would generally hold for two tails. Statistics with
incorrect type I error for one-tailed sampling will likely
be incorrect also for two-tailed sampling. The group of
statistics with equally high power for one-tailed sam-
pling is likely to also have the highest power for two-
tailed sampling. The companion article (Szatkiewicz et
al. 2003 [in this issue]) considers discordant pairs (one
sibling in the top 10% and one sibling in the bottom
10%); for that type of sampling, the results are quite
different from those presented in the present article.

We considered only large sample sizes (large numbers
of sibling pairs). We assume that studies with small sam-
ples are fairly unusual.

There are also some limitations to the models that
we studied. All of our models used an environmental/
polygenic sibling correlation of 0.25. This should not
affect the relative power of the group II and group III
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statistics. It does affect the relative power of the group
I statistics, but, since this is well documented (Palmer
et al. 2000; Forrest 2001), we did not explore it in detail
here. It does mean that the relative power of ORIGI-
NAL.HE and TRAIT.PRODUCT that we observed
should not be taken as a general rule. In general, the
greater the correlation, the better ORIGINAL.HE per-
forms in comparison to TRAIT.PRODUCT. We do see
a need for further exploration of a wide variety of non-
normal models. The fact that our results for models 1′

and 2′ were significantly different from our results for
mixture-of-normals models indicates the need for fur-
ther work, preferably with careful consideration given
to what types of models are realistic.

In the literature, there are several important statistics
that we did not include in our study. We did not consider
variance components, because our main focus was on
selected sampling, and it is well documented that var-
iance-components analysis has incorrect type I error in
such cases (e.g., see Allison et al. 1999; Sham et al.
2000). There are, however, various robust versions of
variance-components analysis (for review, see Feingold
2001) that could be more carefully compared to the
methods discussed here. We also did not consider the
precise score statistics proposed by Wang and Huang
(2002a) and Putter et al. (2002). Given that SCORE3
performs very well, further study of other score-statistic
variations might be useful. The statistic proposed by
Sham et al. (2002), mentioned above, was developed
specifically to be a robust statistic for extended pedi-
grees. It regresses IBD on trait values—the opposite of
the statistics discussed in the present article. For sibling
pairs, it has exactly the same form as SCORE2 and
SCORE3 but with the variance of p in the denominator
estimated differently.

Finally, a few potentially useful variations on the sta-
tistics that we considered are not yet in the literature.
One could use any of the statistics here with the pa-
rameter estimates chosen (on the basis of the data) to
maximize the value of the statistic. This is particularly
appealing as a way to deal with the sensitivity to the
mean. Similarly, one could use a statistic that weights
the squared-sum and squared-difference regressions,
such as XU, but with the weights maximized for the
particular data set. Either of these approaches would
entail the loss of a degree of freedom to properly adjust
for the maximization; we suspect that, as a result, there
would not be a useful power gain, but further study is
warranted.
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