
Biophysical Journal Volume 73 July 1997 452-465

Analysis of Phosphorescence in Heterogeneous Systems Using
Distributions of Quencher Concentration

Aleksander S. Golub, Aleksander S. Popel,* Lei Zheng, and Roland N. Pittman
Department of Physiology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298-0551, and
*Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205 USA

ABSTRACT A continuous distribution approach, instead of the traditional mono- and multiexponential analysis, for deter-
mining quencher concentration in a heterogeneous system has been developed. A mathematical model of phosphorescence
decay inside a volume with homogeneous concentration of phosphor and heterogeneous concentration of quencher was

formulated to obtain pulse-response fitting functions for four different distributions of quencher concentration: rectangular,
normal (Gaussian), gamma, and multimodal. The analysis was applied to parameter estimates of a heterogeneous distribution
of oxygen tension (P02) within a volume. Simulated phosphorescence decay data were randomly generated for different
distributions and heterogeneity of PO2 inside the excitation/emission volume, consisting of 200 domains, and then fit with
equations developed for the four models. Analysis using a monoexponential fit yielded a systematic error (underestimate) in
mean P02 that increased with the degree of heterogeneity. The fitting procedures based on the continuous distribution
approach returned more accurate values for parameters of the generated PO2 distribution than did the monoexponential fit.
The parameters of the fit (M = mean; ar = standard deviation) were investigated as a function of signal-to-noise ratio (SNR =

maximum signal amplitude/peak-to-peak noise). The best-fit parameter values were stable when SNR 2 20. All four fitting
models returned accurate values of M and a for different P02 distributions. The ability of our procedures to resolve two
different heterogeneous compartments was also demonstrated using a bimodal fitting model. An approximate scheme was

formulated to allow calculation of the first moments of a spatial distribution of quencher without specifying the distribution.
In addition, a procedure for the recovery of a histogram, representing the quencher concentration distribution, was developed
and successfully tested.

INTRODUCTION

Measurement of the concentration of some substances by
their ability to quench the phosphorescence of excited phos-
phors has become a precise, noninvasive method in biolog-
ical studies (Vanderkooi et al., 1987; Wilson et al., 1991;
Shonat et al., 1992, 1995; Torres Filho and Intaglietta, 1993;
Torres Filho et al., 1994, 1996; Kerger et al., 1995, 1996;
Zheng et al., 1996). In homogeneous systems (i.e., media
with constant phosphor and quencher concentrations) a sim-
ple application of the Stern-Volmer equation to determine
quencher concentration from phosphorescence lifetime
yields reliable results. In microcirculatory measurements of
oxygen concentration in relatively large arterioles and
venules reported by Torres Filho et al. (Torres Filho and
Intaglietta, 1993; Torres Filho et al., 1996), and in in vitro
determinations of oxygen consumption by mitochondria
reported by Wilson et al. (1991), the heterogeneity in
quencher concentration was assumed to be negligible, and
the phosphorescence decay curves were analyzed in terms
of a monoexponential time course.

Large nonuniformities of quencher concentration in bio-
logical systems (e.g., oxygen in the microcirculation: Ells-

Receivedfor publication 19 August 1996 and in finalforn 10 April 1997.

Address reprint requests to Dr. Roland N. Pittman, Department of Physi-
ology, P.O. Box 980551, Medical College of Virginia, Virginia Common-
wealth University, Richmond, VA 23298-0551. Tel.: 804-828-9545; Fax:
804-828-7382; E-mail: pittman@gems.vcu.edu.
© 1997 by the Biophysical Society
0006-3495/97/07/452/14 $2.00

worth and Pittman, 1986; Ellsworth et al., 1988; Kuo and
Pittman, 1988, 1990; Popel, 1989; Swain and Pittman,
1989) present a considerable difficulty in the application of
the phosphorescence quenching technique. It is generally
accepted that the phosphorescence decay time course in
a heterogeneous system consists of several exponentials
(Siemiarczuk et al., 1990; Ware, 1991; Vinogradov and
Wilson, 1994), and that one can decompose the phospho-
rescence decay curve into an arbitrary number of additive
exponential terms. However, the existence of a good statis-
tical fit by a given set of exponentials does not necessarily
imply that these exponential terms correspond to the actual
phosphorescence decays within the various spatial domains
of the excitation volume.

Useful experience in the analysis of complex decay
curves has been acquired in a number of different research
areas. There are several types of problems in which the data
can be represented by an integral over an exponential kernel
(Provencher, 1976a,b):

(1)
co

y(t) = exp(-At)f(A) dA
0

The goal of the analysis of these problems is to determine
the spectrum, f(A), from a finite data set, y(t). In many
applications, such as the analysis of multicomponent radio-
active decay curves, the spectrum is discrete and the integral
in Eq. 1 can be represented as a linear combination of
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exponentials (Gardner et al., 1959):

y(t) = E wi exp(-Ait) (2)
i=l,n

In this situation, the n lifetimes, Ai, and n - 1 preexponen-
tial factors, wi, must be determined from the normalized
data set, where y(O) = 1 and li=1 ,nwi = 1-
The analysis of fluorescence decay curves in pulse fluo-

rimetry is the problem most closely related to that of het-
erogeneous phosphorescence considered in the present pa-
per. It was found that most protein and nucleic acid
conjugates have multicomponent fluorescent decays due to
the heterogeneity of chromophores and bound ligands (Isen-
berg and Dyson, 1969). It was assumed that the spectrum
was discrete, with four or fewer components (Gardner et al.,
1959; Isenberg and Dyson, 1969; Ware et al., 1973; Pro-
vencher, 1976a,b; Lakowicz et al., 1984). Attempts to re-

solve the discrete components of the decay curves fall into
several categories (Isenberg and Dyson, 1969): repeated
subtraction of the slowest decays on a semilog plot; a

curve-fitting procedure; and the "method of moments."
Fourier transforms, inverse Laplace transforms, eigenfunc-
tion expansions, and least-square methods are other ap-

proaches that have been proposed and used for the decon-
volution of Eq. 2 (Gardner et al., 1959; Isenberg and Dyson,
1969; Ware et al., 1973; Provencher, 1976a,b). The analysis
of lifetimes from phase fluorometry data was also based on

the assumption of a discrete spectrum (Lakowicz et al.,
1984). Further investigations showed that, despite the ca-

pacity of two- or three-exponential terms to provide good
fits of the data, the recovered parameters provided little
information about the underlying continuous distributions
of lifetimes (James and Ware, 1985). However, for mono-

and bimodal Gaussian distributions of lifetimes, the two-
exponential model was found to be a useful approximation
(James et al., 1985).
An understanding of the continuous nature of the lifetime

distribution led to the development of the exponential series
method (ESM), in which a multiexponential fitting function
with fixed lifetimes and variable preexponential coefficients
was used (James and Ware, 1986). Because this method
uses fixed lifetimes that uniformly span the range of the
underlying distribution, the number of recovered parameters
is n - 1 instead of 2n - 1. Although the resulting problem
is a linear one, the nonlinear Marquardt algorithm or other
fitting procedure that can constrain the preexponentials to
positive values is needed for analysis. Another powerful
analytical technique, the maximum entropy method (MEM),
can successfully handle the inverse Laplace transforms of
decay curves (Livesey and Brochon, 1987). A reconstructed
spectrum using this method consists of a large number of
discrete lines with amplitude wi, equally spaced in log(1/A1).
The two methods (ESM and MEM) are similar in their
resolving power, and both can handle up to 200 exponential

1993). Vinogradov and Wilson (1994) have recently devel-
oped a quadratic programming algorithm to algebraically
decompose the phosphorescence decay curve into a linearly
independent set of 200 exponentials. The common point in
these methods is the recovery of a continuous distribution
with a set of exponentials having regularly spaced and fixed
lifetimes. It has been shown that a discrete distribution with
a high density of components gives the same result as a
continuous distribution. Unfortunately, a large number of
fitting parameters, arising from the discrete representation
of the continuous lifetime distribution, leads to a relatively
long computation time, a high sensitivity to noise, and
uncertainties in the results because of the large number of
degrees of freedom. Furthermore, attainment of a high sig-
nal-to-noise ratio necessitates averaging many decay
curves. These features make it less practical for on-line
measurements in biological systems like microvessels, es-
pecially when non-steady-state gradients in quencher con-
centration are present.

In the microscopic measurement of single microvessels
and cells, the phosphorescence signal is weak because of the
small volume of excitation (and emission) and the low
concentration of phosphor in the blood plasma or cyto-
plasm, limited for considerations of constant tonicity and
low toxicity. Moreover, because the conditions inside the
excitation volume of a microvessel or cell can vary signif-
icantly in time, the common practice of averaging a se-
quence of decay curves cannot be followed. Furthermore,
the phosphorescence decay signal from the microvolume
with a gradient in quencher concentration should contain
information about the quencher heterogeneity that could be
extracted by analysis with an appropriately formulated
physical model. An example of quencher heterogeneity is
the nonuniform partial pressure of oxygen inside microvas-
cular plasma that is created by diffusion gradients.
A fruitful approach for the recovery of a continuous

distribution was presented by Alcala et al. (1987) in the
context of computer simulations of data obtained from
phase fluorometry. They proposed the use of a probability
density function and its combinations to recover the under-
lying distributions. The uniform (rectangular) distribution
was found to be a good model for several different lifetime
distributions. It was also concluded that the analysis of data
in terms of probability density and lifetime distribution
functions was less sensitive to systematic errors due to the
weighting of the data. These findings could be applied to the
analysis of pulse phosphorescence data in terms of a con-
tinuous distribution of quencher concentration.

In the present work we develop a continuum approach for
the interpretation of pulse response functions obtaine(' from
heterogeneous phosphorescent systems containing a gradi-
ent in quencher concentration. In our description, we use a
formalism from the theory of probability and statistics.
However, the similarity may end there because, for a single
excitation experiment, the spatial distribution of quencher is
deterministic. Because the aim of recovering the underlying
distribution is to find an appropriate descriptive statistical
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model and express it in terms of statistical moments, we will
seek relationships between the underlying distribution and
the shape of the phosphorescence decay curve. Such a result
can be obtained by using the Laplace transform of proba-
bility density functions as fitting models and their moments
as fitting parameters. This approach will allow the use of
nonlinear fitting procedures to determine the moments of
the underlying distribution and to choose an adequate dis-
tribution using standard best-fit criteria.
We propose to use a continuous distribution of quencher

concentration characterized by several parameters of the
fitting function. We will seek the parameters of the distri-
bution of quencher concentration instead of the distribution
of lifetimes, allowing the direct Laplace transform of a
continuous distribution to be used instead of the inverted
Laplace transform of the phosphorescence decay curve. The
Laplace transform of the continuous distribution of
quencher concentration will be used as a fitting function
instead of a sum of exponentials. We will apply the concept
of a rectangular distribution to develop a procedure
for recovery of the histogram representing a continuous
distribution.

MATHEMATICAL MODEL

Phosphorescence in a homogeneous system

The phosphorescence quenching technique is based on the
two modes of deactivation of excited phosphor molecules.
After photoexcitation, the concentration of excited phos-
phor molecules is reduced by light emission from the ex-
cited state (i.e., phosphorescence emission) and by energy
transfer to quencher molecules (oxygen is the only quencher
in physiological systems such as blood; Vinogradov et al.,
1996). The rate of change of concentration of the excited
phosphor molecules after their excitation at t = 0 is given
by

dN/dt = -koN - kqNQ (3)

where N(t) is the concentration of excited phosphor mole-
cules at time t, ko is the first-order rate constant for phos-
phorescent decay in the absence of quencher, kq is the
second-order rate constant in the presence of quencher, and
Q is the quencher concentration. The first term in this
equation represents the rate of deactivation due to light
emission, and the second term represents the rate of deac-
tivation due to quenching. The constant ko = l/To, where To
is the lifetime of phosphorescence decay when Q = 0. The
solution of Eq. 3 is

N(Q, t) = Noexp(-ko + kqQ)t) (4)

where No is the initial value of excited phosphor concen-
tration. Light intensity, I(t), is proportional to the rate of
phosphor deactivation by light emission (Eq. 1) and, con-
sequently, to the concentration of excited phosphor mole-

cules; thus

I(Q, t) = Ioexp(-(ko + kqQ)t) = Ioexp(-t/T) (5)

where IO is the initial value of light intensity per unit volume
and T is the phosphorescence decay lifetime in the presence
of the quencher. This equation can be written as

YM(Q, t) = I(Q, t)/Io = exp(-(ko + kqQ)t) = exp(-t/T)
(6)

where YM(Q, t) is the normalized photometric signal from
the emission volume with homogeneous concentration dis-
tribution (monoexponential model). The Stern-Volmer
equation that relates phosphorescence lifetime, T, to
quencher concentration, Q, can be written as

l/T= l/To +kqQ (7)

Phosphorescence in a heterogeneous system

Consider a system containing a phosphorescent probe of
homogeneous concentration, but a quencher of heteroge-
neous concentration. Let us assume that, at time t = 0, a
flash of light of infinitesimally short duration produces a
uniform concentration, No, of excited phosphor molecules.
The time scale for flash duration and phosphorescence
lifetime together is assumed to be short enough that mass
transfer by diffusion and convection can be neglected.
Within the excitation volume, V, the quencher concentration
ranges from Qmin to Qmni. In principle, V could be subdi-
vided into infinitesimal homogeneous volumes, each asso-
ciated with a particular value of Q and corresponding mono-
exponential phosphorescence decay with lifetime given by
Eq. 7. For the purpose of analyzing the phosphorescence
signal from V, domains of equal Q are combined, even if
they are not contiguous within V. Next, all of the smaller
volumes are arranged by increasing values of Q and nor-
malized to the whole volume. The distribution functionf(Q)
is defined so thatf(Q)dQ is equal to the fractional volume
dV/V, in which the values of the quencher concentration
vary between Q and Q + dQ. Thus f(Q) characterizes the
distribution of quencher concentration in the excitation vol-
ume (see Fig. 1). The distribution function, f(Q), obeys the
normalization condition

Qmax

f(Q) dQ = I
Qin

(8)

and is similar to a probability density function, although in
this case the function characterizes not a random process,
but a deterministic distribution of Q. For convenience,
we can extend the definition of the distribution function:
f(Q) = 0 for 0 ' Q < Qmin and Q > Qmax. Then the integral
in Eq. 8 can be calculated over the range from 0 to oo. Using
this distribution function, the mean (M) and variance (o&2) of
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FIGURE 1 Examples of continuous distributions of
quencher concentration. Fractional volume, v(Q), is
plotted on the ordinate, and quencher concentration, Q,
is plotted on the abscissa. These examples are de-
scribed in more detail in the text.
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Q in the volume can be calculated as

M= Qf(Q) dQ (9)
0

= j (Q - M)2A(Q) dQ (10)

Higher order central moments that will be used below are

calculated as

n= f(Q - M)nf(Q) dQ ( 11)
0

Thus 112 = cr2; 'Yl = .13/& is known as the skewness or

asymmetry coefficient; and y2 = U4/o4- 3 is known as the
kurtosis or excess coefficient.

Because of optical limitations, it is not possible to collect
the total light yield from the emission volume using con-

ventional microscopy. We can avoid dealing with absolute

values of the signal intensity by normalizing the photomet-
ric signal. We recast Eq. 6 in the form

Y(t) = I(t)Io = exp(-(ko + kqQ)t)f(Q) dQ (12)

The normalized function Y(t) is obtained experimentally,
and the coefficients ko and kq can be determined by cali-
bration (in vitro or in vivo). Therefore the task of interpret-
ing the phosphorescence decay curve is reduced to deter-
mining the quencher distribution function, f(Q), in the
emission volume.

For a continuous distribution f(Q), Eq. 12 is an integral
Fredholm equation of the first kind (Morse and Feshbach,
1953). Alternatively, Eq. 12 can be rewritten in the form

F(s) = Y(t)exp(kot) = J exp(-sQ)f(Q) dQ (13)
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where s = kqt, and therefore the right-hand side of Eq. 13
can be considered as the Laplace transform off(Q) (Boas,
1983).
Some properties of the Laplace transform that show an

intrinsic relationship between the moments of quencher
distribution and the shape of the decay time course are

1. The integral of the quencher distribution function is
equal to the initial value of F(s) when s -> 0; this can be
expressed in the form

Y(O) = f(Q) dQ = 1 (14)

because f(Q) is normalized according to Eq. 8.
2. The negative derivative of F(s) as s ->0 is equal to the

first moment of the quencher distribution function describ-
ing the quencher concentration; this property can be ex-
pressed as

dY/dtjt =0 -(ko + kqM) (15)

3. The second derivative of F(s) as s -> 0 is equal to the
ordinary (i.e., not central) second moment (o2) of the
quencher distribution function; this result can be expressed
as

d2Y/dt2Ito = (k0 + kqM)2 + (kqO-0)2 (16)

Consequently, the phosphorescence decay curve obtained
from a heterogeneous system contains information on the
moments of the distribution function that can be estimated
by appropriate mathematical procedures.
The property of linearity will be used in the development

of a procedure for recovering the histogram that describes a
multimodal distribution. The Laplace transform of a sum of
functions, f,(Q), each weighted by a coefficient, wi, is equal
to the sum of the Laplace transforms:

exp(-sQ)z wif(Q) dQ = wij exp(-sQ)fJ(Q) dQ
o i l (

(17)

will be shown that it is practically impossible to discrimi-
nate between some fitting functions based on a goodness-
of-fit criterion, although the moments of the distribution can
be determined accurately. Therefore, in a subsequent sec-
tion we will introduce an approximate scheme of determin-
ing the moments of the quencher distribution that makes no
assumptions about a particular form of the distribution
function. The histogram recovery method, based on a con-
tinuous representation of a histogram element (i.e., bin) will
be proposed for the purpose of visualization of the under-
lying distribution.

PARAMETER IDENTIFICATION USING
CONTINUOUS DISTRIBUTIONS

Unimodal distributions

In this section we will consider several examples of contin-
uous distributionsf(Q), apply them to a simulated distribu-
tion of Q, and estimate the parameters of these distributions.
We use the notation 28 = Qmax - Qmin and Q0 = (Qmax +
Qmin)/2, or Qmin = QO - 6 and Qma = Q0 + 6. Fig. I
illustrates the distributions considered below.

Rectangular distribution

Information on the mean value and variance of quencher
concentration in the emission volume can be obtained by
using the model for a rectangular (or uniform) distribution,
f(Q) = constant, as a first approximation for many hetero-
geneous systems (Fig. 1). From the normalization condition
(Eq. 8) we find for this simple case that

f(Q) = 1/28 (18)

The simplest spatial distribution of Q corresponding to this
distribution function is a linear one, e.g., Q = Q0 + Ax for
-a ' x ' a, where A is the constant gradient in Q. In this
case 6 = Aa. The first two moments of this distribution can
be expressed, according to Eqs. 9 and 10, as

M= Qo,o- = 62/3 (19)
Computing the Laplace transform of the distribution of

quencher concentration is a convenient way to obtain an
analytical expression for the fitting functions. Thus the
pulse response function for any hypothetical distribution of
quencher concentration can be immediately obtained from a
table of Laplace transforms or with an analytical equation
solver (e.g., MathCad, Mathematica). Following the anal-
ogy between the description of deterministic quencher dis-
tribution f(Q) and probability density functions, we will
compute fitting functions as Laplace transforms of several
common probability density functions in the following sec-
tion. Standard criteria for goodness of fit will be used to
choose the most accurate approximation of quencher distri-
bution. We will show that these fitting procedures result in
accurate estimates of the parameters characterizing the dis-
tributions, and hence the mean and variance. However, it

The fitting function for the rectangular distribution is

YR(t) = exp(-(ko + kqQo)t) * sinh(kq5t)/kq6t (20)

This expression was recently presented by us (Zheng et al.,
1996), and it contains the usual monoexponential term for
mean quencher concentration, Q0, multiplied by an addi-
tional term characterizing the concentration heterogeneity.
For small values of the argument a = kq&t, sinh a/a- 1 +
a2/6, and, replacing 8 with 31/21r by using Eq. 19, we obtain
the following approximation to Eq. 20:

YR(t) = exp(-(ko + kqM)t) [1 + (kqOt)2/2] (21)

For the case of a homogeneously distributed quencher, of =
0, and the limit of YR(t) gives the monoexponential decay
(Eq. 6).
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Normal distribution

The normal (Gaussian) distribution is a widely used statis-
tical model for describing heterogeneity (Fig. 1):

f(Q) = (2 7ro2) "12exp(-(Q - M)212u,2) (22)

With the normalization given in Eq. 22, the pulse response

function can be obtained over the interval of concentration
(-oc, oo) rather than the interval (0, oc) used in Eqs. 8-12.
Because Q > 0, the practical application of the following
result for the normal distribution is restricted to cases where
MA> 3om:

YN(t) = exp(-(ko + kqM)t)exp((kqOt)2/2) (23)

Because of the choice of limits of integration, YN(t) is not
the Laplace transform of the corresponding distribution, in
contrast with the other distributions considered in this pa-

per; in particular, YN '-> o as t -> oo. However, Eq. 21 can

be used to fit experimental data within the time interval of
practical interest.

Two-bar distribution

We consider a more complicated distribution to model
asymmetrical distributions of quencher inside the emission
volume: a simple asymmetrical two-bar distribution that
consists of two adjacent rectangular distributions (Fig. 1).
The distribution function,f(Q), can be expressed in the form

(0.5 - 4)/ for Q0- Q < Qo
2

AQ)= (0.5 +±)/ for Q0' Q 'QQo +

The parameter characterizes the asymmetry of the model.
The mean, variance, and skewness for this model are

M = Qo + 84, o.2 = (62/3)(1 34¢2), 'Yl = /L3/103 (25)

where ,U3 = -_34 (1 - 402)/2. From Eq. 24, -0.5 ' + '
0.5, thus Yl < 0 if > 0, and Yi > 0 if < 0. The fitting
function for the two-bar distribution is

YTB(t) = exp(-(ko + kqQo)t)
(26)

* [sinh(kq&t) 2q(cosh(kqt) 1)]/kq6t

Gamma distribution

The gamma distribution is commonly used to describe
asymmetrical (i.e., skewed) distributions of a nonnegative
variable (Fig. 1):

f(Q) = [1/Far(a)]Qa- exp(- Q/18) (27)

The first three moments expressed by Eqs. 9-11 are

M= an, o' =af32 yI = 2a- 1/2 (28)

The fitting function for the gamma distribution is

Numerical procedures

MathCad (version 6.0, MathSoft) was used for analytical
and numerical calculations, as well as simulation of phos-
phorescence emission in heterogeneous systems. The com-
puter simulations of the phosphorescence decay time course
assumed that the volume contained albumin-bound Pd-meso
tetra (4-carboxyphenyl) porphine (ko = 18.3 - 10-4 ,S-1,
kq = 3.06 * 10-4 mmHg-' pus-1, and Q was expressed as
P02 in mmHg; Zheng et al., 1996), which is used in the
measurement of oxygen. Phosphorescence decay data were
randomly generated by a Monte Carlo approach (Kalos and
Whitlock, 1986) for rectangular, normal, two-bar, and
gamma distributions (see Fig. 2 for examples). Briefly, the
excitation/emission volume was represented as the sum of
200 spatial domains of equal size. For each domain, a value
of P02 was randomly chosen from the distribution under
consideration, and the phosphorescence lifetime associated
with this domain was calculated from the Stern-Volmer
equation (Eq. 7). Normalized phosphorescence decay
curves from all of the domains were summed to produce an
overall normalized decay curve for the whole volume.

Fitting of the simulated decay curves was performed with
the Marquardt-Levenberg nonlinear least-squares algo-
rithm, using the software Origin (version 3.5; MicroCal
Software, Northampton, MA) with the four equations based
on the continuous fitting functions (i.e., Eqs. 20, 23, 26, and
29). The monoexponential fit (Eq. 6) was also used for
comparative analysis of the different approaches. Goodness
of fit was assessed by calculating the mean sum of squares
(MSS) for the fit of a normalized decay curve. MSS is
defined as the sum of squares of the difference between the
simulated decay curve, Ysim(ti), and the fitting function,
Yfi#(t1), divided by the number of degrees of freedom (df =
number of data points - number of fitting parameters). The
fitting procedure was terminated when MSS from two suc-
cessive iterations differed by less than a tolerance value of
0.05. Results of fitting are expressed as mean (M) and
standard deviation (o-). Random data generated from a rect-
angular distribution were used for evaluation of the accu-
racy and stability of distribution parameters as a function of
heterogeneity of Q (e.g., P02). Similar random data gener-
ated from rectangular distributions were also used to study
the stability and accuracy of the fitting models as a function
of increasing the random noise level.

Results

The time course of phosphorescence caused by a short flash
of excitation light could be described by Eqs. 20, 23, 26, or
29 for different distributions of quencher concentration. All
of these equations are written in a similar form, as a product
of the usual monoexponential decay for mean quencher
concentration M times additional terms dependent on the
heterogeneity of quencher concentration. We can recast the
decay function from the product of a homogeneous term,
H(t), and a heterogeneous term, R(t) (i.e., Y(t) = H(t) R(t)),

457Golub et al.
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FIGURE 2 Computer-generated distributions of
quencher concentration. Monte Carlo simulations
were made by dividing the excitation volume into 200
regions of equal size and randomly drawing an oxygen
tension (PO,) from a specified continuous distribution
with mean PO, of 35 mmHg and standard deviation of
10 mmHg.
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to the sum of a homogeneous and a heterogeneous term by
the following rearrangement:

Y(t) = H(t)R(t) H(t) + H(t)[R(t) - 1] (30)

In this additive realization of Y(t), the heterogeneous term is
H(t) [R(t) - 1]. The relative contributions of the heteroge-
neous and homogeneous components of the decay signal
can be expressed as their ratio: R(t) - 1. As a specific
example, we can consider Eq. 20 for the rectangular distri-
bution, where R(t) = sinh(kq&t)/kq5t. Using the parameters
above over a time interval 0-1 ms, R(t) -1 increased from
zero at t O, to 1.7 (o- = 1O mmHg) or 18 (- = 20 mmHg)
at 500 ,us, up to 18 (o- = 10 mmHg) or 1900 (un = 20
mmHg) at 1000 ,s. Thus the contribution of the heteroge-
neous term increased strongly with o- and rapidly with time

(see figure 3 B of Zheng et al., 1996). At these same time
points for M = 35 mmHg, the homogeneous term decreased
from unity to 2 * 10-3, then to 4 * 10-6, so that the data must
have high-amplitude resolution and low noise level, over a

time interval extending to approximately twice the expo-

nential lifetime associated with the homogeneous term, to
reveal the heterogeneity.

Table I presents the results of fitting the randomly gen-

erated decay curve obtained from a rectangular distribution
with M 35 mmHg and o( ranging from 0 to 20 mmHg, but

because of the random nature of the simulation procedure,
the resulting parameters exhibited small differences from
the input values. Fitting was performed with the monoex-

ponential (Eq. 6), rectangular, normal, two-bar, and gamma
models of the pulse response functions. Fitting by the
gamma model was unsatisfactory, presumably because of
the intrinsic asymmetry of this distribution. Therefore, the
results of the fits obtained by using the gamma distribution
are not included in Table 1.
When the PO2 domains were distributed with o- = 0, all

of the fitting models except the gamma model returned a

good estimate of M with the same fitting quality, and the
continuous models returned a o- close to zero. The system-
atic error of estimation of mean PO2 by the monoexponen-

tial model (underestimate) progressively grew up to -28%,
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TABLE I Best-fit parameter values for increasing degree of heterogeneity
Generated Parameter Monoexponential Rectangular Normal Two-bar Taylor series

M 35.0 35.0 35.0 35.0 35.5 35.0
a 0.0 0.21 0.24 0.87 0.001
MSS 6 X 10-8 9 X 10-8 6 x 10-8 3 X 10-6 6 X 10-8

M 34.7 32.6 34.5 34.3 34.4 34.6
al 9.6 9.9 9.3 9.8 10.6
MSS 2 x 10-5 6 x 10-8 2 x 10-7 6 x 10-8 3 x 10-7

M 36.9 26.2 37.1 32.6 36.9 36.0
01f 20.3 20.9 18.5 20.4 22.4
MSS 7 X 10-4 2 x 10-7 6 X 10-5 1 X 10-7 2 x 10-4

Phosphorescence decay curves were randomly generated from rectangular distributions. The Taylor series fitting function contains only the first two terms
of the series. Mean (AM) and standard deviation (or) are given in mmHg. MSS is mean sum of squares for best fits by the different fitting functions.

as the heterogeneity, characterized by the coefficient of
variation, CV = acM, increased from 0 to 55% (see Table
1). The rectangular and two-bar fitting models provided
accurate evaluations of mean P02 and o over a wide range

of concentration heterogeneity, with a much better fitting
quality estimated by the MSS (see Table 1). The normal
model fitting equation (Eq. 23) also provided a good esti-
mate for data generated by the rectangular distribution for
M> 3ou.
To examine all four fitting models for stability in regard

to distribution shape, simulated decay curves were gener-

ated randomly as described above, using rectangular, nor-

mal, gamma, and two two-bar distributions of left and right
asymmetry (Fig. 2). The median PG2 and standard deviation
used for generating the pulse response function were M =

35 and o- = 10 mmHg. Results of simulated PO2 distribu-

tions and results of their evaluation by fitting the associated
phosphorescence decay curves with our models are shown
in Table 2. Each fitting model was used to fit all of the
generated data sets to compare parameter estimates among

the different distributions. The evaluation of oc for symmet-
rical distributions by the gamma model was not very accu-

rate (22-32% overestimate). The monoexponential fit was
the poorest because it yielded the largest error in mean PO2
(4-6% underestimate) and had the largest MSS. The con-

tinuous fitting models provided good accuracy for M and a
for all of the simulated distributions and gave MSSs that
were two to three orders of magnitude smaller than that for
the monoexponential model. The two-bar model generally
gave the best results in terms of minimum MSS, and in
addition, accurately reported the parameter of distribution
asymmetry, (see Eqs. 24-26).

TABLE 2 Best-fit parameter values for different fitting functions and different generating distributions

Generated
Distribution Parameter moments Monoexponential Rectangular Normal Gamma Two-bar Taylor series

Rectangular M 34.7 32.6 34.5 34.3 35.4 34.4 34.6
ur 9.6 9.9 9.3 12.7 9.8 10.6

MSS 2x 10-5 6x 10-8 2 x 10-7 3 X 10-6 6X 10-8 3 x 10-7

Normal M 34.4 33.0 35.2 35.0 35.9 34.9 35.4
01r 10.8 10.8 10.1 13.2 10.1 11.7

MSS 2 x 10-5 1 X 10-7 1 X 10-7 2 x 10-6 8 x 10-8 8 x 10-7

Gamma M 35.8 34.0 35.7 35.6 35.3 35.7 35.8
a 10.1 9.5 9.0 9.1 9.9 10.1

MSS 1 x 10-5 1 X 10-8 1 X 10-7 4x 10-7 2x 10-8 8 x 10-8

Two-bar left asymmetry M 31.3 29.8 31.2 31.1 31.2 31.3 31.3
Of 8.9 8.3 7.9 8.6 9.5 8.8
4 -0.2 - -0.23

MSS 1X 10-5 1 X 10-7 3 x 10-7 1 X 10-7 6 x 10-8 7 x 10-8

Two-bar right asymmetry M 38.5 36.9 38.7 38.6 38.9 38.6 38.9
9.5 10.4 9.9 10.9 10.9 11.0

4) 0.2 - 0.15
MSS 1X 10-5 8x 108 7x 10-8 8X 10-8 5 X 10-8 3 X 10-7

Phosphorescence decay curves were generated by the distributions listed in the leftmost column. The resulting curves were fit by the functions listed in
the table heading. The Taylor series fitting function contains only the first two terms of the series. Mean (AM) and standard deviation (or) are given in mmHg.
MSS is mean sum of squares for best fits. 4 is the asymmetry parameter for the two-bar model.
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The simulation for the rectangular distribution of P02
was used to examine the stability of the best-fit parameters
in the face of decreasing signal-to-noise ratio (SNR). In this
paper, SNR is defined as the ratio of maximum signal
amplitude to the peak-to-peak noise (noise for a single
simulated event is equal to the total amplitude of noise times
a random number on the symmetrical interval [-0.5, 0.5]).
As shown in Fig. 3, the rectangular model (but not the
monoexponential one) provided accurate and stable evalu-
ations of mean P02 and o- when the SNR was greater than
13. Mean PO2 can be determined with a small error for SNR
down to 5, but after this limit the results become uncertain
in all of the models, including the monoexponential model.
Reducing the noise level below 1% (SNR > 100) cannot
improve the fitting quality of the monoexponential model,
but the MSS decreased by two orders of magnitude for the
rectangular model (Fig. 3) under this condition.

DISTRIBUTION-FREE IDENTIFICATION
OF MOMENTS

Results of the preceding section suggest that fitting with
different distribution functions may lead to satisfactory
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evaluation of the mean and standard deviation (or variance)
of simulated distributions. This suggested to us that it
should be possible to evaluate the lower moments of a
distribution without explicitly specifying the distribution
function. To follow this argument, we recast Eq. 12 in the
form

00

Y(t) = exp(-(ko + kqM)t)j exp(-kq(Q - M)t)f(Q) dQ
0

(31)

The exponential term under the integral can be expanded in
a Taylor series:

exp(-kq(Q - M)t) = 1 + Il)n(kq(Q - M)t)/nn! (32)
n=1

Substituting Eq. 32 into Eq. 31 and integrating, we obtain

YTs(t) = exp(-(ko + kqM)t)[1 + I(-)nP9n(kqt)n/n!]

= exp[-(ko + kqM)t][I + .2k2t2/2 -yl r3k3t3/6
+ (y2 + 3)or4k4t4/24 +...] (33)

where the ji. are the nth central moments of the distribution

M = 34.7 mmHg f(Q) given by Eq. 11, Yi is the skewness coefficient, and y2
M is the kurtosis. The first term of the series gives the mono-

exponential model, and the second term is an approximation
vI* *~ ** of the rectangular model (Eq. 21). We used these first two

0 0*~ ** terms in the series expansion to develop the fitting model
,, ,, ,,,,,, ,, ,,,,, ,,, ,,,,,, based on this Taylor series expansion. The above formula-
10 100 1000 10000 tion is analogous to calculations of the moment-generating

function in probability theory (Beyer, 1968).
B
"_ cr= 9.6 mmHg

U U

10 100 1 10 000I

10 100 1000 10000
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FIGURE 3 Results of fitting phosphorescence de(
generated according to a rectangular distribution (set
signal-to-noise ratios (SNRs). Fits were made to the
and monoexponential (Eq. 6) fitting models. Mear
deviation (middle) of P02 from computer-generated
34.7 mmHg and oa = 9.6 mmHg. (Bottom) MSS for

Results

The far right column of Tables 1 and 2 contains parameters
evaluated from the simulated distributions, using the first
two terms of Eq. 33 for comparison with the corresponding
parameters in Tables 1 and 2. The Taylor series model is
independent of the particular distribution and demonstrated
a good ability to evaluate the first two moments of different
P02 distributions. Attempts to find accurate estimates of
higher moments were not successful.

MULTIMODAL DISTRIBUTIONS

All of the models worked out above describe heterogeneous
1000 10000 systems in a single compartment. Under some experimental

situations, the phosphorescence signals could arise from
more than one heterogeneous compartment. For instance, in

cay curves randomly microcirculatory measurements of P02, the phosphores-
e Fig. 2) for different cence signals could originate from intravascular blood and

(topgulan sEq. 20) perivascular tissue. To describe this situation, consider a
distribution are M = volume V comprising N distinct compartments, each char-
different SNRs. acterized by a volume Vi; quencher concentration Qi, which

on

b

CO,

Ju . . .
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can vary within the compartment; and distribution function

fi(Q1), i = 1, 2, . . , N. We can express the integral in Eq.
12 as the sum of N integrals according to the property
expressed in Eq. 17:

Y(t) = exp(-(koi + kqiQi)t)f(Qi) dQi (34)

Assuming thatfi(Qi) is a rectangular distribution for each
compartment, we obtain from Eq. 34,

YMR(t) = E wexp(- (ko + kqiMi)t) - sinh(kqiijt)/kqjijt (35)

Similar calculations with the fi(Q1) normal distributions
yield

YMN(t) = wiexp(- (ko + kqiMi)t)exp((kqijit)2/2) (36)

Each of these equations has 3N- 1 fitting parameters,
characterizing mean values M1, heterogeneities vi or 6i, and
the weights wi for each component. The case N = 2 (bi-
modal rectangular distribution in Fig. 1) is of particular
importance for applications to oxygen measurements be-
cause the two compartments can represent intravascular and
extravascular concentrations.
The distribution-free approach of the previous section

(Eq. 33) can be extended to multicompartmental systems
described by Eq. 33. Expanding each of the exponential
functions in a Taylor series and integrating, we obtain

Y(t) = E wiexp(-(koj + kqiMi)t)[1 + (-_1)nli(kqit)n/n!]
L n=2

(37)

model. Fitting this decay curve with the bimodal normal
model returned results very close to those obtained with the
bimodal rectangular model (no added noise): the first mode
was 10.2 ± 2.4 mmHg, the second mode was 58.6 12.9
mmHg, and w1 was 0.26. The overallM o- for the bimodal
distribution was 46.9 ± 21.4 mmHg and was estimated by
the unimodal rectangular model (Eq. 20) as M +± a =

48.0 + 26.8 mmHg. The monoexponential fit gave M =

35.9 mmHg, a large underestimate of the weighted mean

P02. The bimodal fitting models appear to be much more

sensitive to the noise level than do the unimodal models that
we have considered. Random noise as low as 2% of the
maximum signal amplitude (SNR < 50) caused a large error

in estimations of heterogeneity, whereas the mean values
and weight coefficient were relatively accurate (see
Table 3).

RECOVERY OF HISTOGRAMS OF
QUENCHER DISTRIBUTION

In the present study we are interested in continuous distri-
butions of Q. However, the analysis above is also valid for
discrete distributions of Q. For example, if the volume V
consists ofN volumes V1, i = 1 to N, V = liV1, and in each
of these volumes the quencher concentration is uniform,
Q = Qi = constant, then

f(Q) = E w16(Q - Qj) (38)

where 6(Q) is the Dirac delta function and the weighting
factors were defined earlier (Provencher, 1976a,b). Thus the
integral in Eq. 12 becomes

YD(t) = E wiexp(-(ko + kqQi)t)

Simulation and fitting of bimodal distributions

To examine the ability of bimodal fitting functions (Eqs. 35
and 36 for N = 2) to resolve two separate distributions of
quencher concentration on the basis of mixed decay curves,

a bimodal rectangular distribution was generated randomly
using the Monte Carlo simulation procedure described pre-

viously (see Fig. 2). The fitting results (Table 3) showed
good resolution for mean values and standard deviations
(MI ±+ o1 and M2 ± a2) and the weight coefficient w1

(w2 = 1 - wl) obtained with the bimodal rectangular

(39)

The mathematical problem in this case is to determine the
parameters wi and Qi. For uniformly spaced and fixed Qi,
only the set of n - 1 values of wi has to be determined in
the ESM and MEM approaches (James and Ware, 1986;
Livesey and Brochon, 1987) and in the quadratic program-

ming algorithm (Vinogradov and Wilson, 1994). Because of
the large number (up to 200) of monoexponentials in the
fitting function used in these studies, the calculation time
was substantial.

TABLE 3 Effect of noise on fitting by bimodal rectangular model

Parameters Generated moments SNR = 1000 SNR = 100 SNR = 50 SNR = 20 SNR = 10

Ml 10.5 9.9 9.6 11.3 11.4 10.6

M2 59.1 58.5 57.9 57.1 53.1 53.7

al 2.8 2.1 2.7 5.6 5.8 6.4
(02 12.0 13.5 15.2 15.2 20.1 25.8

wI 0.25 0.26 0.28 0.26 0.24 0.26
MSS 6 x 10-9 8 X 10-6 3 x 10-5 9 X 10-4 1 X 10-3

Phosphorescence decay curves were generated for the bimodal distribution using the values listed for mean (M, and M2) and standard deviation (o, and
0(2) of P02 (in mmHg) and weight (w,) of first mode. MSS is mean sum of squares of the best fit. Signal-to-noise ratio (SNR) decreases from left to right.
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However, the calculations of quencher distribution can be
significantly simplified, with a corresponding reduction in
computation time, if we represent the quencher concentra-
tion by a histogram containing a relatively small number of
bins (N = 5-10) and consider each bin to represent a
rectangular distribution of quencher of width 28 and mean
value Qi, comprising a fraction, wi, of the heterogeneous
volume. According to Eq. 20, the contribution of bin i to the
total normalized phosphorescence decay signal is yi, so that

yi(t) = wiexp(-kot)exp(-kqQit)sinh(kq&t)/kq&t (40)

Because Y(t) = liyi(t) and .iwi = 1, we can define a new
transformed decay function, Y*(t), so that

Y*(t) = Y(t)[exp(kot)kq&t/sinh(kq8t)] = E wiexp(-kqQit)
(41)

Thus the original decay curve, Y(t), multiplied by the known
function in brackets, is equal to the sum of monoexponen-
tials of known equidistant Qi, with unknown weighting
coefficients. Experimental data for the normalized decay
curve, Y(t), after the above transformation, can be fit by Eq.
41, yielding best-fit values for the wi, with the constraint
Wi '-0.

Equation 41 can be reparameterized using the definition
Qi = (2i - 1) 6, i = 1, N. The transformed decay function
Y**(X), where X(t) = exp (-2kq5t), can then be defined as

Y**(X) = Y(t)[exp(kot)2kq8t/(exp(2kq8t) - 1)] = wWiX

(42)

Thus, after the data are transformed according to Eq. 42,
they can be fit using a polynomial fitting procedure for the
function Y**(X) to recover the weight factors, wi. The first
two central moments of the distribution obtained in this way
can be calculated with the formulae

M WiQi, =2 WiQ2_M2 (43)
i i

Numerical procedures

A histogram of eight bins (bins centered at Qi = 5, 15,.
75 mmHg; 6 = 5 mmHg) was used to recover the computer-
generated distributions of P02 according to Eq. 41. The wi
were determined by the same nonlinear least-squares fitting
software described above, with the constraint that wi- 0.
The plot of wi versus Qi is a histogram of the quencher
concentration.

Results

The ability of the fitting procedure (Eq. 41) to recover the
histogram representing a normal (Gaussian) distribution of
P02 is shown in Fig. 4. The quality of the recovered
histogram depends significantly on the SNR. For SNR >
20, the histograms of generated and fit data are not signif-

icantly different (p > 0.05) by a Kolmogorov-Smirnov test
(Zar, 1984), and the fits yield accurate estimates ofM and o-.
When the SNR decreases to 20, however, the estimate of
mean PO2 is low by 13% and the error in o- is almost 30%.
This gives an example of the histogram recovery procedure
for the particular case of a normal (Gaussian) distribution.
The general conditions for which the recovery of a histo-
gram is possible with acceptable accuracy should be inves-
tigated further.

DISCUSSION

We have previously reported that phosphorescence decay
curves obtained from in vivo and in vitro heterogeneous
systems could not be satisfactorily described with a mono-
exponential function (Zheng et al., 1996). The continuous
distribution approach yields fitting functions that provide a
good fit of the pulse response function of phosphorescence
decay in a heterogeneous volume and explains it in gener-
ally accepted statistical terms. Although these models de-
scribe hypothetical distributions of quencher that have rel-
atively simple analytical expressions, they can be applied as
fitting models and diagnostic tools for the analysis of actual
experimental data. Thus these models can be applied 1) to
determine the mean concentration of quencher and evaluate
its variability; 2) to distinguish between homogeneous and
heterogeneous as well as unimodal and bimodal distribu-
tions; and 3) to determine the degree of asymmetry of a
distribution.
The analysis of phosphorescence decay curves in terms of

continuous distributions is pertinent to heterogeneous sys-
tems produced by convective and diffusive gradients. Com-
pared to a monoexponential fit, this approach minimizes the
systematic errors by weighting the volume fractions corre-
sponding to different quencher concentrations. Use of a
monoexponential fit to recover mean P02 in a volume with
a large P02 gradient (e.g., perivascular tissue) can lead to a
substantial underestimation of mean PO2.
The best evaluation of o- for an unknown distribution can

be obtained from the fitting function that provides the best
goodness of fit. One can approximate the real distribution
inside the emission volume by selecting the fitting model
with the least MSS. However, if the distribution function,
f(Q), is known, the corresponding fitting function can be
obtained using Eq. 12. If the size of the emission volume is
large compared with the distance over which the gradient in
quencher concentration exists, a number of statistical dis-
tributions could be used. However, the possible distribution
of quencher within the emission volume should be esti-
mated from an appropriate physical model forf(Q), taking
into account the geometric and kinetic parameters of the
system under study. For example, one could formulate a
model of oxygen distribution in microvessels by including
the known flow behavior of red blood cells and the hemo-
globin-oxygen binding and release kinetics and convert it to
the corresponding phosphorescence decay time course using
tables of Laplace transforms or integration of Eq. 12.
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FIGURE 4 Effect of altered signal-to-noise ratio (SNR) on ability of histogram fitting procedure to recover original computer-generated Gaussian
distribution of P02. For SNR > 100, recovery of both M and o- is quite accurate. Results of a Kolmogorov-Smirnov test comparing the original distribution
with the histogram fits for decreasing SNR show that the fitted histograms are not significantly different from the original distribution (p > 0.05) for
SNR > 20.

The most valuable feature of the continuous models is
their stability and accuracy with increasing heterogeneity. A
monoexponential fit yields significant systematic error that
underestimates the mean values by up to one-third when the
CV exceeds 50% (Table 1). Generally, the fitting models
returned accurate estimates for M and a independent of the
particular distribution of quencher concentration. The Tay-
lor series model demonstrated that reliable values for the
first two moments of a distribution could be obtained with-
out specific knowledge of its shape.
The histogram recovery procedure, based on the contin-

uous representation of concentration distribution as a set of
several rectangular distributions, needed smaller computer
resources than deconvolution of a set of 200 monoexponen-

tial compartments (Vinogradov and Wilson, 1994). A com-

parison of Eqs. 39 and 40, which represent the discrete and
continuous approaches, respectively, shows that, for the
same set of equidistant Qi values separated by 26, they
differ by the "heterogeneous factor" of Eq. 20 (i.e.,
sinh(kq&t)/kq5t). This factor can be used as a quantitative
index of the difference between decay curves from the same
quencher concentration distribution represented by the dis-
crete (ESM) approach of Eq. 39 and by a continuous his-
togram (i.e., liyi(t) from Eq. 40). For the values of ko and kq
used in our simulations, we can compare, for instance, the
normalized signal difference at 1 ms after the excitation
flash (i.e., sinh(kq5t)/kq5t - 1). For = 1 mmHg, the

difference is negligible at 1.6%; for = 2 mmHg it is 6.4%;
and for = 5 mmHg the discrete representation of the
quencher distribution (as in Eq. 39) leads to a difference of
44%. That is why, to achieve adequate resolution of the
distribution in quencher concentration, the ESM and MEM
approaches require such a large number of parameters to
diminish the error in representing a continuous distribution
by a discrete sum of monoexponentials, whereas the histo-
gram approach, based on a continuous representation of the
distribution, can achieve the same resolution with a signif-
icantly smaller number of parameters.
The reparameterization of fitting functions is a useful and

generally accepted procedure in nonlinear fitting (Motulsky
and Ransnas, 1987). However, the transformation function
can amplify the noise in the tail of the decay curve and bias
the estimated parameters. Evaluation of the transformation
factor in Eq. 41 for the values of ko and kq used in our

simulation showed that it increased from 1 (at t = 0) up to
4.3 (at t = 1 ms) for = 5 mmHg; but, for 8 greater than
8-10 mmHg, the factor decreased below 1, diminishing the
influence of noise. This threshold level for in the trans-
formation factor of Eq. 42 is even lower, 4-5 mmHg,
allowing a smaller bin size and better resolution of the
quencher distribution. Estimates of this kind should be
carried out to optimize the bin width of the fitting function
for the histogram recovery procedure. The fitting procedure
for this histogram representation of the quencher distribu-
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tion is significantly faster than that described by Vino-
gradov and Wilson (1994). The histogram approach may
thus provide an opportunity for the on-line determination of
quencher distribution.
The accuracy of parameter estimates depends on the

quality of the photometric signals. The contribution of the
heterogeneous component of the phosphorescence signal is
small in the initial part of the decay curve, but significant in
the later part of the curve, where the signal amplitude and
signal-to-noise ratio become smaller. The influence of terms
related to the asymmetry of the distribution is quite small in
the early part of the decay curve. To extract the most
complete and accurate information from a decay curve, it is
therefore important to reduce the noise level and to accu-
rately determine the baseline. A common approach to re-
ducing the noise level is to average sequential decay curves.
However, there is no way to distinguish spatial and temporal
heterogeneity from the resulting decay curve. To obtain
information on the spatial distribution of quencher in the
unsteady state (e.g., capillary blood flow), individual decay
curves should be processed. This requires that efforts be
made to improve the signal-to-noise ratio.
The actual experimental signal from a phosphorimeter is

influenced by characteristics of the data acquisition system,
in addition to the true phosphorescence decay (Ware et al.,
1973). This instrumental contribution can be determined
empirically by measuring the response of the system to an
excitation flash in the absence of phosphor. For instance, if
the detected phosphorescence decay signal contains rem-
nants of the flash whose intensity decays more rapidly than
the true phosphorescence decay (apparent short lifetime),
this would be interpreted in the analysis as a contribution
from a region with high quencher concentration. Each in-
strumental artifact, such as the excitation flash decay and
electronic filtering of the photomultiplier signal, has a char-
acteristic "lifetime." The location (i.e., range of Q) of the
artifact can be calculated by noting the correspondence
between the apparent "lifetime" and quencher concentration
as given by the Stern-Volmer equation (Eq. 7). Bins can be
placed in the histogram to specifically cover the range of Q
associated with the artifact(s). To the extent possible, the
instrumentation should be adjusted to produce apparent
"lifetimes" that correspond to quencher concentrations that
exceed any realistic values in the sample under study. An
advantage of the histogram algorithm is that instrumental
artifacts affecting the phosphorescence decay curve can be
taken into account by displaying the histogram representing
the weights of various quencher concentrations. Any bins
with nonzero contributions at quencher concentrations
above a realistic maximum can be related to some feature of
the detection/data acquisition system. Contributions of arti-
facts can thus be isolated and removed from the histogram,
so that the true distribution of quencher concentration can
be revealed and studied.
A practical procedure for analyzing a phosphorescence

decay curve produced by an unknown distribution of
quencher consists of the following steps. First, the decay

curve can be analyzed crudely by using the rectangular
fitting model to generate initial estimates for M and o-. If o-
is large (i.e., o- M), this could indicate that the distribution
in quencher concentration is not unimodal. The decay curve
should then be fit by using the bimodal fitting model to get
estimates ofM and oc for the two modes. The next step is to
fit the decay curve according to the histogram algorithm
using a small number of bins (i.e., 5-8) that cover the full
range of quencher concentration revealed by the bimodal
analysis. As described above, instrumental artifacts can be
identified and eliminated or minimized in the contributing
instrumentation, but they can also be dealt with during the
analysis phase by removing the part of the histogram that
corresponds to the artifact(s). Once this has been accom-
plished, the histogram can be rescaled to display concen-
tration regions where wi # 0. By using the histogram
algorithm, a more complete and accurate description of the
distribution of quencher concentration within a given sam-
ple volume can be obtained than is possible with the simple
monoexponential fitting approach.
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