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SIMS: Computation of a Smooth Invariant Molecular Surface

Yury N. Vorobjev and Jan Hermans
Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill,
North Carolina 27599-7260, USA

ABSTRACT SIMS, a new method of calculating a smooth invariant molecular dot surface, is presented. The SIMS method
generates the smooth molecular surface by rolling two probe spheres. A solvent probe sphere is rolled over the molecule and
produces a Richards-Connolly molecular surface (MS), which envelops the solvent-excluded volume of the molecule. In deep
crevices, Connolly's method of calculating the MS has two deficiencies. First, it produces self-intersecting parts of the
molecular surface, which must be removed to obtain the correct MS. Second, the correct MS is not smooth, i.e., the direction
of the normal vector of the MS is not continuous, and some points of the MS are singular. We present an exact method for
removing self-intersecting parts and smoothing the singular regions of the MS. The singular MS is smoothed by rolling a

smoothing probe sphere over the inward side of the singular MS. The MS in the vicinity of singularities is replaced with the
reentrant surface of the smoothing probe sphere. The smoothing method does not disturb the topology of a singular MS, and
the smooth MS is a better approximation of the dielectric border between high dielectric solvent and the low dielectric
molecular interior. The SIMS method generates a smooth molecular dot surface, which has a quasi-uniform dot distribution
in two orthogonal directions on the molecular surface, which is invariant with molecular rotation and stable under changes in
the molecular conformation, and which can be used in a variety of implicit methods of modeling solvent effects. The SIMS
program is faster than the Connolly MS program, and in a matter of seconds generates a smooth dot MS of a 200-residue
protein. The program is available from the authors on request (see http://femto.med.unc.edu/SIMS).

INTRODUCTION

In recent years a variety of methods have been developed to
calculate surfaces of molecules (Richards, 1977; Connolly,
1983a,b, 1985a,b, 1993; Perrot et al., 1992; Eisenhaber and
Argos, 1993; Eisenhaber et al., 1995; Varshney et al., 1994;
Pascual-Ahuir et al., 1994; Zauhar and Morgan, 1988; Zau-
har, 1995). A molecule is considered a collection of inter-
locking spheres, and three definitions of surface are used for
molecular modeling as defined by Richards (1977). The van
der Waals (VW) surface is the external surface of atoms,
each represented by a spherical ball of van der Waals radius.
The solvent-accessible (SA) surface is generated by the
center of a solvent probe molecule (modeled as a rigid
sphere of finite radius) when this rolls about the VW surface
of the molecule; the SA surface is equivalent to the VW
surface of the molecule with atoms of extended radius (sum
of actual van der Waals radius and van der Waals radius of
the solvent molecule). The molecular surface (MS) is gen-
erated by the inward-facing surface of the solvent molecule
probe sphere, when it rolls about the VW surface of the
molecule. The molecular surface consists of three types of
"faces" (i.e., "contact," "saddle," and "concave reentrant,")
where the probe touches the molecule atoms at one, two, or
three points simultaneously (Connolly, 1983a,b). The mo-
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lecular surface envelops a solvent-excluded volume of the
solute molecule, and is a better basis for representing hy-
drophobic association phenomena in water solvent than are
the SA or VW molecular surfaces (Jackson and Stemnberg,
1993, 1994, 1995). It is assumed that the MS is a good
approximation of a dielectric border between high-dielectric
polar solvent and the low-dielectric interior of the solute
molecule in continuum dielectric methods of self-consistent
reaction field (Zauhar and Morgan, 1988; Zauhar, 1995;
Rashin and Namboodiri, 1987; Rashin, 1990; Grant et al.,
1990; Sharp and Honig, 1990; Juffer et al., 1991; Vorobjev
et al., 1992). However, the SA molecular surface area,
which is simple to calculate, is also used in some empirical
methods of implicit treatment of solvent (Eisenberg et al.,
1986; Ooi et al., 1987; Vila et al., 1991; Ponnuswamy,
1993; Juffer et al., 1995).

Calculation of molecular properties on the MS and inte-
gration of a function over the MS need a numerical repre-
sentation of the MS as a manifold S(si, ni, Asi), where si, ni,
Asi are the coordinates, normal vector, and area of a small
element of the MS. Some methods that generate a dot
molecular surface provide a numerical presentation of the
MS as a collection of dot coordinates (with assigned dot
area) and outward normal vectors (Connolly, 1983a,b,
1993); whereas other methods (Varshney et al., 1994; Zau-
har, 1995) provide a triangulated dot molecular surface. Dot
triangulation makes it possible do a continuous interpolation
of surface functions on the MS. Methods of implicit mod-
eling of solvation effects (Juffer et al., 1995; Jackson and
Stemnberg, 1994, 1995) and, particularly, the boundary ele-
ment method of solution of the Poisson equation for a
molecule in a polar solvent (Rashin, 1990; Juffer et al.,
1991; Vorobjev et al., 1992; Vorobjev and Scheraga, 1997;
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Zauhar, 1995; Bharadwaj et al., 1995), need a good numer-
ical presentation of the MS to produce stable and reliable
results.
The strictly mathematically defined molecular surface of

complex molecules, like proteins, is a complex 3-D surface
with singularities, i.e., the direction of the normal vector is
not continuous in the vicinity of singular points of the MS.
The singularities often appear in deep crevices, where the
inward surface of the rolling solvent probe sphere can
intersect itself and produce a self-intersecting singularity.
Cusps and holes are two types of self-intersecting singulari-
ties of the MS that have been recognized (Connolly, 1985b;
Zauhar, 1995). To our knowledge, an accurate calculation of
the MS with accurate representation of self-intersecting
singularities of the MS has never been described.

It can be assumed that a MS with smoothed singularities
is a better approximation of the dielectric border between
high-dielectric solvent and a low-dielectric molecule (Zau-
har, 1995). Zauhar (1995) suggested a method of solvent
probe deformation that completely avoids the occurrence of
self-intersecting singularities in the MS and constructs a
smooth molecular surface. A major deficiency of Zauhar's
method is that it produces a smooth molecular surface
which, in terms of topology and atomic areas, differs un-
predictably from the strict, singular MS.
To achieve accurate numerical representation of surface

functions and surface functionals of the MS, the dot MS
must satisfy several conditions: 1) maximum homogeneity
of dot distribution; 2) adequate smoothing of the MS in the
vicinity of a singular points; 3) stability under variation of
the dot density; 4) independence of rotation of the molecule;
5) stability under change in the molecular conformation.
Development of a method of generation of the dot MS,
which satisfies these five conditions and gives a good nu-
merical representation of the MS of a molecule, is highly
desirable.
We found that several available programs, MSEED (Per-

rot et al., 1992; Vorobjev et al., 1992), Varshney's program
(Varshney et al., 1994), and Connolly's MS program (Con-
nolly, 1983c) provide a dot MS of poor quality. The fast
MSEED method (Perrot et al., 1992) is not completely
general, as it can not handle a free saddle surface, and the
MSEED-DOT program (Vorobjev, Performance of the
MSEED-DOT program, unpublished results) has problems
with deep concave and saddle faces (it does not remove a
self-intersecting surface), and frequently produces results
that are unstable to small perturbations of atomic coordi-
nates. Varshney's method (Varshney et al., 1994) produces
a triangulated surface with a large fraction of small triangles
(Vorobjev, Performance of the Connolly MS, MSEED and
Varshney methods with the boundary element method, un-
published results), i.e., the distribution of points on the
molecular surface is nonuniform, and more importantly, this
method lacks a general procedure for handling self-inter-
secting surfaces. Connolly's MS program (Connolly,
1983c) is the most reliable, i.e., it never fails and includes a

ing surface segments. Connolly's MS program does not
have satisfactory homogeneity of dot distribution, and pro-

duces a noninvariant dot distribution and atomic surface
areas, when the molecule is rotated in a fixed conformation
(Besler et al., 1990; Merz, 1992; Vorobjev, Performance of
the Connolly MS, MSEED and Varshney methods with the
boundary element method, unpublished results). None of
these methods produces a smooth molecular surface.

This paper describes a new method (SIMS, smooth in-
variant molecular surface) for generating a smooth molec-
ular surface. The paper 1) revises Connolly's method of
generation of the MS, 2) describes all types of self-inter-
secting singularities of the MS and an exact method for
calculating the singular regions of the MS, 3) describes a

method of calculation of an invariant molecular surface (i.e.,
invariant under molecular rotation and translation) with
quasi-homogeneous dot distribution, and 4) develops a gen-

eral method of smoothing of singularities of the MS and
generation of a molecular surface with specified minimum
radius of curvature. The SIMS method calculates a dot SMS
of good numerical quality, which can be used in a variety of
implicit continuum models of calculation of solvation ef-
fects (Juffer et al., 1995; Jackson and Sternberg, 1995), and
for molecular electrostatic calculations with the boundary
element method in dielectric continuum models (Vorobjev
et al., 1992; Vorobjev and Scheraga, 1997; Zauhar, 1995).

GENERATION OF SURFACE ELEMENTS

The SIMS algorithm starts from atomic coordinates ai, an

atomic radii set r,, and a solvent probe sphere radius rp. The
neighbor list of atoms around atom i inside the sphere of
extended radius rie = ri + rp is defined by a cubic lattice
method (Connolly, 1983c; Eisenhaber et al., 1995). Contact
triplets of atoms i < j < k, which can simultaneously be
touched by the solvent probe sphere, are defined. The sol-
vent probe positions Pijk and vertex coordinates vi, Vj, Vk

(i.e., contact points with the solvent probe sphere for the
contact triplet of atoms i, j, k) are calculated by Connolly's
equations (Connolly, 1983a,b). All solvent probe positions
Pijk for atomic pair i, j are calculated, and pairs of starting
and stopping positions p, p' of solvent probe rotation
around interatomic axis ij are defined, as illustrated in Fig.
1. Starting and stopping probe positions p, p' are associated,
respectively, with vertices vi, v' and vj, vj' and spherical
triangles (vivjvk) and (viJvj) on the solvent probe sphere.
These spherical triangles form reentrant concave (RC) faces
of the MS. Rotation of the solvent probe sphere between
respective starting and stopping positions produces a saddle
face S, which is a fraction of a side surface of a concave

cylinder generated by rotation of the arc (vi, vj) of the
solvent probe sphere around the interatomic axis ij by an

angle Os, as shown in Fig. 1. The faces are joined together
at common boundary arcs; a planar view of the MS between
four atoms i, j, k, 1 is presented in Fig. 2. The joint between

numerical procedure for removing the dots on self-intersect-
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FIGURE 1 Generation of the molecular surface by a rolling solvent
probe sphere. The contact points vi, Vk, Vk between the probe sphere in
position p and VW spheres of atoms i, j, k are the three vertices of a
spherical triangle that produces a reentrant concave face. Rotation of the
solvent probe sphere from position p to p' produces a saddle face (vi, vj, vi',
vj ). The point Os is the center of the atom-torus contact circle; rc is a radius
of the atom-torus contact circle; the saddle wrap angle is (viOv'); rt is the
radius of a slice of the saddle cylinder.

tangent plane at each point of the arc joining the faces, i.e.,
the direction of the normal vector of the tangent plane is a
continuous function of the surface point. The contact (C)
portion of the MS surface of atom i is a part of the VW
spherical surface of the atom i, which results in a cutoff of
the VW sphere by all atom-torus contact planes PL-j be-
tween atom i and neighbor atoms j. The atom-torus contact
plane PLii is orthogonal to the interatomic axis ij and passes
through the contact circle (i.e., through the pair of vertices
vi, vi), as shown in Fig. 2. The areas of the reentrant

concave, saddle, and contact convex faces, shown in Fig. 2,
can be calculated analytically with the formulas in table 3 of
Connolly (1983a).

Self-intersecting molecular surface

The simple molecular surface generated by Connolly's
method (Connolly, 1983a,b), illustrated in Fig. 2, becomes
complicated when the interatomic axis ij intersects the sol-
vent probe sphere, as shown in Fig. 3. In this case, the MS
becomes self-intersecting, i.e., a piece of the MS generated
by the inward face of the solvent probe in a first position p
can be overridden when the solvent probe moves to a
second position p'. Self-intersection of the MS creates two
problems. First, removal of the self-intersecting parts of the
MS is necessary to obtain the correct MS, i.e., the surface
that contains the solvent-excluded volume. Second, the cor-
rect MS in the vicinity of the self-intersecting regions is
singular in the sense that the direction of the normal vector
n(s) is discontinuous at the point s, s being a singular point
of the MS.
We describe an accurate method for defining and remov-

ing the self-intersecting parts of the MS and calculate the
correct MS. Three types of self-intersecting MS are de-
scribed. Removal of the normal vector discontinuity (i.e.,
smoothing of the MS) is important for improving descrip-
tions of surface functions and surface functionals, and meth-
ods of self-consistent reaction field calculation (Rashin,
1990; Juffer et al., 1991; Vorobjev et al., 1992; Vorobjev
and Scheraga, 1997; Sitkoff et al., 1994; Zauhar, 1995;
Bharadwaj et al., 1995).

Free saddle cusps

If the solvent probe sphere can rotate around the interatomic
axis ij between two contact atoms over the full angle of
Os = 2ii, as shown in Fig. 3, and the solvent probe sphere
arc (vivj) intersects with the interatomic axis ij, then the
saddle surface between atoms i and j converts into two

FIGURE 2 Illustration of planar mapping of the molecular surface. For-
mation of reentrant concave (RC), saddle (S), and contact (C) faces of the
MS. i, j, k, 1 are atom centers; p, p' are solvent probe positions; PLij is a
plane passing through the atom-torus contact circle.

FIGURE 3 Formation of singular free saddle cusps (shown in bold). p, p'
are twofold symmetrical positions of the solvent probe sphere against the
interatomic axis ij. Angles 0maX = (vi ptij), Omin = (vi pwi), respectively.

724 Biophysical Journal



Smooth Invariant Molecular Surface

separate cone cusps. The cusps are generated by rotation
about the axis ij of arcs (viwi) and (vjwj), respectively, as
shown in Fig. 3. The arcs (viwi), (vjWj) can be found and the
respective areas of a cusp can be calculated analytically as
the surface of revolution of the respective arc by the general
equation

Areas = ksrp[hij(Omax - Omin) - rp(sin Omax-sin 0min)]
(1)

where hij= tij is probe height, and the angles Omax and
omin are defined in Fig. 3. The point wi is a singular point of
the MS with undefined direction of the normal vector n(wi);
the same description applies to wj.

Holes

The second case of a self-intersecting surface occurs when
a contact triplet of atoms ijk has two symmetrical probe
positions p and p' relative to the base plane aiajak passing
through atoms i, j, k, as shown in Fig. 4. If the distance dpp
between the probe positions p, p' is less than the probe
diameter,

dpp =|p-p'l<2rp (2)

then the two symmetrical reentrant concave faces, RC and
RC', defined by the spherical triangles (vivjvk) and (vvJ'vj),
interpenetrate. Their self-intersection cuts off equal spheri-
cal cups in the RC and RC' faces and forms a closed-hole
singular surface in these RC faces, i.e., a circle with center
0 (Fig. 4). The circle 0 contains the singular points w of the
MS, where the direction of the normal vector n(w) is unde-
fined. The new area of each RC face with a closed hole can
be calculated analytically. The area of the spherical triangle
(vivjvk) (and symmetrical triangle (vJ'vj)) is decreased by
the side area of the spherical cup sphere of height ' =

Sr_ ~~~~~~~~~I
\ Pr /

' _*% _-0 /

FIGURE 4 Formation of a closed-hole singular surface. Atom centers
are i, j, k; p and p' are probe positions related symmetrically via the atomic
plane aiajak; point 0, the center of the closed hole, is the point of
intersection between interprobe axis pp' and atomic plane aiajak; point C
is the point of intersection between interprobe axis pp' and the probe
sphere p.

|OC[, where

2dppaPP' = 2-r (3)

The spherical cups are defined by the intersection between
solvent probe spheres in the positions p and p' and the base
plane aiajak, as shown in Fig. 4. The side area of the
spherical cup of the height 6pp' of the probe sphere is equal
to

ASRC hole =2wrp pp' (4)

A hole of more complicated shape, an open hole, occurs
for deep, self-intersecting symmetrical reentrant concave
faces when arc (vivj) (or one of arcs (ViVk), (vjvk)) intersects
with the base plane aiajak. For example, if arc (vivj), which
lies in the plane ajajp, intersects the interatomic axis ij, and,
consequently (cf. Fig. 4), the interatomic axis ij intersects
the circle 0, then the circle 0 will be opened and a singu-
larity of open-hole type will be formed. Analytical calcula-
tion of the area of the self-intersecting RC, RC' faces
forming an open hole is very complicated, and it is hardly
necessary, because the case of deep, self-intersecting sym-
metrical RC faces is expected to be very rare for an arbitrary
molecule. Therefore we use a numerical estimate of the area
of deep self-intersecting symmetrical RC faces.

In general, for any type of hole, a surface dot s associated
with area As on the RC face, generated by the solvent probe
position p, survives the intersection with the symmetrical
RC' face generated by the solvent probe position p', if the
point s is above the atomic plane aiajak,

1 p,12(p - s) -pp' <2 Ip' 5

By placing dots on the RC faces and counting the area of
surviving dots, the area of two self-intersecting RC faces
with open holes can be estimated.

Concave edges

A nonsymmetrical general case of a self-intersecting mo-
lecular surface occurs for deep saddle faces, when the
solvent probe sphere rotates between atoms i and j, and
intersects the interatomic axis ij, as shown in Fig. 5. Ifp and
p' are the starting and stopping positions of the probe
rotation around the interatomic axis ij (Fig. 5), then the
surviving inward surface of the rotating solvent probe,
which is outside the solvent-excluded volume, is defined by
the intersection between the probe spheres in the positions p
and p'. The surviving reentrant MS formed by the inward
surface of the solvent probe sphere consists of four surface
elements, as shown in Figs. 5 and 6. The first one is a piece
of the saddle face, which is a side surface of the cone
(viwiv') generated by the arc (viwi) while the probe rotates
from position p to position p'. The second surface element
is the RC face, the spherical triangle (vivjvk); the third
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the spherical triangle (vivjvk) can be calculated analytically
by applying the Gauss-Bonnet formula (Connolly, 1983a;
Do Carmo, 1976), which defines area A of a polygon on a
sphere of radius rp:

I (7r- a)+ kedl+ 2=21T
vertex edges J P

(6)

where av is an angle at vertex v, and ke is the geodesic
curvature of edge e. Using the value of geodesic curvature
of arcs of the small circle rc, ke = dI(rprc) (Connolly,
1983a), the area between two arcs is given by

AARC
a + _ d

r-2 =a f- oc (7)

FIGURE 5 Formation of a concave-edge singular surface. The solvent
probe sphere rolls between positions p and p'; these spheres are drawn with
heavier lines, and intermediate positions are shown with thin lines. Point Aii
is a projection of the interatomic axis between atoms i, j; w; is a point of
intersection of arcs (vivj), (vivj) with the interatomic axis ij. The shaded
area is part of the spherical triangle vi, Vj, Vk, which lies inside the solvent
probe sphere p'.

surface element is the RC' face, the spherical triangle
(vivjvl). The fourth element is a piece of the saddle face, i.e.,
the side surface of the cone (vjwjvj), which is generated by
the arc (vjWj) when the probe is rotated from position p to
position p'. The solvent probe spheres in positions p and p'
intersect over a small circle C with radius rc and center Oc;
therefore a part of the spherical triangle (ViVjVk) (shaded
area in Figs. 5 and 6) lies inside the solvent probe sphere p',
and a part of the spherical triangle (vJvvl) lies inside the
solvent probe sphere p. This self-intersecting removable
part ARC of the spherical triangle (ViVjVk) is the solvent
probe sphere surface between two arcs, an arc (wi, u, wj) of
great circle of radius of rp and an arc (wi, C, wj) of small
circle of radius rc, shown as shaded areas in Fig. 6 and in
Fig. 5. Area AARC of the deleted portion of the surface of

Vi

FIGURE 6 Formation of a concave-edge singular surface. Designations
are the same as in Fig. 5. Q. is the center of the contact circle between
solvent probe spheres p, p'; rc is a radius of the contact circle. The shaded
area is part of the spherical triangle vi, Vj, Vk, which lies inside of the solvent
probe sphere p'.

where a, 3 are the angles between arc (wi, u, wj) of great
circle radius rp and arc (wi, C, wj) of small circle radius r,
at vertices wi, wj, respectively; dc is the displacement of
center of the small circle Oc from the center p of the solvent
probe sphere 2dc = i' - pl; the radius of the small circle
is r: = r2- d2. the arc length of the small circle is 4 =
arccos(2hg/rc), where hc is the distance between center Oc of
the small circle and interatomic axis ij; the position of the
center of the small circle is Oc = 1/2(p + P').

GENERATION OF DOT MOLECULAR SURFACE

In the Introduction, we defined five conditions of good
numerical representation of the molecular surface. The
SIMS method has been developed to satisfy these condi-
tions as much as possible, while avoiding dot MS triangu-
lation to achieve good performance. In this section we
describe the generation of points on a spherical template and
methods of dot generation on reentrant concave, saddle, and
contact faces of the MS.

Dots on a sphere

Generation of a homogeneous distribution of points on a
sphere is not a trivial problem, several methods for which of
have been discussed in the literature (Le Grand and Merz,
1993; Eisenhaber et al., 1995; Bliznyuk and Gready, 1996;
Spackman, 1996). Random point selection (Woods et al.,
1990) is nonreproducible unless a large number of points
are used, - 1500 per atom, which is unacceptably large for
macromolecules. A constant arc length algorithm (Con-
nolly, 1983c) generates latitude and longitude arcs of ap-
proximately constant length 1 = ll/ds, where ds is the
density of points per A2, between points, and produces a
quasi-uniform dot distribution of a specified density on a
sphere. Because of the discrete nature of the problem, the
allowed number of points is a stepwise function, with gran-
ularity, Np= 6, 12, 14, 20, 23, 30, 34,44,49, 60, 64, 80, 85,
100, 106, 126, 129, etc. (Spackman, 1996).
Geodesic templates obtained by tessellation of the trian-

gular faces of the regular icosahedron (Pascual-Ahuir et al.,
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1994; Eisenhaber et al., 1995) produce approximately iso-
tropic arrays of points on the surface of a sphere. The
isotropicity of these geodesic templates can be further re-
fined, by minimization of a Q potential (Bliznyuk and
Gready, 1996), which is equivalent to the Coulombic energy
of interaction between points of equal charge on the sphere,
or a U potential, which maximizes the arc distance between
points on the sphere (Le Grand and Merz, 1993). The
granularity of the geodesic templates, i.e., the allowed num-
ber of points Np on a sphere, is equal to 12, 20, 32, 42, 60,
80, 92, 122, 162, 256, etc. (Spackman, 1996), and is quite
sparse compared to the granularity of the constant arc length
algorithm (Connolly, 1983c). In some applications, like
self-consistent reaction field calculations (Rashin, 1990;
Juffer et al., 1991; Vorobjev et al., 1992; Vorobjev and
Scheraga, 1997; Zauhar, 1995), a smooth granularity is
important for achieving fast calculations without loss in
accuracy.
The SIMS method uses the simple and flexible constant

arc-length algorithm (Connolly, 1983c) to generate surface
point templates on the solvent probe sphere and van der
Waals spheres of atoms. The SIMS algorithm calculates a
variable area Asi assigned to dot i, which is considered a
spherical rectangle with vertices at Oi +½± 80_,45 ±
½/2&)i(O), where bO5 = 1T/ngcr) 54i = 2 7T/nalt, and where ngcr'

nalt are the number of dots along a great circle and a small
circle at given altitude Oi. The variable-size spherical rect-
angles exactly cover the surface of a sphere, and this method
improves the stability of calculations of surface-related
properties compared to Connolly's algorithm, which assigns
an equal area to each dot (Connolly, 1983c). Analysis shows
that the standard deviation of the variable dot area Asi is in
the range of 11%, the greatest uniformity of the dot distri-
bution being observed in the equatorial region of the sphere.

Dots on a reentrant concave face

To distribute dots over a spherical triangle, we use the
precalculated dot template of the solvent probe sphere. The
solvent probe sphere dot template is placed in the respective
probe position p, and template dots are projected on the
spherical triangle (vivjvk) (Fig. 1). To achieve independence
of the projected dots on rotation of the molecule, the dot
template is calculated in the local coordinate system of the
spherical triangle. The local coordinate system is defined by
the three vectors from the center p of the solvent probe
sphere to the vertices vi, Vj, Vk. The longest median arc of the
spherical triangle is oriented to coincide with the equatorial
plane of the probe sphere, and the first dot is placed at the
center of the triangle. The area of the spherical triangle is
calculated analytically by the Gauss-Bonnet formula (6),
and the areas of projected dots are normalized to the ana-
lytical area. It should be mentioned that Connolly's MS
program (Connolly, 1983c) projects dots onto a spherical
triangle from a dot template in fixed orientation relative to
a laboratory coordinate system. Therefore the resulting dot

distribution depends on the orientation of the spherical
triangle, i.e., the local coordinate system of the spherical
triangle, with respect to the fixed laboratory coordinate
system, and consequently changes when the molecule rotates.

Dots on a reentrant saddle face

The dot distribution on saddle faces is generated by using a
method of equal arc length in two orthogonal directions
along two lines of main curvature of the surface. The first
one is along the solvent probe sphere arc (vivj), and the
second one is along the torus circle of rotation around the
interatomic axis ij (Fig. 1). The polar angle 84N of rotation
along a torus circle between two neighbor dots is equal to

641(r1) = 30,r (8)

where 60p is the polar angle between these dots along the
large circle of the solvent probe, and rt is the average radius
of the slice of the saddle cylinder for the dot. The surface
elements on the saddle face have a rectangular shape, and
the area assigned to the dot is calculated analytically by the
general formula (Eq. 1). This approach allows one to obtain
a quasi-uniform dot distribution on saddle faces.

Straightforward mapping of a saddle face to a planar
rectangle, as used by others (Connolly, 1983a,c; Zauhar,
1995), does not produce a quasi-uniform dot distribution on
a saddle face, because in 3-D space distances between dots
along the solvent probe sphere arc (vivj) and in the orthog-
onal direction on the surface along the torus circle can be
substantially different (Fig. 1).

Dots on a contact face

The dot distribution on a contact face of atom i is obtained
in three steps: 1) a dot distribution template on the atomic
sphere of given radius is calculated; 2) the dot template is
placed in position ai of the atom i in an orientation related
to the local coordinate system, which is defined by two
nearest-neighbor atoms j, k; 3) dots that lie inside torus ij,
i.e., on the spherical cup defined by the atom-torus contact
plane, as shown in Fig. 2, are removed. The resulting
polygon on the VW sphere of atom i has a quasi-uniform
distribution of dots. The total area of the spherical polygon
can be calculated by the Gauss-Bonnet formula (Eq. 6). The
areas of the dots of the contact face can be normalized to the
analytical area of the spherical polygon.

SMOOTHING OF SINGULARITIES OF THE MS

The SIMS method uses a new method, a smoothing probe,
to smooth singular regions of the MS. This method replaces
a singular portion of the MS by the smooth outward surface
of a smoothing probe sphere, which is rolled over the inside
of the MS. As has been shown above, three types of self-
intersecting singular regions of the MS (closed hole, open
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FIGURE 7 Smoothing of a singular molecular surface by rolling a

smoothing probe sphere. p, p' are the solvent probe spheres; Psm is the
smoothing probe sphere. BCB' is a singular molecular surface; (t, C, t') is
a singular portion of the MS in a vicinity of the singular point C, which is
replaced by the smooth surface (t, t') of the smoothing probe sphere.

hole, and concave edge) are produced by intersection of the
inward surface of two solvent probe spheres in positions p,

p' (Figs. 3-6). Suppose that a singular portion of the MS is
produced by intersecting solvent probe spheres in positions
p, p', as shown in Fig. 7. The arcs (AC) and (A'C) represent
the self-intersecting removable pieces of the surface, and the
arcs (CB) and (CB') are the actual singular molecular sur-

face. It can be seen that the MS in the vicinity of the singular
point C can be smoothed by rolling a smoothing probe
sphere of radius rsm over the outward surface of the inter-
secting solvent probe spheres p, p' around interprobe axis
pp', as shown in Fig. 7. The MS generated by the solvent
probe arcs C, t and C, t' is replaced by the surface generated

by the arc t, t' of the smoothing probe sphere in the position
P,m, where the points t, t' are the tangent points between the
smoothing probe sphere and the solvent probe sphere in the
positions p, p', respectively. The dots s of the MS are

removed and replaced by the dot template s' on the arc of
the smoothing probe sphere. The starting and stopping po-

sitions of the rotation of the smoothing probe sphere around
the interprobe axis pp' are defined as the points wi, wj (Fig.
6). The radius of the smoothing probe is equal to zero at the
points wi, wj and linearly grows to the regular value rtm
when the smoothing probe rolls away from the points wi, wj.
For the closed hole, the rotation angle of the smoothing
probe sphere is equal to 2ir, and the probe's radius is
constant. Singular cusps of free saddles (Fig. 3) are

smoothed by replacing the singular side surface of the cone

(viwivj) by the spherical cup t, t' of the inscribed smoothing
probe sphere, as illustrated in Fig. 7. The minimum radius of
curvature of the smoothed MS (SMS) is equal to the radius
of the smoothing probe sphere rsm. The smoothing probe
sphere must have smaller radius than the solvent probe and
any atom of the molecule. For practical calculations of the
SMS, a reasonable value of rsm is '0.5 A.

RESULTS AND DISCUSSION

Table 1 shows the number of dots Nc, NS, NRC on the
contact, saddle, and reentrant concave faces of the SMS of
three molecules, i.e., a 17-residue peptide in the a-helical
conformation, the 64-residue protein eglin, and the 224-
residue immunoglobulin GI, calculated by the SIMS pro-
gram. It can be seen that more than two-thirds of the total
area of the MS belongs to saddle or reentrant concave faces,
which provides an argument in favor of accurately repre-
senting these types of faces of the MS. The average areas

TABLE I Areas and number of dots for contact, saddle, and reentrant concave faces

SC* SS SRC
NC# NS NRC
ASC§ ASS ASRC

Molecule Residues Atoms S5Ascq $SS ASRC
17-Residue peptidell 17 278 492 540 372

2123 3361 1740
0.23 0.16 0.21
0.11 0.25 0.21

Eglin 64 1029 1210 1352 834
4422 6446 3577

0.27 0.21 0.23
0.15 0.29 0.25

Immunoglobulin 224 2161 2940 3428 2653
10742 16569 11010

0.27 0.21 0.24
0.19 0.34 0.27

Areas in A2.
* SC, Ss, SRC are the total areas of contact, saddle and reentrant concave faces, respectively.
# NC, etc. are the total numbers of dots on these faces.
§ Asc, etc. are the average areas per dot for these faces.
S8Asc, etc. are the standard deviations of dot areas for these faces, in %.
"17-Residue peptide Ace-ETGTKAELLAKYEATHK-NMe in the a-helical conformation.
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triGution onSotheuimolculre,o sunrfacedfo bythree-aomsytemmethdiiper dot for the different types of faces are within 40%. The

standard deviation does not exceed 19% for the contact

faces. The lowest value of 6Asc is found for the immuno-

globulin, with CHn groups treated as united atoms. The

17-residue peptide with all hydrogen atoms has the largest

values of Asc, tSASS,m ASRC. A careful investigation
(Bliznyuk and Gready, 1996) of the uniformity of dot dis-

tributions on the unit sphere, generated by different methods

of tessellation, reports standard deviations of dot areas in the

range of 7-11%. The values of SASS5, 6LASRC for saddle and

reentrant concave faces are twice as large as the value &SAc,
because generation of dots on these faces is more compli-

cated and is subject to more geometrical restrictions than the

generation of dots on a sphere. These reasonably low values
of the fluctuation of areas per dot confirms the quasi-

uniformity of the dot distribution of the generated molecular
surfaces. Visual evidence of the quasi-uniformity of the dot
distribution on the smoothed MS is shown in Fig. 8, which
depicts the dot distribution on the SMS of a three-atom
system. The MS of this three-atom system has a singularity
of closed-hole type on the reentrant concave faces. Smooth-
ing the MS by the smoothing probe method removes dots in
the vicinity of the singularity and adds dots on the surface of
the spherical smoothing probe, as described above. Table 2
shows the number (Nsing) of singular concave edges found
in the MS of three proteins. One sees that this number is
quite large for peptide and protein molecules, which sug-

gests that an accurate description of self-intersecting singu-
lar regions of the MS and correct removal of overridden
segments of the molecular surface are important. The new

smoothing method is a well-controlled procedure that does
not disturb the topology and insignificantly disturbs the
atomic areas of the singular, strict MS.

It can be seen from Table 2 that the CPU time for the
SIMS method is in the range of seconds for a protein with
several thousand atoms; calculation by SIMS is twice as fast
as Connolly's MS program (Connolly, 1983c). The SIMS
computation scales as O(Nat).

It should be noted that Connolly's MS program generates
a numerical presentation of the dot molecular surface of a

molecule, i.e., the number of dots, dot positions, and total
area, which are not invariant during rotation of the molecule
(Besler et al., 1990; Merz, 1992). It is shown in Table 2 that
the standard deviation ISrot of the area of the MS of a

randomly rotated molecule is in the range of 0.3-1.0% of
the total area. This deficiency of Connolly's program is due
to the method of projection of dots on contact and reentrant
faces from a spherical dot template that is kept in a fixed
laboratory coordinate system. The SIMS method uses a

local coordinate system for each contact triplet of atoms,
which makes the result dot distribution and the MS surface
area invariant to the molecular orientation.

Figs. 9 and 10 demonstrate stability of the SIMS numer-

ical representation of the molecular surface versus dot den-
sity. The areas were calculated by Connolly's MS program

(Connolly, 1983c) and by the SIMS program. It can be seen

that the SIMS method produced much more stable results
than the MS program and converges well when the dot size
is decreased. The SIMS results show insignificant depen-

TABLE 2 Timing of the SIMS program

Molecule Atoms tSIMS* tMS N..ing SMs1 ASrt11 SsIMs***

17-Residue peptide 278 2.0 3.5 43 1409.3 9.1 1403.7
Eglin 1029 3.1 5.1 64 3412.8 12.3 3395.8
Immunoglobulin 2161 6.5 17.2 176 9027.9 19.7 9021.7

* CPU time in s (SGI Power Onyx R10000 processor).
# CPU time for Connolly's MS program (Connolly, 1983c).
§ Number of singular regions (i.e., holes, concave edges).
¶ Average total area of the MS over 100 random rotations of the molecule calculated by Connolly's MS program (area in A2).
Standard deviation for the total area of the MS over 100 random rotations of the molecule for Connolly's MS program.

** Total area of the SMS calculated by the SIMS program (area in A2).
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FIGURE 9 Area of the molecular surface of eglin as a function of the
average dot size. *, Results of the SIMS method; 0, results of Connolly's
MS program (Connolly, 1983c).

dence on the dot density, because the total area is calculated
as a sum of areas of all dots of the SMS, where the area of
each dot is calculated analytically, whereas in the MS pro-
gram the dot areas on a dot template sphere (the solvent
probe or atomic spheres) are all equal, and the number of
surviving dots in singular regions of the MS is a step
function. Fig. 10 shows the free energy of polarization in a
high-dielectric solvent based on calculation of the polariza-
tion charge density on the molecular surface of the protein
eglin. The polarization charge densities have been calcu-
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FIGURE 11 Total area of the SIMS molecular surface of the protein
eglin along a molecular dynamics trajectory. The trajectory was calculated
with the SigmaX program (Hermans, 1995), with the cedar force field,
explicit SPC water molecules, periodic boundary conditions, an integration
time step of 2 fs, the Shake method to constrain bond lengths, and a cutoff
radius of 10 A for nonbonded interactions.

lated by the multigrid boundary element method (Vorobjev
and Scheraga, 1997) with the dot MS generated by the
Connolly's program and the SIMS program. This test dem-
onstrates a significant superiority of the SIMS method over

the Connolly's MS program in its ability to calculate a

numerically stable dot MS.
To estimate the stability of the SIMS method under small

molecular conformational changes, we have calculated the
SMS area and free energy of polarization of water solvent
along a I-ps molecular dynamics trajectory of the protein
eglin for a sequence of conformations at intervals of 10 fs
(or five time steps). It can be seen that the total molecular
surface area (Fig. 11) and partial atomic surface areas (Fig.
12) are smoothly varying functions. Fig. 13 shows the free
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FIGURE 10 Free energy of polarization of water solvent by protein
eglin, calculated by the multigrid boundary-element method (Vorobjev and
Scheraga, 1997), as a function of the dot size used to calculate the dot MS.
A, Results from the SIMS method; 0, results from Connolly's MS program

(Connolly, 1983c).
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FIGURE 12 Exposed areas of three atoms of eglin along a molecular
dynamics trajectory: NW of Lys 2 ( ), 0 of Ser 3 (.), and Ca of Glu
17 (---).
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FIGURE 13 Free energy of polarization of water solvent (-) and intra-
protein Coulombic energy (0) of eglin along a molecular dynamics tra-
jectory.

energy of polarization of water solvent and the intraprotein
Coulombic energy of eglin. The free energy of polarization
is a complex functional of the MS and varies as smoothly as
the intraprotein Coulombic energy. The data presented in
Figs. 11-13 are clear evidence that the SIMS method pro-
vides a representation of the molecular surface that is nu-
merically stable versus small conformational changes of the
molecule.
The SIMS method is implemented in fortran77 and is

available from the authors on request (see http://femto.
med.unc.edu/SIMS).
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