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On the Calculation of Magnetic Fields Based on Multipole Modeling of
Focal Biological Current Sources

Guido Nolte and Gabriel Curio
Neurophysics Group, Department of Neurology, Klinikum Benjamin Franklin, Freie Universitat Berlin, 12200 Berlin, Germany

ABSTRACT Spatially restricted biological current distributions, like the primary neuronal response in the human somato-
sensory cortex evoked by electric nerve stimulation, can be described adequately by a current multipole expansion. Here
analytic formulas are derived for computing magnetic fields induced by current multipoles in terms of an nth-order derivative
of the dipole field. The required differential operators are given in closed form for arbitrary order. The concept is realized in
different forms for an expansion of the scalar as well as the dyadic Green's function, the latter allowing for separation of those
multipolar source components that are electrically silent but magnetically detectable. The resulting formulas are generally
applicable for current sources embedded in arbitrarily shaped volume conductors. By using neurophysiologically relevant
source parameters, examples are provided for a spherical volume conductor with an analytically given dipole field. An analysis
of the signal-to-noise ratio for multipole coefficients up to the octapolar term indicates that the lateral extent of cortical current
sources can be detected by magnetoencephalographic recordings.

INTRODUCTION

Magnetoencephalography (MEG) uses superconducting
quantum interference devices (SQUIDs) to measure the
minute magnetic fields generated by currents in cortical
neurons with a high signal-to-noise ratio. The "primary" (or
"impressed") intraneuronal currents are accompanied by
extracellular ("volume" or "return") currents that extend
throughout the volume conductor (i.e., the head) and com-
plete the current circuit. Commonly, the magnetic fields
measured outside the volume conductor are explained by
modeling the primary neuronal current distribution by an
equivalent current dipole that indicates in particular the
"center of mass" of the activated neuron population. The
information content of high-precision MEG measurements,
however, may allow for an even more detailed description
of spatial features of the underlying current source distribution.

Depending on the expected source configuration, differ-
ent source models are adequate, e.g., a sum of few dipoles,
a dipole field (Mosher et al., 1992; Lutkenhoner et al.,
1995), or a multipole expansion. While a sum of a few
dipoles is appropriate for a small number of spatially well-
separated sources consisting of essentially pointlike regions
of activity, both the dipole field approach and the multipole
expansion intend to describe a distributed source current
density with an essential finite extent (Fig. 1). The crucial
difference between these two approaches is found in the
number of degrees of freedom: in a dipole field reconstruc-
tion, the measured data do not contain sufficient informa-
tion to uniquely determine all of the dipole moments to be
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estimated. Hence the introduction of regularization terms
(like minimum norm) is inherently necessary; accordingly,
the reconstructed current density depends critically on the
choice of the regularization parameter. In contrast, multi-
pole coefficients can be uniquely determined if they are
used to model those source components that produce a
nonvanishing field outside the volume conductor (Sarvas,
1987). Thus, in view of reconstruction algorithms, the mul-
tipole approximation is mathematically close to the approx-
imation of a few dipoles, but it describes extended sources,
as does the dipole field approach.
Up to now, magnetic fields induced by current multipoles

were calculated only for those cases for which the contri-
butions from volume currents vanish, e.g., for the radial
component of the magnetic field in the case of a spherical
volume conductor (Nenonen et al., 1985) or for the normal
component in the case of an infinite half-space (Erne et al.,
1988; Haberkorn, 1994). Volume contributions of current
quadrupoles for a spherical volume conductor were in-
cluded only in Fieseler (1995).

In this paper we present a method for calculating the
magnetic field, induced by a current multipole of arbitrary
order embedded in arbitrarily shaped volume conductors,
from a given dipole field. The method is rooted in the
well-known observation (in the case of a scalar multipole
expansion) that, for example, the magnetic field of a current
quadrupole can be expressed as the difference between the
fields of two identical current dipoles with opposite sign and
with origins slightly shifted against each other. Because it is
understood to take the limit of zero distance and infinite
dipole strength, the resulting magnetic field is given by the
derivative of a dipole field with respect to the dipole's
origin.

This relation seems to be almost unexploited in the liter-
ature. Exceptions are the calculation of the electric potential
of a current dipole as the derivative of the potential due to
a charge monopole (de Munck, 1988; Zhang and Jewett,
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Binf induced by J' in an infinite homogeneous volume con-
ductor can be written as

BiAf(r) = V X dV' 1. -I41T J (1)

and a multipole expansion is defined through the expansion
of the Green's function:

dpole + octapole

FIGURE 1 Multipolar description of brain current sources. The case of
a focal neuronal activity can be studied in the hand respresentation area of
the primary somatosensory cortex located in the anterior wall of the
postcentral gyrus, where a circumscript neuronal response is evoked in
Brodman area 3b pyramidal cells at -20 ms after electric stimulation of the
contralateral median nerve at the wrist. Because of the neuroanatomy of the
activated cell population (with elongated parallel apical dendrites, which
are oriented tangentially to the skull and orthogonally to the central sulcus),
this focal current source may be reasonably approximated as a laterally
extended, one-dimensional current distribution that can be modeled by a
dipolar plus octapolar term of the multipole expansion (the quadrupolar
term vanishes in the case of source symmetry). The octapole coefficient is
related to the standard deviation oa of the source distribution.

1993) and the calculation of the magnetic field induced by
the volume current of a current dipole as a derivative of a
"monopole field" (Ferguson and Durand, 1991, 1992; Du-
rand and Lin, 1997). Here we develop a theory valid for
multipoles of arbitrary order as well as for arbitary volume
conductors.
The multipole expansion of the scalar Green's function is

conceptually simpler, and we present in the second section
the general formalism for this representation. In the third
section a modified version, consisting of an expansion of the
dyadic Green's function, is deduced; this expansion is in-
trinsically free of redundancies and allows for a separation
of electrically silent components. In the fourth section we
elaborate on the physical interpretation of multipolar source
descriptions, and in the fifth section we show fields for two
instructive examples using neurophysiologically relevant
current source parameters. We finally discuss the results
from the perspective of biophysical applications in the sixth
section.

SCALAR EXPANSION

General scalar multipole expansion

Using the common splitting of a total current J into a
volume and a primary part, J = Jv + J', the magnetic field

1
r r'l fn,mn,m

(2)

where fnmn() is a function of order r- 1, and fm.(') is a
function of order r' . Binf(r) can now be written as

Binf(r) =--. 2 anm X Vfnm(r)
nm

(3)

where

anm = dVJ ()fnm(rr) (4)

are the multipole coefficients of J'.
The magnetic field outside a volume conductor is com-

puted by applying a solution operator L to YI. For example,
if the volume conductor is a homogeneous sphere, the
volume currents do not generate a radial magnetic field
component, and thus L consists of the following procedure:
compute the radial component of Bi.f, integrate from a given
point r along the radial direction to infinity (which gives the
magnetic scalar potential), and take the gradient to get the
magnetic field B(r) (Sarvas, 1987). In short: B L(J').

It is important to note that 1) L is linear and 2) L does not
depend on J' (it is applied to J'), particularly not on a
multipole's position. These properties are generally valid
and are not restricted to the spherical volume conductor.

Here we apply L to a "pure" multipole current, i.e., a
current with a single nonvanishing multipole coefficient
placed at r , which is defined by the property

J dVJ (r VmaVm n (5)

for some fixed mo and no.

Example: magnetic field of a quadrupolar
current source

As a first step beyond the dipole we take the term containing
fl-I from the quadrupole (Katila, 1983; Fieseler, 1995),
which is defined throughfi_l() = y,fio(P) = z, andf10 =
x, and we let 'a point in the x direction with magnitude a.
Because the dipole is defined through foo(Q) = 1 and all
other multipoles contain higher order polynomials, partial
integration in Eq. 5 shows that the quadrupole current can
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be given explicitly by

)= - = +(g) ay ( -

The magnetic field can now be calculated as

Bquad =L(J) = L rdyo(°) 63(roro))

fnm must be a sum of nth-order partial derivatives. As a trial
ansatz for the operators, we choose

(6)

(7)

= ago L((n)
-r ro) = a-Bdip

trial a a a a a a
tnm (dx' d fn ' ay' dzJnkax'ay,'az ox' ay' az) (10)

i.e., the Cartesian coordinates are replaced by the respective
derivatives. Inserting the general form (Eq. 9) into Eq. 8
gives

~trial a a a~, \
fnr dax ay azgnm( Y )Ix-y=x-z=o

= , k!l!(n-k-1)!(ai )2 > O (II)
kl~~~~~~~~k

and

where L is now applied to a pure current dipole in the x
direction at position ro with a solution that is well known in
the case of a spherical volume conductor (Ilmoniemi et al.,
1985; Sarvas, 1987). (We emphasize that the notions "cur-
rent dipole" and its "magnetic field" Bdip in this context are
only formal, because these expressions do not have the
dimensions of a current dipole or a magnetic field, respec-
tively. The reason is that the "dipole moment" a is physi-
cally a quadrupole moment. However, mathematically the
argument of L is proportional to a current dipole with a
dimensionful proportionality constant. Because of the lin-
earity of L, the resulting "magnetic" field will also be
proportional to a "real" magnetic field with the same pro-
portionality constant. Differentiation with respect to yo at
the end of the calculation will result in a field with proper
dimensions; this kind of formal notion occurs throughout
the paper.)

General case: magnetic field of multipolar
current sources

To express the magnetic fields in general as (more complex)
derivatives of a dipole field, one must find the "dual"
differential operatorsfnm(a/ax, a/ay, a/az), which fulfill the
"orthonormality relation"

ta aad
finm (XI Y-, Z-fI(=, y, = 56mi'nfl\ax, ay aZ (8)

This notion of "orthogonality" is equivalent to the usage
by Wikswo and Swinney (1984), in which multipole
charges up to octapole order were constructed as a limit of
differences of charge monopoles.

Because fnm is a polynomial of degree n with the general
form

fnm(x, y, z) = I a
n, XkylZn-kI

ki

(dxm ;': )f,,(x, y, z)IX=Y=Z=0 = 0 Vn 0 ni

(12)

Equation 11 also holds if one takes linear combinations of
fnm (andfnm) into account with new coefficients d u", show-
ing the independence of the set of operators. Thus the trial
operators form a basis in the operator space. According to
Eq. 12, the final fnm can in general be expressed as linear
combinations of thosef'ial that are of the same order, and in
the worst case for a given order, one is left with a finite
algebraic problem.
Once these dual operators are found, partial integration in

Eq. 5 shows that a pure multipole current at position ro can
be written as

(13)
-*I (- - ) =(-)Io ao (V), (--- )

= a4nomo('VO),5(r -ro)
and analogously to the quadrupolar example above, the
corresponding magnetic field is

B(r) = nomo(VO)Bdip(a, rO r) (14)

The operators V and VO differentiate with respect to the
coordinates r and IO, respectively.

Expansion in spherical harmonics

Here we study the expansion of the scalar Green's function
in spherical harmonics (Y.) (Geselowitz, 1965; Burghoff et
al., 1991)

1 f fR(nm f (- f Ifn( I
- =I E m=02n+l nm + i2n+lfnm(; )

n=O m=O
(15)

with fRm + ifXm = rnY'. Getting the form of Eq. 2 is a
matter of notation.

It is shown in Appendix A that this representation is
already orthogonal in the sense of Eq. 8 (withf = fAial), and
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the properly normalized dual operators can be give
closed form ((2n- 1)!! = 1 3 * 5 * ... - (2n- 1))

R R (a aa (26-mo) (n-rm)! RjI a a
nmdx' oy az (n + m)!(2n-1)!! nm \

or, equivalently, as

aR a , *Ia a a A

f ax' ay' d) + aJnmkax, ay' az)
(2-mo) a a \/ n-m
(n + in)! -+ il-J
(n+0! ax ay/ az/

Summary

We can express the magnetic field B(r) due to an arbitrary
current J' with multipole coefficients anm + ibnm at position

given by the expansion of the dyadic Green's function
(Grynszpan and Geselowitz, 1973; Haberkorn et al., 1992)

az) B Re E a(Anm + iBum)u X"V
(16) 4eT n=l m=O /

x n

+ 4 Re E (a + inm)V r+ln BEnf+ BMf
n=1 m=0

(17) with "electric" multipole coefficients

Anm + iBnm = gnmf dVJ * VY'mr'
and "magnetic" multipole coefficients

anm + ignm =-n+1I

(20)

(21)

IdV(irXJ) - VY'r' (22)

anm + ibnm = J dVJ ()(fnm(r-_O) + mi*( - 'ri)) (18)

as the sum of all multipole fields,

mn-m

(2 -Smo) a a 0 a

B(xn=O m=O (n + m)a! d _ i zo

(19)

(Bdip(anm, r, ro) + iBdip(bnm' r, to))

where Bdp(cnm' r,r) is the magnetic field at point r due to
a current dipole of magnitude cnm at position r. Note that
the differential operator is complex conjugated to give pos-

itive contributions from the imaginary parts. (Again, BIip
does not have the dimension of a magnetic field; only the
final result has.)

This scalar representation, however, is flawed by redun-
dancies. For example, a current with coefficients alo = Jez,
all= Jx, and b1I = My produces no field. This is usually
cured by taking only a reduced number of linear combina-
tions of multipole coefficients into account (Wikswo and
Swinney, 1984), which is a basis transformation and can in
general spoil the orthogonality relation (Eq. 8). If one de-
scribes the basis transformationfnm> gnm with (2n + 1) X

(2n + 1) block matrices An (gnm = XIAm fnl), then the
operators transform with Bn (An )T (gnm = BEmlfinl)
Now those coefficients with zero magnetic field can be
omitted.

DYADIC EXPANSION

Formulation of the expansion

An alternative multipole representation, which makes it
possible to separate electrically silent source components, is

where g. = (2 - 8mO)[(n - m)!/(n + m)!].
Bi.f is again the magnetic field for an infinite homoge-

neous conductor. The "magnetic" components are already
written as a gradient of a scalar function. They are always
curl free, are not affected by the volume conductor (hence
BM = B_f), and cannot be observed electrically. The notion
"magnetic" refers to this property, and we will only have to
analyze the "electric" components.

Notably, the magnetic fields generated by the "electric"
multipole components cannot be written as derivatives of
dipole fields as in the second section, above. For example,
a difference between two current dipoles will in general
contain a "magnetic" source component wherever we put
the expansion point. Partial integration in Eq. 21 shows that
the expansion is not based on J1 but on VJ', but neither J' nor
the magnetic field is uniquely determined by the knowledge
of VJ'. We thus have to formulate the theory solely in terms
of VJ; this can be done by splitting the total magnetic field
into a primary current part and a volume current part, where
the latter depends only on V.1 but not on V X JY. The magnetic
field induced by a volume current can then generally be
expressed analogously to the previous section as L(VJY),
where L is the linear solution operator for this problem.

Monopole field

In principle one could now compute the volume contribu-
tion for a current dipole, and the volume contribution of a
current multipole ("multipole volume field") could then be
expressed as a derivative of the former. However, this can
be simplified significantly because for the dipole volume
fields, according to the nonzero coefficients Alm + iBim =
fdV(-V!)rY",m, where rY? = z and rYl = x + iy, the source
-VJ (now evaluated at position r) is itself given as a
derivative:

-VJ=- Alo +AIll +BIl- J r_ro) (23)

1 256 Biophysical Joumal



Magnetic Fields of Current Multipoles

By applying the same reasoning as in the second se
above, the magnetic dipole field can now be written
derivative of a "monopole field" Bmon, eg.

L(-VJ') = L(All ax r -ro

= All d L(r(r-o)) =4T a Bmon

However, L cannot be applied to a charge monol
because a net charge different from zero implies a net
of the electric field out of the volume conductor diff
from zero, which is inconsistent with the boundary c(
tions. Thus here we will define L(83( -r )) (and h
Bmon) by the property that its derivatives give the respe
dipole volume fields. The existence follows from the
that each component of L(-VJ') is "curl free," e.g.,

ction The operators fR,I(Vo) can be drawn in front of L, which
as a itself is (formally) applied to a monopole source r-ro

The result is the volume current contribution to which the
primary current contribution has to be added, finally ending
up with

I0 n/

(24) - P_ E 1B= 4 Re\i (Anm+ iBnm)\Bnm (n m)!
n=1 m=O

a a _m_ n-m
+ )

ax0 i ay0 az)Bmon(rI PO)) + B

(28)

where

nm = rX Vn+i

axo, ayo 1( - P0)) ayo (x (r- A)) (25)

We found the monopole field defined above to be iden-
tical to the one introduced by Ferguson and Durand (Fer-
guson and Durand, 1991, 1992; Durand and Lin, 1997);
there are, however, formal differences. First, the monopole
field appeared here naturally in the context of multipole
fields used in the expansion of the dyadic Green's function.
Second, its existence is shown formally, which is more
compact than the physical approach of Ferguson and Du-
rand (1992). Third, the final formula for the monopole field
in a spherical volume conductor (Eq. B5) includes rotations
to arbitrary monopole positions explicitly showing its
symmetry.
The monopole field was defined through its derivatives

with respect to r , and hence it is unique only up to an
additive function of r. A convenient way to fix this function
is to_choose Bmon(r, RO) = 0 for an arbitrary reference point
Ro. Bmon(r, ro) then corresponds to the magnetic field of the
volume current induced by a monopole with positive charge
at r and a monopole with negative charge at Ro (Ferguson
and Durand, 1992).

In Appendix B we show that Bmon for the spherical
volume conductor with the reference point placed in the
center of the sphere is given by

PHYSICAL INTERPRETATION OF MULTIPOLAR
SOURCE DESCRIPTIONS

It is the central feature of the multipolar source description
to reconstruct only those aspects that are backed by data: by
setting an upper bound for the order of multipole expansion,
it does not try to reconstruct a priori unresolvable details of
the current distribution.

For illustration, we will consider a primary current with
fixed direction distributed on a straight line with coordinate
f. The primary current can be written most generally as
J(A) = ag(o) with fixed vector a and a scalar function g.
Because the current distribution, and accordingly also the
expansion, is one-dimensional, there is only one multipole
for each order. After omission of the index m, the polyno-
mials fn (see Eq. 2) and the respective dual operators fn are
given by

fn(=) n (29)
and

^ z a A1 an
fn ) n!a (n

Choosing the coordinate ( such that the expansion point
is at ( = 0, the multipole coefficients are

(31)
(26)

The full magnetic field can be calculated with Eq. 14:

(30)

Summary
For multipole coefficients Anm + iBnm, the source - VJI is
given by

IV"IAn^R Bn
o-VJ = ( fnm(VO) + -fnm(VO) (r- "o) (27)

gnm gnm

(32)(r) = I n!agn Bdip(a, r, )=o
n=O

where Bdip is the dipole magnetic field due to the dipole
moment a.

This example may be regarded as a special case of the
three-dimensional Taylor expansion of the Green's function
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(Wikswo and Swinney, 1984), with a coordinate system that
includes the straight line as one axis. All terms that contain
the two coordinates orthogonal to ( may be ignored because
the respective multipole coefficients vanish identically.
Assuming in a first approximation that g(g) does not

change sign and that it is symmetrical around ( = 0, the
multipole coefficients (Eq. 31) can be interpreted as statis-
tical moments of the stochastic variable ( with (nonnormal-
ized) probability density g(o). Accordingly, the dipole mo-
ment corresponds to the normalization, the quadrupole
moment vanishes (because of the symmetry), and the octa-
pole moment is related to the variance (cf. Fig. 1). The
lateral spatial extent of the current density may reasonably
defined by the standard deviance of (:

a= )var(() = a (33)

Hence the multipole expansion can provide a meaningful
expression for the spatial source extent, which does not
explicitly refer to eventually unresolvable details of the
current distribution.

If the symmetry requirement is relaxed, the expansion
point must be put at the "center of mass" of g(o) to keep Eq.
33 valid. This corresponds to the vanishing of the quadru-
pole coefficient. In principle, the center of mass can be
found by a multipole fit with omission of the quadrupole
term. Up to octapole order, the procedure will then be
identical to the symmetrical case.
As long as the multipole expansion is cut at some fixed

order, only an approximate reconstruction can be obtained.
The reason is that higher order corrections are in general n6t
orthogonal to the low-order fields. Their parallel compo-
nents are erroneously ascribed to the respective recon-
structed low-order coefficients. For example, the result of a
dipole fit is not the true equivalent current dipole but an
approximation, which is necessarily distorted by higher
order source terms. Similarly, a fit up to octapolar order will
not provide the true spatial extent, even for noiseless data.
However, the approximation can be expected to be very
good; e.g., given the brain source model of the next section,
the estimated spatial extent would be only 1.5% too small.

Restricting the source model, like cutting a multipole
series, is adequate when an inverse calculation does not
have a unique solution. For example, this occurs for a finite
number of sensors, but can also occur for an infinite number
of sensors with finite size, as in Wikswo and Roth (1988),
Roth et al. (1989), and Tan et al. (1990). To make the
inverse calculation stable, the authors introduced spatial
low-pass filtering, which can be related to the multipole
expansion. To see this, the current density g() can be
rewritten as a sum of pure current multipoles (see Eq. 13):

00) ( I)nan an ( 34
n! 5((34)

n=O

The Fourier transform g(k) = fd&-ikfg() is given by

g(k) = an!(-i)nkn
n=O

(35)

which is the Taylor series of g(k) around k = 0.
In correspondence to a low-pass filter, which keeps only

low-frequency components, the lower terms of a Taylor
expansion provide information on the low-frequency behav-
ior. It should be pointed out that a Taylor expansion of a
function g(k) to finite order is generally a bad approxima-
tion for large k: an integrable function g(k) will be approx-
imated by a function that diverges for k -° co. Analogously,
cutting the expansion in Eq. 34 at arbitrary but finite order
always results in an approximation of g() that is strictly
local and cannot be square integrable, although the original
g(4 might be.
The triuncated multipole expansion is not supposed to

approximate the current density as a whole function. The
multipole (or Taylor) coefficients only describe bulk prop-
erties of the current density as discussed above. It is useful
to visualize pure multipoles, as was done quite generally for
electric potentials in (Wikswo and Swinney, 1984) and for
magnetic fields and electric potentials in (Wikswo and
Swinney, 1985). An expansion of the Green's function in
spherical harmonics was used in the latter paper, where an
effective theory for the forward calculation of magnetic
fields was used. Formally speaking, this multipole expan-
sion is "purely magnetic" or "purely electric" in the sense
that the fields only depend on sources and sinks of 'r X J or
.1, respectively. This led'to the possibility of alternative
configurations (A arid B) as illustrated in Fig. 2. The qua-
drupole currents of A and B have the same sources and
sinks; thus they have the same electric quadrupole moments
of the dyadic multipole expansion. In the dyadic expansion
presented in the third section above (Dyadic Expansion),
configurations A and B are not pure multipoles, because
both configurations have, in addition, nonvanishing mag-
netic multipole moments with opposite signs. Only for the
average of A and B (i.e., configuration C) do all magnetic
multipole coefficients vanish.

A B C

FIGURE 2 Current configurations representing a quadrupole in the ex-

pansion of the dyadic Green's function. If only electric coefficients are

taken into account, A and B are alternative configurations with the same

multipole coefficients. However, only averaging A and B, leading to
configuration C, results in a pure electric current quadrupole, a configu-
ration with vanishing magnetic multipole components.
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EXAMPLES

All example fields presented here were calculated using a

spherical volume conductor as a first-order approximation
for the head for which the dipole (and monopole) field is
analytically given. Calculation of the derivatives is straight-
forward. However, the resulting expressions, computed
with the program Maple, are in general too lengthy to be
presented explicitly. We checked the found formulas for the
case of a spherical volume conductor. The magnetic field
must fulfill two conditions: 1) it must be curl free, and 2) the
radial component must be equal to the corresponding field
component in the case of an infinite homogeneous volume
conductor.

For the scalar expansion in the second section above
(Scalar Expansion), the first condition is fulfilled, because
the magnetic field was derived from a curl-free field by
application of a differential operator that commutes with the
curl. In fact, the whole derivation could have been done
equally well with the magnetic scalar potentials. The second
condition was checked explicitly for the quadrupolar exam-

ple field above.
The situation is quite the opposite for the dyadic expan-

sion. The second condition is fulfilled, because the volume
contribution was separated, and, because of the cross-prod-
uct with 'r in Eq. 26, it cannot generate a radial component.
We checked the first condition for all multipoles up to the
octapole.

For a first illustration we plotted the z component of
magnetic fields induced by three current multipoles in a

spherical volume conductor and compared them to the re-

sults in a half-space (Fig. 3). The effect of the spherical
volume conductor is mainly a scale and magnitude trans-
formation; this is expected because the sphere is an axially
symmetrical deformation of the half-space. However, in

case of the octapole field (A31), where the two side extrema
are larger, whereas all other extrema are smaller for the
spherical volume conductor than for the half-space conduc-
tor, it becomes evident that the magnitude transformation
does not follow a simple rule.
As a second example we discuss a "realistic" case in

some detail. Similar computations were made by Okada
(1985) and Pelizzone and Hari (1986), however, without
describing corrections to a dipole field as higher order
multipole fields. We numerically calculated the magnetic
field of a "typical" neocortical source with finite lateral
extent, which was constructed as a model for the current
distribution in the hand area of the primary somatosensory
cortex evoked 20 ms after electric median nerve stimulation
(N20, Fig. 1; cf. Hari et al., 1993); it was approximated by
400 parallel dipoles (pointing in the x direction) with a total
dipole moment J = 10 nAm, uniformly distributed along a
line (elongated in the y direction) of length d = 2 cm with
its center at the point x = y = 0 and z = 6.5 cm (the center
of the spherical volume conductor is the origin of the
coordinate system), and compared the result to the multi-
pole expansion (Fig. 4). We assumed a sensor configuration
measuring the z component of the magnetic field, again in
the plane z = 10.5 cm.
The octapole coefficients for the dyadic product expan-

sion read A31 = -Jd 2/48, A33 = -Jd 2/96, and (321 =

-Jd 2/36, where J = All is (the x component of) the dipole
moment. However, for this case it is easier to use the
expansion of the scalar Green's function as in the preceding
section, with an = 2-fdl + 1/(n + 1) for even n and an = 0
for odd n.

Fig. 4 shows that the convergence of the multipole series
is very fast: the first nonvanishing (the octapolar) correction
term to the dipolar approximation reduces the relative field
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10

FIGURE 3 Contour maps of the z
component of magnetic fields in the
plane z = 10.5 cm generated by cur-
rent multipoles embedded in a half-
space (upper row) and a spherical
volume conductor (lower row). The
dipolar, quadrupolar, or octapolar
current sources were placed at posi-
tion x = y = 0 and z = 6.5 cm (center
of sphere at x = y = z = 0). The
multipole moments are arbitrary but
are equal for sphere and half-space.
Starting with the first nonzero con-
tour level, which was chosen to be
equal for the two volume conductors,
values of adjacent isofield lines in-
crease by a factor of 2.
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FIGURE 4 A scalar multipole expansion was used to calculate the z component of magnetic fields generated by multipole components of a current source

with a 2 cm lateral extent located 4 cm below the measurement plane in a spherical volume conductor (cf. Fig. 3). The lower row of the figure shows contour
maps of the individual contributions of the zeroth-, second-, and fourth-order multipoles to the z component of the magnetic field; they can be compared
to the total (numerically calculated) field, with multipole fields subtracted as indicated in the titles (upper row). Adjacent nonzero contour levels differ by
a factor of 2, where the first nonzero level has value 1 fT, 0.1If, and 0.01If for order 0, 2, and 4, respectively.

deviance (rms of differences between the numerically cal-
culated total field and its approximation divided by rms of
total field) by a factor of 25 from 4.4% (total, dipole) to
0.17% (total, dipole-octapole). Values for a source extent d
that is not too large can be estimated from scaling argu-

ments to 4.4% * d2/4 cm2 and 0.17% * d4/16 cm4. One reason

for the high convergence rate is that because of the sym-

metry of the current distribution, the sum in Eq. 32 does not
contain odd terms; for a comparable asymmetrical current
distribution, one can expect an error reduction by factor of
-5 for each additional multipole order.

Finally, we estimate whether an octapole coefficient can

be measured for idealized geometric but realistic noise
conditions. We assume that the true current distribution has
the form described above, with the extent d being the only
unknown parameter. By inspection of Fig. 4 one can rec-

ognize that the octapole field component might be difficult
to detect because it shares structural features with the dipole
field. In fact, only the part of the octapole field orthogonal
to the dipole field can be used to discriminate it from the
dipole, where "orthogonality" of two measured fields B1(n)
and B2(n) (n = 1, . . ., number of channels) is defined by
the scalar product (BI, B2) = InBl(n)B2(n). Denoting the
normalized, orthogonal part of the octapole field as B_L , we

estimate the "effective" octapole field from the projection of
the measured data B onto B Lkt. For a realistic sensor con-

figuration consisting of 49 planar channels (as used, e.g., in
Curio et al., 1995), the amplitude A of this projected field,
A = (B, Bh1k), has a value of 8 fT (for d = 2 cm) with a noise

level equal to that of an individual channel; generally, A is
proportional to d2. Notably, a peak-to-peak noise level of 4
fT is already attainable in measurements of the somatosen-
sory evoked magnetic fields for appropriately bandpassed
data (Curio et al., 1994a,b).

DISCUSSION

We presented explicit formulas to calculate a magnetic field
generated by an arbitrary multipole current embedded in an

arbitrarily shaped volume conductor as the derivative of
either a dipole or a monopole field. This allows for a

detailed analysis of magnetic fields induced by multipole
currents in the brain, which is tedious to compute by con-

ventional integration techniques, which, moreover, are ap-
plicable only when assuming a highly symmetrical (e.g.,
spherical or half-space) volume conductor. In contrast, dif-
ferentiation is computationally straightforward and can be
easily implemented in a computer program for either ana-

lytically given or numerically approximated dipole fields in
the case of arbitrarily shaped volume conductors. If the
expansion of the dyadic Green's function is used for the
numerical case, it is not necessary to compute the monopole
field explicitly, because all multipole volume fields may be
expressed as derivatives of dipole volume fields. The for-
mulas can be derived directly from Eq. 28. For the examples
demonstrated here, we assumed a spherical volume conduc-
tor; in the case of a realistic head model, derivatives are
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Magnetic Fields of Current Multipoles

taken of fields known only numerically. This must be
checked for numerical validity when going to increasingly
higher order.
We formulated the theory to compute magnetic fields

induced by current multipoles. Application to electric po-
tentials, however, is straightforward; one merely has to
replace the magnetic dipole fields in Eq. 19 and the mag-
netic monopole field in Eq. 28 with the respective electric
potentials. The contributions from the primary parts in Eq.
28 can be set to zero. Analytical solutions for monopole and
dipole potentials can be found in de Munck (1988).

Considering applications of the formulas derived here, a
description in terms of current multipoles appears adequate
if the brain activity under study is restricted to very few
focal regions, as is the case, for example, for the primary
somatosensory evoked brain response. In that case the num-
ber of degrees of freedom is reasonably small (there is only
one expansion point for all multipoles per focal activity),
and the series can be expected to converge fast. Using a
neurophysiologically plausible model, the measured values
of multipole coefficients can finally be used to describe
geometric source parameters such as lateral spatial extent;
this will be of interest for the comparison of animal results
on cerebral neuroplasticity in the somatotopic body repre-
sentation in the postcentral gyrus (Merzenich et al., 1983;
Kaas, 1991) with noninvasive neuroplasticity studies in
humans (Mogilner et al., 1993).

fnmnm 2N a(x ay (8x aJy)

x ((x + iy)m + (x -iy)m)
2

a8n-m 1 a8 n+m

Xtd 2 n! a cos @)

1 m!2m /a\l 1(I at n+m
(cos2 0-ln =~N2-Smo az 2nn! id cos 0

(cos2 0 - I)nlcos,=l

2m 1 (nm) nn-m
2m0(n -rn)! 2~n!+m)

1 (n + m)! I
N 2- -1
N 2 - 5MO I (A2)

which is the second formulation of the operators (Eq. 16). The first
formulation (Eq. 15) can be computed by evaluating only the highest
exponent of z in d(r, z) and comparing the prefactors.

APPENDIX B

To compute Bmon for the spherical volume conductor, we place a radial
dipole on the z axis at point z0. Because the total field vanishes, the volume
contribution is equal to the negative primary contribution,

APPENDIX A

Here we show that for

AR,I (V) - (2 ) (n -)!-m mfnm - (n + rn)!(2n -1)! (fn )

with fRm() + ifIm(r) being the Cartesian form of the polynomial r'Ynm,
the orthonormality relation in Eq. 8 is fulfilled.

The polynomials are given by (z = r cos 0),

1 /I n+m
rnYn = (x + iy)mr m2n- ! (cOs2 0- y

(Al)
= (x + iy)mdnm(r, z)

where dnm is a polynomial in r2 and z. To get the operators we substitute
the Cartesian coordinates by the respective derivatives, and because r2 -* A
and Ar"Ym = 0, it is sufficient to keep only the highest exponent of z in d.
Now first of all we have iRIfR,f1=Y=U=o for n * n1, because the order

of derivatives in f does not match the order of the polynomials in f.
Second, nmnrn for m < ri, because the order of derivatives

with respect to z is higher than the highest order of z in f. For m > mh, there
can still be terms left that are of the form (a/az)k(alax ± ial
dy)m-Ch),.m- +k, where m - mi + k can only be even. Observing that
(a/ax ± ia/ay)r2l = 21r2' -2(x ± iy) and that (a/ax ± ia/dy)(x ± iy) = 0, the
operator can only increase the power of x ± iy and the term must vanish
at the origin.

Third, note thatfRmf1mjx=y=z=o =fImfRmIx=y=, = 0, because if the
derivatives with respect to x are odd, f will contain only even exponents of
x and vice versa.

Finally, we compute the normalization N for the real parts (the imagi-
nary parts are identical). For the relevant operatorfnm = (1/2N)((a/ax +
ia/ay)m + (a/ax - ia/ay),)(aIaz)n-m, we have

BJ x (A -_
Bvo (r, zoe) 4=-I:-r (B1)

with J = JeZ and o= z. Because the dipole points in the z direction,
Bmon is found by integrating with respect to z0. After setting pOJ/47r to 1 for
proper normalization, as defined in Eq. 24, we find

Bmon(r, zoe.) = X2 + y2(X2 + y2 + (Z- Z)2)12 r

(B2)

Here we have added an integration constant so that Bmon is zero if the
monopole is located in the center of the sphere. Formally it only has to be
radially symmetrical, and one could also add a radially symmetrical field
that does not depend on zo. This field, however, would vanish upon
differentiation in any case. Our choice corresponds to taking a reference
point located in the center of the sphere. Because the reference point will
be unchanged, monopole fields for arbitrary position of the monopole can
then be safely found by rotation, using

Bmon(r, ) = U'Bmon(U, Ur)

for an arbitrary rotation matrix U. We choose U to be

zOXdrO(Xo + yO)1/2 zOyXro(xO + yO)iI2-(x2 + y2)iI2Ir
U= -yJ(x +yO)"2 x 0(x+yO)"2 0

xdro ydro zdro

(B3)

(B4)

which has the property UPro = (0,0,ro)T. Note that the choice of U is not
unique because rotations around the axis monopole to the center of the
sphere do not affect Bmon,
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Explicit calculation of Eq. B3 results in the final form of the monopole
field,

Bmon(' ) - r2r2 _ o)2 i -Oo r ) (B5)
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