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Crystal Structure of d(GCGCGCG) with 5’'-Overhang G Residues

Baocheng Pan, Changill Ban, Markus C. Wahl, and Muttaiya Sundaralingam

Biological Macromolecular Structure Center, Departments of Chemistry and Biochemistry, The Ohio State Biochemistry and Biophysics
Programs, The Ohio State University, Columbus, Ohio 43210-1002 USA

ABSTRACT The crystal structure of the DNA heptamer d(GCGCGCG) has been solved at 1.65 A resolution by the molecular
replacement method and refined to an R-value of 0.184 for 3598 reflections. The heptamer forms a Z-DNA d(CGCGCG), with
5'-overhang G residues instead of an A-DNA d(GCGCGC), with 3'-overhang G residues. The overhang G residues from
parallel strands of two adjacent duplexes form a trans reverse Hoogsteen G - G basepair that stacks on the six Z-DNA
basepairs to produce a pseudocontinuous helix. The reverse Hoogsteen G - G basepair is unusual in that the displacement
of one G base relative to the other allows them to participate in a bifurcated (G1)N2 - - - N7(G8) and an enhanced
(G8)C8—H - - - 06(G1) hydrogen bond, in addition to the two usual hydrogen bonds. The 5'-overhang G residues are anti
and C2’-endo while the 3’-terminal G residues are syn and C2’'-endo. The conformations of both G residues are different from
the syn/C3'-endo for the guanosine in a standard Z-DNA. The two cobalt hexammine ions bind to the phosphate groups in
both GpC and CpG steps in Z, and Z,, conformations. The water structure motif is similar to the other Z-DNA structures.

INTRODUCTION

More than 20 years ago it was discovered that alternating
poly-d(C-G) duplexes could adopt an unusual conformation
that was thought to be left-handed (Pohl and Jovin, 1972).
Soon afterward single-crystal x-ray crystallography conclu-
sively proved the existence of the left-handed duplex,
termed Z-DNA (Wang et al., 1979). Since then there was a
search for the biological significance of Z-DNA and its
function in vivo. It was shown that the formation of Z-DNA
could be induced by negative supercoiling in covalently
closed circular DNA (Gruskin and Rich, 1993; Lucomski
and Wells, 1994) and by anti-Z-DNA antibodies bound to
certain DNA stretches (Pietrasanta et al., 1994). Recently,
the discovery of a Z-DNA-binding protein has been an-
nounced, implying that Z-DNA may play a role in certain
promoter sequences (Zhang et al., 1992). Besides G - C
basepairs, A + T (Fujii et al., 1985; Brennan et al., 1986),
G - B'U (Brown et al., 1986), G - T (Ho et al., 1985), and
C - I (Kumar et al., 1992) basepairs have been found in the
Z-form. A - T basepairs are known to destabilize the Z-
DNA duplex (Wang et al., 1984) and this might explain why
longer stretches of alternating A - T basepairs favor the
B-form (Yoon et al., 1988). Aside from the above se-
quences, a few other oligomers that deviate from the regular
d(C-G),, scheme have been found to form the left-handed
structures, including the nonalternating hexamer d(C-
CGCGG) (Malinina et al., 1994) and others, incorporating
ribose or arabinose sugar units (Teng et al., 1989).

We have been interested in the factors governing the
interconversion of left- and right-handed nucleic acid du-
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plexes. In this respect, we have so far concentrated on the
nature of the 5’-terminal nucleotide (Ban et al., 1996) and
base modifications like m*C and Br’C (Tippin and Sundaral-
ingam, unpublished results). While for polymers the identity of
the 5'-nucleotide (G or C) is unimportant, short alternating
oligomers with a 5'-purine start crystallize as A-DNA (Jain et
al., 1987; Bingman et al., 1992; Mooers et al., 1995) as found
in solution (Quadrifoglio et al., 1984). Interestingly, it seems
that the tendency of the 5'-purine start can be partially over-
come by increasing the length of the alternating GC step to 10
nucleotides (Ban et al., 1996). It is known that methylation of
C-residues at position 5 confers additional stability on the
Z-conformation (Fujii et al., 1982). Therefore, it came as a
surprise that the Z-DNA decamer d(GC)s (Ban et al., 1996)
converted to the A-form upon methylation of one or several
C’s (Tippin and Sundaralingam, unpublished results). Appar-
ently there is only a narrow energetic margin that transforms
A- to Z-DNA, and vice versa.

To further investigate the relative stability of the A-, B-,
and Z-forms, we were interested in selecting a nucleic acid
molecule that can form either a right- or left-handed struc-
ture with a 3'- or 5’-overhang, respectively. The self-com-
plementary heptamer d(GCGCGCG) was therefore de-
signed for these conformational studies. The central duplex
portion of the molecule can contain six alternating deoxynu-
leotides starting with either a purine that may adopt the
right-handed A- (Jain et al., 1987; Bingman et al., 1992;
Mooers et al., 1995) or B-form DNA (Cruse et al., 1986)
(Scheme 1), or a pyrimidine that may adopt the left-handed
Z-form DNA (Wang et al., 1979) (Scheme 2).
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This represents the first study of a DNA sequence that can
intrinsically have three different conformations (A-, B-, or
Z-form). In this paper we will describe the outcome of this
conformational competition.

MATERIALS AND METHODS
Synthesis, crystallization, and data collection

The DNA heptamer d(GCGCGCG) was synthesized by the phosphoramid-
ite method using an in-house Applied Biosystem DNA synthesizer 381
(Foster City, CA). The DNA was cleaved from the solid support using 5 ml
ammonium hydroxide (30% NH; in water) and was deprotected in the
same solution at 55°C overnight. The extract was lyophilized and then
precipitated using 100% ethanol in the presence of 2.5 M ammonium
acetate at —25°C. The preparation was cycled through ethanol precipita-
tion and lyophilization until white fluffy material was obtained, which
dissolved readily in water. A stock solution of 2 mM single-stranded
heptamer was prepared in distilled water and used for crystallization
without further purification. The crystallization was carried out by the
hanging-drop vapor diffusion method at room temperature. The best crys-
tals were obtained with | mM DNA (single-stranded concentration), in the
presence of 20 mM sodium cacodylate buffer (pH 7.0), and 0.5 mM
spermine tetrachloride, equilibrated against a reservoir of 0.2 ml of 10%
2-propanol. Crystals appeared after one day and continued to grow for
about a week; the crystals were light amber in color. A crystal with
dimensions 0.2 mm X 0.2 mm X 0.3 mm was mounted in a thin-walled
glass capillary tube with some mother liquor at one end, and the capillary
sealed with wax. The crystal belongs to the orthorhombic space group
P2,2,2, with unit cell constants a = 20.41 A, b = 29.65 A, and ¢ = 51.86
A and with one duplex in the asymmetric unit. The intensity data were
collected at room temperature using our R-axis Ilc imaging plate and
graphite monochromated CuKa x-ray beam. The crystal-to-detector dis-
tance was 65 mm. Thirty-five frames with a framewidth of 2° and an
exposure time of 20 min per frame yielded 9304 reflections with 3813
independent reflections up to 1.65 A resolution [F?/a(F?) > 5.0] with an
Rierge Of 6.6% and 92.3% completeness. The frames were processed using
the data processing software for Rigaku R-axis Ilc.

Structure solution and refinement

The structure was solved by the molecular replacement method. Rotation
searches with A-DNA (Mooers et al., 1995), B-DNA (Chen et al., 1994),
and Z-DNA (Wang et al., 1979) hexamer duplexes gave best results for
Z-DNA. The translation search with the best orientation using 591 reflec-
tions in the 8.0-3.0 A range with F > 100(F) gave the solution with an R
factor of 48.5%. A rigid body refinement using the X-PLOR program
package (Brunger, 1990) dropped the R-value to 40.2%. The data were
extended to 2.0 A resolution, and positional and overall B-factor refine-
ment resulted in an R-value of 36.7%. The model was then annealed by
heating the system to 4000 K and slowly cooling to room temperature with
0.5-fs sampling intervals, dropping the R-value to 28.6%. Positional and
individual B-factor refinement, extending the resolution to 1.65 A with
3598 reflections [F > 20(F)], raised the R-value to 30.3%. The omit
difference (Fp,—F.,) map clearly showed the electron density for the
omitted residues and was also used to position the 5'-overhang G residues
on the two strands, which formed reverse Hoogsteen basepairs (Fig. 1).
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FIGURE 1 The (Fo-Fc) electron density map showing the reverse

Hoogsteen G - G basepair between the 5'-overhang residues.

Further positional and B-factor refinement dropped the R-value to 27.8%.
The difference (F,,,—F.,) map showed two octahedral clusters of density
(>130) which were interpreted as cobalt hexammine ions. Including the
two cobalt hexammine ions in further refinement lowered the R-value to
24.0%. Water molecules were included that had nearly spherical densities
(>30) in the difference (F,,,—F,,) map. In the first round, 34 water
molecules were located and included in the refinement, dropping the
R-value to 20.4%. Using the next difference (F,,— F.,;) map an additional
23 water molecules could be located, and further refinement lowered the
final R-value to 18.4%. Although spermine was used in the crystallization
trials, no ordered polyamine could be located in the density maps. The final
model contains 284 nucleic acid atoms, 2 cobalt hexammine ions, and 57
water molecules. The crystallographic refinement parameters are listed in
Table 1. The atomic coordinates have been deposited with the Nucleic Acid
Database (Berman et al., 1992; ID #ZDGO057).

RESULTS
Overall structure

The heptamer d(GCGCGCG) crystallized in the Z-DNA
conformation with a duplex portion formed between the six

TABLE 1 Crystal data and refinement parameters

Space Group P2,2,2,
Unit cell dimensions (A)

a 20.41

b 29.65

c 51.86
Asymmetric unit 1 duplex
Volume/bp (A%) 1120
Resolution range (A) 8.0-1.65
Number of reflections used [F > 2.00(F)] 3598
Final R-Value (%) 18.4
Final model

Nucleic acid atoms 286

Cobalt hexammine ions 2

Water molecules 57
Average Thermal Parameters (Az)

Nucleic acid atoms 18.7

Cobalt hexammine ions 14.1

Water molecules 40.3

Parameter File
RMS deviation from ideal geometry

param_nd.dna

Bond lengths 0.020 A
Bond angles 3.2°
Dihedral angles 31.8°
“Improper” angles 1.6°
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self-complementary residues 2-7/9-14 and the 5'-G1 and
G8 as overhangs (Fig. 2). The molecular structure and
crystal packing of the heptamer are shown in Fig. 3. The
helices stack head-to-tail pseudocontinuously along the c-
axis. G1 stacks within the strand while G8 loops out to
basepair with G1 of an adjacent duplex. Thus the two
overhang G’s of the reference duplex basepair with two
different adjacent duplexes. The G * G basepair formed is
reverse Hoogsteen from parallel strands of adjacent du-
plexes. The reverse Hoogsteen basepair stacks on the
central Z-DNA duplex portion with six Watson-Crick C * G
basepairs.

Nucleoside and backbone conformation

Table 2 lists the sugar-phosphate backbone and glycosidic
torsion angles for the heptamer structure. It is seen that the
nucleosides in the central part of the sequence (C2-C6/C9 -
C13) have the same sugar pucker and glycosidic conforma-
tion as in regular Z-DNA, namely, anti/C2'-endo for C and
syn/C3'-endo for G (Wang et al.,, 1984). The overhang
residues G1 and G8 are both in the anti glycosidic confor-
mation and adopt a C2'-endo sugar pucker as in B-DNA.
The 3'-terminal residues G7 and G14 are intermediate be-
tween Z- and B-DNA, having the C2'-endo sugar pucker as
in B-DNA and syn glycosidic conformation as in Z-DNA.
The conformations of G7 and G14 are the same as those of
the 3’-terminal G’s in the hexamer Z-DNA d(CGCGCG)
(Wang et al., 1979).

Reverse Hoogsteen Base Pair

co 14 €9 ——G7
G10 cs a3 c13 G0 cs
c11\f as cs \H a2 c11 \ as
ca A a2 c11 G5 c4 [ 612
G3 c13 G110 cs G3 c13
c2 14 67 c2 G14
|
:— G1- - -G8 -: G1

Reverse Hoogsteen Base Pair

FIGURE 2 Schematic diagram of the basepairing in the heptamer struc-
ture. Besides the Watson-Crick C - G basepairs, the reverse Hoogsteen
G + G basepairs are shown at the termini.
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FIGURE 3 (a) Stereo view showing the structure of d(GCGCGCG) with
each strand bound to a cobalt hexammine ion. Strand 1 is shown in darker
lines including residues 1 to 7, while strand 2, in lighter lines, includes 8
to 14. G1 stacks in the duplex and G8 swings out of the helix. (b) Stereo
view showing the 5'-overhang G’s in adjacent molecules involved in the
reverse Hoogsteen G - G basepairing and head-to-tail crystal packing along
the c-axis. (¢) Crystal packing viewed down the c-axis showing the entry
of the overhang G8 into the adjacent duplex.

The novel G - G basepair

The overhang bases G1 and G8 form a trans reverse Hoog-
steen basepair (Fig. 4 a). The hydrogen atoms generated by
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TABLE 2 Nucleoside conformation and backbone torsion angles for d(GCGCGCG)

a B LY 8 € 14 X P
Strand 1
Gl — — 59 162 —87 151 123 (anti) 181 (C2'-endo)
C2 —-157 170 56 139 265 73 —164 (anti) 146 (C2'-endo)
G3 82 —168 168 84 -179 73 52 (syn) 33 (C3'-endo)
C4 160 158 57 143 -92 72 —145 (anti) 149 (C2'-endo)
G5 61 -169 -179 100 -122 =50 65 (syn) 8 (C3'-endo)
C6 —-176 142 67 129 —-101 73 —156 (anti) 139 (C1’-ex0)
G7 79 —-175 -177 142 — — 73 (syn) 152 (C2'-endo)
Strand 2
G8 — — 54 156 —64 162 —92 (anti) 168 (C2'-endo)
C9 -61 -115 84 142 -95 75 —150 (anti) 172 (C2'-endo)
G10 79 -175 172 92 -171 53 58 (syn) 31 (C3'-endo)
Cl1 177 168 40 143 -78 64 —143 (anti) 161 (C2'-endo)
G12 71 -173 175 90 -116 =70 65 (syn) 29 (C3'-endo)
Cl13 -147 -126 53 138 -92 67 —150 (anti) 154 (C2'-endo)
Gl4 76 -178 -170 141 — — 69 (syn) 163 (C2'-endo)

The backbone torsion angles as defined by IUPAC-IUB (1983) are O3'-P-a-05'-B-C5'-y-C4'-8-C3'-¢-03'-{-P-05'.

X-PLOR are shown in Fig. 4, a and b. Besides the two
standard hydrogen bonds (G1)N1—H - - - N7(G8) (1.72 A)
and (G1)N2—H - - - 06(G8) (2.05 A), a bifurcated hydro-
gen bond (G1)N2—H - - - N7(G8) (2.39 A) and a “forced”
weak C—H - - - O hydrogen bond interaction (Jeffrey and
Saenger, 1991) (G8)C8—H - - - 06(G1) (2.52 A and with an
angle of 138.1° between C—H-—O) are formed. The base-
pair is also stabilized by interaction with water molecules.
G1 is hydrated by three water molecules at N3, 06, C8, and
N7. Atoms N1 and O6 of G8 are hydrogen-bonded to one
water molecule while N3 and N2 to two and three water
molecules, respectively. These water molecules form a wa-
ter string bridged by N2, spanning the Watson-Crick sites of
G8 (Fig. 4 d).

Stacking of G - G basepair

Fig. 5 shows the base stacking of the overhang G ‘G
basepair with the adjacent C + G basepairs in the duplex
portion. The orientation angle between the overlapping G7
and G1 is ~30° (Fig. 5 a), while that between G8 and G14
is ~90° (Fig. 5 b). In both cases, the N4 group of cytosine
stays inside the five- or six-membered aromatic ring of
guanosine, respectively. It is obvious that the presence of
this overhang basepair greatly increases the stacking inter-
action between the two adjacent duplexes, thus stabilizing
the crystal structure.

Cobalt hexammine ion binding

Two ordered cobalt hexammine ions, referred to as Co I and
I1, bind to strand I and strand II, respectively (Fig. 3 a). The
details of the coordination of cobalt hexammine ions to the
heptamer are shown in Fig. 6. Table 3 gives the distance of
these interactions. Co I binds to phosphate groups P4, PS5,
P14, and base G5 from two adjacent duplexes. P4 is in Zy
conformation while the other two phosphates are in Z;. Co
II binds to phosphate groups P4 (the same phosphate bound

by Co I), P11, P13, P14, and base G12 from three adjacent
duplexes. P4 and P11 are in Zy;; conformation while the
others are in Z,. In the present structure cobalt hexammine
ions bind phosphates not only in GpC steps (P4, P11, P13)
but also in CpG steps (PS, P14).

Hydration of the structure

The present heptamer structure reveals the common water
structure motifs for the Z-DNA hexamer d(CGCGCG)
(Gessner et al., 1994). Ten water molecules in the minor
groove constitute the two different motifs: 1) the water
bridge between O2 keto groups of cytosine from alternating
strands, and 2) the water bridge between N2 amino groups
of guanosine and phosphate groups (Fig. 7 a). The first
motif is intact while the second is disrupted near the end of
the duplex. In the major groove surface, eight water mole-
cules constitute two water structure motifs: 1) the water
bridge connecting the N4 amino group of cytosine in alter-
nating strands, and 2) the water bridge linking the O6 keto
group of guanine in alternating strands (Fig. 7 b). The
second motif is disrupted at the binding site of Co I, where
two regular water bridges are missing and the central bridge
is connected to an ammonia.

DISCUSSION
Flexibility of overhang bases

The less constrained overhang bases are conformationally
more flexible. For instance, the DNA sequences of d(GC-
GAATTCG) (Meervelt et al., 1995) and d(GGCCAAT-
TGG) (Vlieghe et al., 1996) with one or two overhang G’s
formed the major groove triplets. When the present se-
quence d(GCGCGCG) was designed, both overhang G’s
were expected to stay in the helix, producing an infinite
duplex along the helix axis (Wahl et al., 1996) or to form a
(C - G)*G triplet by interacting with the terminal C - G
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FIGURE 4 (a) The reverse Hoogsteen G * G basepair formed by 5'-overhang G1 and G8 in d(GCGCGCG) showing the CH - - - O and bifurcated
hydrogen bonding interactions. The hydrogen atoms are generated by X-PLOR. The bond lengths and bond angles of the connected hydrogen atoms are
as follows: C8—H: 1.05 A; N7—C8—H: 123.0°; N9—C8—H: 123.0°; N1—H: 1.01 A; C2—CI1—H: 118.0°; C6—C1—H: 115.2°; N2—H: 1.01 A;
C2—N2—H1: 120.0°; C2—N2—H2: 120.0°; H1I—N2—H2: 120.0°. (b) The “standard” reverse Hoogsteen G - G basepair G(2') + G4 in the cyclic
diguanylic acid. The hydrogen atoms are generated by X-PLOR. The bond lengths and bond angles of the connected hydrogen atoms are the same as those
in (a). (c) Superposition of G1 and G(2') of the basepairs of (a) and (b) to compare the positions of G8 and G4 in the respective basepairs. The distance
between N2 of G(2') and N7 of G4 is 3.69 A, indicating that the standard G - G basepair in (b) is not a strong bifurcated hydrogen bond. All distances
are in A. (d) Hydration of the reverse Hoogsteen G - G basepair. The Watson-Crick sites of N1 and O6 are involved in hydrogen bonding to water

molecules. All distances are in A.

basepair in the major groove (Meervelt et al., 1995; Vlieghe
et al.,, 1996) or in the minor groove (Ramakrishnan and
Sundaralingam, 1993). However, the conformations of the
overhang G’s are different. G1 stacks within the duplex
while G8 loops out to form a reverse Hoogsteen basepair
with G1 of an adjacent duplex (Fig. 3). This is the first
observation of a reverse Hoogsteen G * G basepair stacked
with a hexamer Z-DNA helix. The present conformation for
the overhang bases adds yet another motif, in addition to the
observed minor/major groove triplets. This reflects the
polymorphism of overhang bases.

Z-DNA is normally characterized by a number of
strongly alternating structural features that are in phase with
the base-sequence alternation. Guanosine usually adopts the
C3'-endo sugar pucker and a syn conformation about the
glycosidic bond, while cytidine is usually in the C2'-endo
pucker and anti glycosidic conformation. The present struc-

ture can be explained by the conformational flexibility of
the overhang G’s, which are less restricted than the other
residues in the helix. The overhang G’s adopt the anti/C2'-
endo conformations, which deviate from the syn/C3’-endo
pattern observed in the Z-DNA duplex. A similar precedent
is seen in d(CCGCGG) (Malinina et al., 1994), where the
central tetramer d(CGCG) forms the Z-DNA duplex with
the 5'-terminal C1 pushed away from the duplex and G6 is
stacked within the Z-DNA duplex. The major difference in
the latter is that C1 and G6 are complementary bases.

G - G basepairing

G + G basepairs exist in DNA telomeric quadruplex and in
(purine * pyrimidine)*purine DNA triplet structures.
G-quartets with G - G Hoogsteen basepairs are found in
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FIGURE 5 The base stacking of d(GCGCGCG). (a) Stacking between
basepair G7 * C9 (light bonds) and G1 + G8 (dark bonds). (b) Base stack-
ing between basepair G1 + G8 (dark bonds) and C2 + G14 (light bonds).

parallel stranded structures with G(anti) + G(anti) glyco-
sidic conformation (Laughlan et al., 1994) and antiparallel
stranded structures with G(anti) + G(syn) glycosidic confor-
mation (Kang et al., 1992). G(anti) - G(anti) Hoogsteen
basepairing is also displayed in the crystal structures of the
5'-overhang B-DNA of d(GCGAATTCG) (Meervelt et al.,
1995) and the B-DNA duplex d(CGCGAATTGGCG),
(Skelly et al., 1993). Both G(anti) + G(anti) Hoogsteen and
reverse Hoogsteen basepairs have been observed in the
crystal structure of the B-DNA d(GGCCAATTGG)
(Vlieghe et al., 1996), in which the 5'-overhang G’s invade
the major groove of a symmetry-related duplex to form a
(C * G)*G base triplet with the terminal C + G basepair. All
these basepairs involve hydrogen-bonding of the O6 and N7
atoms of one G residue to the N1 and N2 atoms of the other
G residue.

Fig. 4, a and b show a comparison of the conformations
and hydrogen bonding of the observed reverse Hoogsteen

Volume 73 September 1997
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FIGURE 6 Cobalt hexammine binding to d(GCGCGCG). (a) Co I binds
to two symmetry-related adjacent duplexes. (b) Co II binds to three
symmetry-related adjacent duplexes.

G - G basepair with that observed in the high-resolution (0.9
A) structure of cyclic diguanylic acid (Egli et al., 1990),
which may be regarded as the “standard.” Besides the
expected hydrogen bonds between N1(G1) to N7(G8) and
N2(G1) to O6(G8), the shifting of the G bases relative to
each other in the present structure has resulted in a new
bifurcated hydrogen bond between N2(G1) and N7(G8) and
enhancing the C—H - - - O interaction (Fig. 4 c¢). Other
examples of standard reverse Hoogsteen G * G basepairs are
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TABLE 3 Distance between atoms of cobalt hexammine and
DNA duplex

Distance
CoHex atom DNA atom A)
N1 (Co I) 1401P (II) 2.80
N2 (Co I) 06 (GS) (I) 2.72
N2 (Co I) 402P (I) 2.72
N3 (Co I) 402P (I) 3.06
N3 (Co I) N7 (G5) (I) 2.80
N3 (Co I) 1401P (1I) 3.16
N4 (Co I) 502P (1I) 2.80
N5 (Co I) 06 (G5) (I) 2.80
N5 (Co I) N7 (GS) () 3.27
N6 (Co I) 502P (II) 3.09
N1 (Co II) 1102P (I1I) 2.70
N1 (Co II) 1301P (II) 3.36
N1 (Co II) 1302P (II) 3.32
N1 (Co II) 1402P (II) 2.66
N3 (Co II) N7 (G12) (III) 2.85
N3 (Co II) 1102P (1II) 2.65
N4 (Co II) 1301P (1I) 3.35
N4 (Co II) 1402P (II) 291
N5 (Co II) 401P (I) 2.73
N5 (Co II) 1402P (1I) 345
N6 (Co II) 1301P (II) 3.04

I, IT and III refer to the number of duplex in Fig. 6.

found in the (C - G)*G base triplet in the B-DNA d(GGC-
CAATTGG) (Vlieghe et al., 1996), and the low-resolution
structures of yeast tRNAP"® (Schimmel et al., 1979).

Cobalt hexammine ion binding

Cobalt hexammine ions have been regarded as very effec-
tive in stabilizing the left-handed Z-DNA helix (Behe and
Felsenfeld, 1981; Brennan et al., 1986). Gessner et al.
(1985) found that two cobalt hexammine ions interact with
guanine and phosphates in GpC steps and the phosphates
are in Zj; conformation. In the present structure, both Z; and
Z,; conformations for the phosphates are observed when
cobalt hexammine ions bind. It is noted that when cobalt
hexammine ion binds to both a phosphate and a nearby G
residue, the phosphate is in Z;; conformation otherwise the
phosphate is in Z; conformation.

Conformations of overhangs

It has been shown that the T, for {d[(GC);TT]}, (54.2 =
0.5°C) is essentially the same as that for {d[TT(CG);]},
(54.4 = 0.5°C) (Senior et al., 1988). Based on this result,
the structure of Scheme 1, {d[(GC);G 1},, and Scheme 2,
{d[G(CG);s]},, should have similar thermal stability. In
other words, these two different conformations are expected
to coexist in the solution. The crystallization of the former
may lead to the A- or B-duplex conformation with 3'-
overhang G’s, while the crystallization of the latter may lead
to the Z-duplex with 5’'-overhang G’s. Fig. 8 shows the
circular dichroism (CD) spectra for the present heptamer
d(GCGCGCG) and hexamer d(CGCGCG) in both 2.5 M

Crystal Structure of d(GCGCGCG)
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FIGURE 7 Hydration of the heptamer structure d(GCGCGCQG). (a) Wa-
ter structure in the minor groove. The backbones of the heptamer are shown
in dark lines as zig-zag chains, while hydrogen bonds are shown as light
lines. (b) Water structure in the major groove.

and 5 M NaCl solutions. The spectra indicate clearly that the
present heptamer adopts the B-form in both high and low
salt. In contrast, the hexamer undergoes B-Z transition from
low salt to high salt. The crystalline state of the heptamer
d(GCGCGCQG) adopts the left-handed Z-form with 5'-over-
hangs even in low salt crystallization conditions. However,
in solution it seems that dehydrating the heptamer with 5 M
NaCl does not result in the B-Z transition. The packing
interactions and the hydration in the crystal may influence
the outcome.
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FIGURE 8 CD spectra of the present heptamer d(GCGCGCG) and hex-
amer d(CGCGCQG). The initial crystallization conditions were added with
2.5 M and 5 M NaCl, respectively. The spectra were measured using a
JASCO J-500A spectropolarimeter, with sensitivity of 0.1, time constant of
16 s, and step size of 1.0 nm at room temperature.
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