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Wetting and Capillary Condensation as Means of Protein Organization
in Membranes

Tamir Gil, Mads C. Sabra, John Hjort Ipsen, and Ole G. Mouritsen
Department of Chemistry, Technical University of Denmark, DK-2800 Lyngby, Denmark

ABSTRACT Wetting and capillary condensation are thermodynamic phenomena in which the special affinity of interfaces to
a thermodynamic phase, relative to the stable bulk phase, leads to the stabilization of a wetting phase at the interfaces.
Wetting and capillary condensation are here proposed as mechanisms that in membranes may serve to induce special lipid
phases in between integral membrane proteins leading to long-range lipid-mediated joining forces acting between the
proteins and hence providing a means of protein organization. The consequences of wetting in terms of protein aggregation
and protein clustering are derived both within a simple phenomenological theory as well as within a concrete calculation on

a microscopic model of lipid-protein interactions that accounts for the lipid bilayer phase equilibria and direct lipid-protein
interactions governed by hydrophobic matching between the lipid bilayer hydrophobic thickness and the length of the
hydrophobic membrane domain. The theoretical results are expected to be relevant for optimizing the experimental
conditions required for forming protein aggregates and regular protein arrays in membranes.

INTRODUCTION

The study of the organization of integral proteins in mem-
branes is important because the organizational state in many
cases controls the functional state of the membrane system
(Gennis, 1989; Kinnunen and Mouritsen, 1994). Further-
more, regular organization in terms of crystallization of
membrane proteins within the membrane is of importance
for making progress in determination of membrane protein
structure (Kiihlbrandt, 1992). The organizational state of
integral proteins dispersed in lipid membranes is determined
by a number of different physical forces and effects (Jack-
son, 1993; Watts, 1993). In addition to specific short-range
protein-protein interactions and direct protein-lipid interac-
tions, a host of indirect lipid-mediated protein-protein in-
teractions and lipid-controlled effects are operative in con-
trolling the nature of the organizational state of the lipid-
protein assembly (Mouritsen and Bloom, 1993; Bruinsma et
al., 1994; Fattal and Ben-Shaul, 1993; Aranda-Espinoza et
al., 1996; Golestanian et al., 1996). Whereas the specific
forces usually are of enthalpic origin, many of the indirect
forces have a substantial component of entropy that acts in
addition to the omnipresent entropy of mixing. A funda-
mental phenomenon in this connection is the underlying
lipid bilayer phase equilibria and the way these equilibria
are altered by interaction with the proteins (Mouritsen and
Sperotto, 1992) as well as with extra-membrane compo-
nents of the biological membrane, such as the cytoskeleton
(Sackmann, 1994).
The main gel-fluid phase transition in pure lipid bilayers

(Mouritsen and J0rgensen, 1994), with which we shall be
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concerned here, and its associated phase equilibria in mixed
lipid bilayers imply different lipid phases and provide a
cooperative mechanism for structuring and organizing the
lipid bilayer assembly. Specifically, integral proteins may
display different affinities for the various lipid phases and
hence induce phase separation at appropriate thermody-
namic conditions. Wetting is a particular thermodynamic
phenomenon that depends on the lipid phase equilibria and
is controlled by the conditions of the interface between the
protein and the lipid matrix. In essence, the protein will at
its surface stabilize the lipid phase to which it displays
preferential affinity. This will in general lead to a local
enrichment of that lipid phase at the interface. Under near-
wetting conditions, the enrichment will extend over long
ranges and eventually establish a thermodynamic phase at
the wetting transition (Dietrich, 1988; Schick, 1990; Gil and
Mikheev, 1995). For an assembly of proteins in a lipid
bilayer, the wetting phenomenon can manifest itself as a
capillary condensation of a special lipid phase (the wetting
phase) in between the proteins. The enthalpic advantage in
sharing the wetting phase among two or more proteins leads
to an effective attraction between the proteins. Such a mech-
anism was conjectured to cause reversible aggregation of
colloidal particles, called flocculation (Beysens and Esteve,
1985). Hence, the wetting phenomenon can induce long-
range lipid-mediated forces between proteins and therefore
act as a means of protein organization (e.g., clustering,
aggregation, and crystallization) in lipid membranes.

In the present paper we shall investigate protein-induced
wetting in lipid bilayers and propose wetting and capillary
condensation as thermodynamic mechanisms for the orga-
nization of proteins in membranes. We shall point out that
the lipid phase equilibria provide the necessary physical
basis for wetting and that the specific thermodynamic con-
ditions required for wetting and wetting-like phenomena to
take place for a particular lipid-protein mixture can be
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fulfilled by appropriate choices of temperature, chemical
potential, and composition.

The paper presents a two-pronged theoretical approach to
the problem in a two-dimensional geometry and is orga-
nized as follows. As a preamble and for the sake of com-
pleteness as well as to introduce wetting to the biophysics
community, we describe the wetting concept for single
circular objects (proteins) and the capillary force that acts
between two wet objects. We then turn to the general
phenomenology of wetting and capillary condensation for
an assembly of circular objects (proteins). The problem is
first discussed in terms of a simple ideal gas picture involv-
ing a phenomenological capillary potential that is analyzed
to yield a cluster size distribution function. The analysis
predicts a transition (phase separation), as a function of the
chemical potential, from an exponential distribution, favor-
ing small clusters, to a distribution with a peak correspond-
ing to one large cluster (aggregate). Second, we study the
phase equilibria of a binary lipid mixture with integral
model proteins via a concrete calculation on a specific
microscopic statistical mechanical model of lipid-protein
interactions in membranes. This model takes for simplicity
the hydrophobic matching (Mouritsen and Bloom, 1984,
1993) between the lipid bilayer thickness and the hydropho-
bic length of the protein as the main component of the
direct, enthalpic lipid-protein interactions. The properties of
the model, specifically the mode of protein organization, are
derived using computer simulation techniques that faithfully
and accurately account for the different contributions to the
entropy. The generic predictions from the phenomenologi-
cal model are compared with the results of the computer
simulation calculations on the microscopic model. As nei-
ther of these theoretical approaches allow for a description
of the formation of solid (crystalline) protein structures but
only aggregates, the question of fluid-solid transitions
within a patch of aggregated proteins is discussed separately
in an Appendix. This question is of a fundamental nature
and is linked to the still unresolved problem of crystalliza-
tion and melting in two-dimensional systems (Bladon and
Frenkel, 1995; and references within; Nielsen et al., 1996).

INTRODUCTION TO WETTING AND CAPILLARY
CONDENSATION: THE CASES OF ONE AND
TWO DISKS

To understand the phenomenology associated with the wet-
ting of a circular object (disk) immersed in a two-dimen-
sional fluid, we take the steps of introducing wetting in
general, pointing out the differences between the cases of
flat and round substrates, and between three and two spatial
dimensions of the embedding system.

In general, when two thermodynamic phases, a and ,3, are
close to coexistence, i.e., close to a first-order phase tran-
sition line, the presence of a substrate strongly preferring
one of the phases leads to singular wetting effects (Dietrich,
1988; Schick, 1990). The preferred phase, ,B, tends to form

a layer intruding between the substrate and the other phase,
a, even when the latter is stable in the bulk. In the complete
wetting regime, the thickness, lw, of the layer diverges
continuously, lw -> 0, as the bulk a -> 3phase transition
line is approached. This continuous line of surface critical
points may terminate at a wetting transition point, which can
be first-order or critical (Fig. 1). A scaling description of the
continuous wetting transition is achieved in terms of two
orthogonal fields: one, chemical potential-like field, Ai,
which measures the difference in the grand canonical po-
tentials per unit volume of the two bulk phases; the other,
temperature-like field, t, which is a generalized coordinate
measuring the distance from the wetting transition point
(l.w, Tw) along the coexistence line shown in Fig. 1. In
terms of these fields, the continuous growth of the wetting
layer is characterized by the power laws lw oc A/-t ',
/\, --0+, in the complete wetting regime, and lw ax t-,
t -> 0+, along the coexistence line. The values of the
exponents TC and IV depend on the spatial dimension of the
system under consideration (Dietrich, 1988; Schick, 1990).

Wetting of a planar (linear in the two-dimensional geom-
etry) substrate has been extensively studied (Dietrich, 1988;
Schick, 1990). When the underlying geometry of the a-/3
interface is planar (linear), uniform changes in the thickness
of the wetting layer do not change the area (length) of the
interface. Correspondingly, at the coexistence of the two
bulk phases, A,u = 0, the equilibrium state of the wetting
layer is determined by an interplay of the interfacial poten-
tial V and the thermal fluctuations. In particular, when the
underlying geometry is planar (linear), nothing prevents the
thickness from diverging when the effective interface-sub-
strate interaction, resulting from renormalization of V by
thermal fluctuations, is repulsive. However, increasing the
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FIGURE 1 The generic phase diagram for wetting by one of two fluid
phases (f3) at the bulk coexistence line with the other (a), shown by a thick
solid line. Critical wetting transition occurs at Tw by increasing the
temperature along the a-,3 coexistence curve, as shown by path 1. For
T > Tw, any path taken in the direction of the arrow (2) would terminate
in a continuous complete wetting as the a-,3 coexistence curve is
approached.
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thickness of a wetting layer around a spherical or a cylin-
drical (circular), substrate leads to an increase in the area
(length) of the interface. The corresponding increase in the
interfacial free energy suppresses complete wetting at Apu =
0. Hence, the divergence of the mean thickness of the
wetting layer can occur only in the limit where the curvature
of the substrate vanishes, adding this curvature as a third
field in the scaling description (Gil and Mikheev, 1995).

There is a crucial difference between wetting phenomena
in two and three spatial dimensions that is due to the
renormalizing effect of the capillary-wave fluctuations of
the (3-a interface between the wetting phase and the ther-
modynamically stable phase in the background. Because
three is the marginal dimension for this renormalizing effect
(Dietrich, 1998; Schick, 1990), the relative importance of
these fluctuations for the thermodynamics of wetting phe-
nomena in three dimensions is expected to be small com-
pared with the direct forces involved, e.g., van der Waals
forces. In two dimensions, however, (i.e., one-dimensional
interfaces), the capillary-wave fluctuations play a dominant
role, giving rise to an effective long-range repulsive force
between the substrate and the fluid-fluid (a-P3) interface,
and exclude the possibility of prewetting transitions (Die-
trich, 1998; Schick, 1990; Lipowsky and Fisher, 1987). As
a result, once the direct substrate-interface interactions are
not strong enough (above the wetting temperature, in the
complete wetting regime) to hold the interface close enough
to the surface of the substrate, the mean thickness of the
wetting layer is determined by the balance between a dis-
joining pressure, which is induced by the capillary fluctua-
tions and which tends to enlarge the mean thickness, and
external pressures that tend to diminish it, e.g., hydrostatic
pressure or gravity. Such a phenomenological picture was
recently shown to apply in two dimensions to the wetting of
a large circular substrate (disk) if a Laplace pressure is
added to the pressure balance in the wetting layer (Gil and
Mikheev, 1995).
The mean thickness of a two-dimensional wetting layer

(one-dimensional interface) around a disk grows like rIO3,
for ro -> °o, where ro is its radius, provided that Alk, 0+
and T > Tw (Gil and Mikheev, 1995). Hence, a macro-
scopic wetting layer of thickness much larger than the
molecular distances emerges at large values of ro, validating
the use of interface models in which the density profile of
the fluid-fluid (a-P3) interface is replaced by a sharp kink to
which a local interfacial stiffness is attached (Dietrich,
1998; Schick, 1990). The stiffness of the a-13 interface,
denoted o-, defines a length scale in the system that we shall
call the bulk correlation length,

kBTlo, (1)

where kB is the Boltzmann constant and T is the tempera-
ture. (Close to the bulk a-13 critical point, Tc, where the
bulk correlation length is assumed to be the same in the a
and in the f3 phases, this definition coincides with the

theory here is relevant also for temperatures much lower
than Tc). The complete wetting regime for the wetting of a
disk is then defined by (Gil and Ipsen, 1997)

ro >>» , Tw <T< Tc and oiro >>A -0, (2)

where Tc is the bulk a-, critical point and Tw is the wetting
temperature for the analogous flat system. In this regime,
the wetting of a disk is properly described by the effective
interface grand canonical potential, parameterized by 1, the
mean thickness of the wetting layer,

Q(l) = 27TV(l) + 2roru(ro + 1) + wApt[(ro + 1)2- 0], (3)

where V(l) 0.948 X rO(kBT 2/(orl2) (Gil and Mikheev,
1995; Gil and Ipsen, 1997). The term wrAp[(ro + 1)2 ]
in this equation accounts for the excess energy of the
thermodynamically unfavorable 13-phase, which covers an
area of -n[(ro + 1)2 - r0], 2--ro(r0 + 1) is the self-energy of
the interface, and the first term represents the loss of con-
figurational entropy involved in preventing the interface
from crossing the surface of the substrate (Gil and Mikheev,
1995). V(l) is of longer range than the relevant van der
Waals substrate-interface interaction potential, which is
proportional to r/1P-3 in the limit of 1 << ro, where p = 6,
7 for nonretarded and retarded interactions, respectively
(Gil and Mikheev, 1995), and is therefore the only relevant
interaction potential in the problem (Lipowsky and Fisher,
1987). The case of wetting of a single disk is illustrated in
Fig. 2, a and b, via microconfigurations generated in a
computer simulation calculation on a microscopic interac-
tion model to be described below.

Under the conditions that trigger wetting of a single disk,
bringing two disks close to each other gives rise to two
different topologies of the a-13 interface line: one involving
two separate loops, closing around each one of the disks
individually (Fig. 3 (sep)), and one involving a single loop
wrapping the two disks (Figs. 3 (bri) and 2 c). The latter is
due to capillary condensation between the two disks that
occurs to minimize the excess free energy that is associated
with a given length of the a-13 interface and a given cov-
erage of the thermodynamically unfavorable 13-phase. A
transition between the separated and bridged configurations
can be induced by tuning either the distance between the
disks or by changing the thermodynamic conditions for the
system, e.g., via A,u. Capillary condensation between two
wet disks occurs already when the distance between the
disks is of the order of their radius, ro. It involves a dramatic
increase in the local concentration (or rather the coverage)
of the wetting phase 13 and introduces a new effective force
in the system, giving rise to a net attraction between the
disks (Gil and Ipsen, 1997). The aggregation force is caused
by the tendency of the condensed system to reduce the
length of the a-1 interface and the coverage of the 1B-phase
by reducing the distance between the disks. Very close to
the phase transition, A/L -- 0, the attractive force between
the aggregated disks is approximately constant and of size
F = 2(o- + A,uro) (Gil and Ipsen, 1997). For larger values
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FIGURE 2 Illustration of wetting phenomena around circular disks embedded in a binary fluid near a a -* ( phase transition (e.g., proteins embedded
in binary lipid bilayers). The disks (the proteins), which have preference for phase (, are labeled by large yellow dots. The two species (the lipids) are
labeled by red and blue small dots, respectively, and the two phases are indicated by dark ((3) and light (a) colors, respectively. (a) The case of a single
disk away from the wetting regime where only a microscopically thin layer of phase ( is present at the interface corresponding to the case of interfacial
adsorption. (b) The case of a single disk close to wetting. A thick layer of phase , is nucleated at the surface of the disk. (c) The case of two nearby disks
close to wetting where the wetting layers overlap leading to capillary condensation. The data for the figures are obtained from computer simulation
calculations on the microscopic model of lipid-protein interactions.

of AtL, F falls almost linearly with the distance between the
disks. In the case of the conditions given in Eq. 2, the force
can properly be derived from an effective interfacial free
energy consisting of the same ingredients as in Eq. 3. This
free energy is an analytical approximation that is based on
a simple construction in which the differentiability of the
interface configuration is relaxed in the small regions where
the interface is detaching from the single disk to bridge
between the two disks. Capillary-wave fluctuations were
shown not to effect the mean location of the interface in the
regions where it bridges between the two disks and that, to
leading order, the location of the remaining interface is
given by the theory for the single disk (Gil and Ipsen, 1997).
The case of wetting of two adjacent disks leading to capil-
lary condensation between the disks is illustrated in Fig. 2 c
via a microconfiguration generated in a computer simula-
tion calculation on a microscopic interaction model to be
described below.

D

FIGURE 3 Two two-dimensional disks of radius ro separated at a dis-
tance D. The wetting layers surrounding each one of the disks (sep) remain
separated until AA, is sufficiently small to allow for the formation of a

bridging interface (bri).

PHENOMENOLOGICAL MODEL OF WETTING IN
LIPID-PROTEIN MEMBRANES: AGGREGATION
OF MANY DISKS DUE TO CAPILLARY FORCES

We now consider a system of N identical ,B-preferring
mobile disks of radius ro, immersed in an a fluid. According
to the study of capillary condensation between two disks
(Gil and Ipsen, 1997), it is reasonable to expect that by
tuning the chemical potential for the fluids close to the a-f3
transition line (but on the a side) one would reach a region
where the disks tend to aggregate and form clusters of disks
with a (-rich phase filling the space between them. When
neglecting direct interactions between the disks (apart from
the excluded-volume hard-disk interactions), the size of
those clusters and the cluster-size distribution are controlled
by the balance between different entropy effects and the
capillary forces that are involved in minimizing the total
length of the a-f3 interface and the coverage of the (3-phase.
The tendency to increase translational entropy would push
the disks apart as well as give rise to a certain cluster-size
distribution once clusters are formed. The way the disks
(colloids) would arrange themselves inside the clusters is
controlled by the interplay between configurational entropy,
dominating in the colloid fluid phase, and the entropy of
free volume per disk, dominating in the colloid crystalline
phase (Hoover and Ree, 1968).

Ideal gas paradigm

To obtain an approximate cluster-size distribution function
for a dilute collection of identical disks, we map the system
of clusters of different sizes onto a mixture of noninteract-
ing gas particles of different masses. The sizes (masses) of
the clusters are parameterized by m, which denotes the
number of disks in a cluster. By nm we denote the number
of clusters consisting of m disks and by {nm} a distribution
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of cluster sizes. Given a set {nm} and ignoring the kinetic
contribution, we can write the internal energy (the Hamil-
tonian) of such a system as

x nm x

HU=E >Uk= nmUm, (4)
rn-= k=- m=n

where {nm} is subject to the restriction Xm=l mnm = N,
where N is the total number of disks in a given realization
of the system. Um is a phenomenological capillary potential
that is yet to be defined and that is the same for all clusters
of size m.
With the help of a chemical potential, v, that controls the

total number of disks in the system, we can define and
calculate the grand partition function of the system as follows:

00 X0 X I

L L L~~~ nIf!n2! ...n.!. .

n1=O n2=0 n.=O

x f 2 {exp[(vN -H)IkBT]}

= HE - [e(mv+kBT In A-Um)/kBT]n
m= I n=O

= exp E exp[(mv + kBT ln A -Um)/kBT]},
m=l

where rli f d2 j indicates a multiple integral over all
possible positions, ri, of every cluster in a given cluster-size
distribution {nm}. As H is r independent, each one of these
integrals produces the dimensionless area parameter AS
f d2r/s2 = (area of the system)/s2, where s is the mean
molecular nearest-neighbor separation in the system under
consideration. In Eq. 5 we have coupled v to the total
number of disks, N = -m=1 mnm, for each distribution
{nm}, and integrated over all possible distributions and thus
over all possible values of N. The corresponding grand
potential s4 is readily given by

that separates a region consisting only of the ,3-phase, with
the disks immersed in it, from an a background phase. We
denote by p the number density of the disks inside the
cluster and ignore for simplicity its dependence on the size
of the clusters. Such clusters will minimize the length of
interface per unit area by having an underlying geometry of
a circle of radius

Rm = (8)

For large m, we can approximate the energy associated
which each cluster by replacing ro in Eq. 3 with Rm and by
neglecting the contribution to the free energy coming from
the wetting layer that surrounds the whole cluster. Accord-
ingly, we obtain an approximative phenomenological
potential

Um = 2TrRmor + whAt(Rm -mr 2)
(9)

=2 o- M+ M-0M
p

The first term in Eq. 9 is the self energy of a circular
interface of radius Rm and stiffness o-. The second term
couples the area that is covered by the thermodynamically
unfavorable 1B-phase to the potential difference per unit
area, A,u, between the 13-phase and the thermodynamically
favorable a-phase. Close to the a-13 first-order phase tran-
sition line (A4u = 0), fluctuations of the a-13 interface line
against an effective substrate consisting of disks in high
density will increase the total length of this interface and the
total coverage of the 1-phase. As it will turn out, however,
this will have only a marginal effect on the cluster-size
distributions resulting from the simplified considerations we
have introduced above.

Cluster-size distribution

With Um at hand (Eq. 9) we can rewrite the cluster-size
distribution function of Eq. 7 as

(10)(n..n) = Ae (a +/m;+b m)/kBT

where

00

.s- = -kBT E exp[(mv + kBT lnA - Un)/kBT].
m=l

From the form of the Hamiltonian in Eq. 4 we see that the
average number of clusters of size m', (nm,), is the partial
derivative alaUrni of di. In general, for any m, we get

(nr) = exp[(mv + kBT ln A - U,m,)/kBT]. (7)

Phenomenological capillary potential

Let us now assume that the clusters under consideration are

surrounded by a well defined interface line of stiffness o--

and

b = AA- r) v. (12)

We immediately notice that if b turns negative, nm diverges
with m, causing the divergence of the capillary potential sI
in Eq. 6. This indicates a phase transition from a phase that
consists of finite (small) clusters of disks, of which the size
distribution is given by Eq. 10, to a phase that is rich in
disks and the 13-fluid. In a system of a fixed disk concen-

(6) a-22O. (1 1)
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tration, this would correspond to a phase separation in
which all the disks would aggregate into a single cluster. In
such a system the chemical potential v would depend on the
number of disks. In the thermodynamic limit, we can get an
idea of this dependence by relating an (N)-dependent po-
tential, fl((N)), to s in the standard way:

Si = lim[Ql((N)) - v(N)], (13)
A-o

where

00 00

(N) = I m(n.) = m X Ae-(a fi+b m)/kBT (14)
m=1 m=1

is the expectation value of the total number of disks in the
system. The conditions at the phase separation are those at
which the free energy of the system that consists of many
(small) clusters is equal to the free energy of the system
consisting of a single (large) cluster. An estimate for the
former is given by fQ((N)) in Eq. 13, but a proper description
of the latter is not challenged by this paper. However, the
largest expectation value of the disk density, (N)/A, in a
system with an exponentially decaying cluster-size distribu-
tion can easily be obtained by setting b = 0 in Eq. 14. Upon
replacing the sum by an integral, this yields

A - 2e a/kBTA

[(kBT) +(kBT)2 6(kBT)3 (kBT)41

Without excluding the possibility that phase separation may
occur at lower values of (N)/A, Eq. 15 provides the upper
limit, above which the system certainly undergoes a phase
separation.

In the regime where the disks are distributed in many
clusters of different sizes according to Eq. 10, we define a
probability function, p(m), of finding a disk within a cluster
of size m by (cf. Eq. 14)

m(nm) m
-( m-b-m/Bp(m) - ((>)= A e a+bm)/kBT (16)(N) (N)

p(m) is the fraction of disks found in clusters of size m out
of the total number of disks, (N), and it exhibits a maximum
at m* = ( a2 + 16bkBT - a)2/16b2 for a positive b. Equa-
tion 16 can be very useful when it comes to identifying
points of interest in relation to specific cluster sizes. For
example, it can be applied to identify the critical disk
concentration, say 6c, above which most of the disks are
expected to be found within clusters rather than as mono-
mers. For (N)/A = 8c the probability of finding a disk as a
monomer, p(l), is exactly 1/2, and Eq. 16 with m = 1 can be

applied to calculate the corresponding critical value of b,

2A
bc = kBTln - a. (17)

Substituting bc into Eq. 14 and solving for (N)/A will give
us the desired value of 6c.

It is important to notice that, in our formulation of the
problem for a fixed number of disks, b is eliminated by
solving Eq. 14. Thus, the dependence of the cluster-size
distribution (nm) on A,u comes in through a, which is a
function of the disk density inside the clusters, p. p and A,ll
are proportional to each other for values of Al, that are not
too small (see Eq. 22 below). Hence, upon reducing A,u we
increase a, thereby changing (nm) and approaching the
phase separation (see Eqs. 10, 14, and 15).

Wetting transition in the single-aggregate regime

A key result of our phenomenological model of wetting and
capillary condensation in lipid-protein membranes is that
aggregation of many wet disks due to capillary forces gives
rise to patterns that are dominated by either many finite
(small) clusters or a single large one. The single large
cluster, which absorbs all the proteins, is a result of a phase
separation in systems where the number of proteins is kept
constant. Two interesting questions are related to the exis-
tence of the large cluster. First, how is the lateral arrange-
ment of the disks inside the cluster, and second, how does
the size of this cluster grow when the wetting transition
(Au-O 0) is approached? It is clear that the simplified
internal energy of Eq. 9 cannot be the basis for a complete
answer to these questions. A qualitative impression of how
the arrangements of disks can be varied upon decreasing All
can be obtained from the microconfigurations to be de-
scribed in Fig. 4, b-e below. A detailed and rigorous study
of these problems is beyond the scope of this paper, and in
this subsection we shall restrict ourselves only to the regime
where the number density, p, of the disks inside the aggre-
gate is small enough to allow us to treat them as ideal gas
particles. In the Appendix we outline the key lines of a study
of the formation of regular protein arrays (crystalline solids)
within a large protein aggregate.
The regime of small p can be reached only if Ali and of

are small enough, reducing the energy cost of filling the
space among theN disks by the ,3-phase. Then one can think
of a wetting transition in the sense of the divergence of the
coverage of the ,3-phase, i.e., the divergence of RN =
N/N(Tp). Such a divergence necessarily involves singulari-

ties in Ag, ur, or N. In the region of these singularities, we
can obtain the leading behavior of RN by writing down the
pressure balance within the aggregate (Gil and Mikheev,
1995):

kBTN
Astt + oJIRN = ZPkBT =Z 2TR2 (18)

RN
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FIGURE 4 Microconfigurations of a binary lipid mixture with a dispersion of integral membrane proteins representative of a series of different values
of the chemical potential, A, which controls the lipid composition in a broad region around a phase separation between two lipid phases, a (gel) and ,3
(fluid). The data are obtained from computer simulation calculations on the microscopic model of lipid-protein interactions. The proteins, which have
preference for phase (3 (dark red), are labeled by large yellow dots. The two lipid species are labeled by red and blue small dots, respectively, and the two
phases are indicated by dark ((3) and light (a) colors, respectively. The configurations (a-f) are each labeled by the corresponding value of the chemical
potential, ,u, in units of 10- '3erg. The temperature is T = 307 K, and the parameters used for the modeling correspond to the case of a mixture of DMPC
and DSPC and a model protein of hydrophobic length of dp = 42.5 A. Each model protein covers an area corresponding to np = 7 lipid acyl chains, similar
to bacteriorhodopsin. The system comprises 100 X 100 acyl chain sites.

where Z = P/(pkBT) is the compressibility factor and P is
the pressure resulting from the colloid hard disk interactions
within the aggregate. Here we have equated this expansion
pressure with the shrinking pressure due to the chemical
potential difference and the Laplace pressure. Z can be
written as the virial expansion for the equation of the state
of the hard disks,

Z= 1 + B2p + B3p2+ B4p3 + ... (19)

where Bn are the virial coefficients.
In the limit where RN--> 00 and p 0, Z in Eq. 19

becomes 1, i.e.,

kBTN
A/u + OIRN =1R2* (20)

Here we already notice that for a finite N, a wetting transi-
tion, A1u->0, can only occur if o- ->0, e.g., when T -> TC,
Tc being the a-, bulk critical point. However, even for T <
Tc, RN can diverge if N -> oo. According to Eq. 20, the
asymptotic regime can be divided into two: Ali >> 0r/RN
and Ali << o/RN. The first regime can certainly be reached

for any finite Ali > 0 by increasing N and therefore in-
creasing RN, and the second one is certainly relevant when
A, = 0. These observations are summarized in the follow-
ing relations

f kjTNI(TAf,u) -N 2, 01/Att << kBTN
RN kBTN/I(rir) - N, o2/At >> kBTN, (21)

where we have assumed that oa does not change significantly
when Aip -> 0. Eq. 21 predicts that for a small enough Al,u)
RN can cross from a region of linear growth with N to a
power-law growth behavior with the power ½/2. Corrections
to the leading behavior must involve terms of higher order
in p in Eq. 19 and are beyond the scope of this paper. The
dependence of p on N within the asymptotic region of Eq.
21 can be calculated from it to give

p
APkABT- const., o2/A,<< kBTN

p(N) lirrT2/[N(kBT)2] _ 1/N, o2/A >> kBTN, (22)

from which we see that in the case where A,t is not too close
to zero, p is independent of the number of disks inside the
aggregate. We shall return to this point in the section where
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we compare the results from this phenomenological ap-
proach with the results from the microscopic modeling.

MICROSCOPIC MODEL OF WETTING AND
PROTEIN-INDUCED PHASE EQUILIBRIA
IN MEMBRANES

In this section we introduce a simple statistical mechanical
model of lipid-protein interactions in lipid bilayers with just
enough complexity to allow, via Monte Carlo computer
simulation techniques, for calculation of the phase equilib-
ria and the changes on these equilibria due to the presence
of an annealed dispersion of model proteins. Theoretical
biophysical studies of lipid-protein interactions is a matter
of making a proper balance between details and degree of
realism on the one hand and computational feasibility on the
other hand. Accurate and elaborate molecular force fields
together with fast molecular dynamics simulation algo-
rithms (Damodaran and Merz, 1994) have led to substantial
advances in our understanding of molecular details of lipid-
protein interactions. However, due to the complexity of this
type of approach, modern computers permit only a rather
small number of molecules (in most cases only a single
protein dissolved in some hundred lipid molecules) to be
studied, which at the moment excludes studies of phase
equilibria, protein aggregation phenomena, and strongly
fluctuating interfacial phenomena like wetting. We are
therefore forced to study simpler statistical mechanical lat-
tice models with phenomenological potentials (Mouritsen et
al., 1996) and to investigate them by stochastic (Monte
Carlo) computer simulation methods (Mouritsen, 1990).
Using a simple model is both the shortcoming and the
strength of the present approach. Obviously, a simple model
leaves out a number of molecular details that can be impor-
tant. The strength is that it can handle cooperative phenom-
ena in a transparent fashion and it allows for a study of
strongly fluctuating phenomena near phase transitions,
which is a striking characteristic of lipid-bilayer phase be-
havior. Moreover, the influence of various parameters, such
as temperature, chemical potential and composition, and
type of lipid species as well as size of protein can readily be
investigated.
As both details of the microscopic model as well as the

numerical simulation method have been described in detail
elsewhere (Mouritsen et al., 1996; Dammann et al., 1996)
we shall restrict ourselves to a very brief description and
then focus on the results obtained.

Model

The model is a microscopic version of the mattress model of
lipid-protein interactions in membranes (Mouritsen and
Bloom, 1984), which focuses attention on one particular
aspect the interaction, being the hydrophobic matching of
lipid bilayer thickness, dL, and hydrophobic length, dp, of
the protein. Again, this is a restriction in realism of the

modeling, but it provides the advantage of being able to
isolate the effects due to a purely physical and nonspecific
interaction. The hydrophobic mismatch interaction is an-
ticipated to be important when it comes to a determination
of phase equilibria involving the main gel-fluid phase tran-
sition because the bilayer thickness changes typically 10-
20% in the transition region. To further focus on the effects
of mismatch we shall here be concerned with binary mix-
tures of lipids with the same zwitterionic headgroups (phos-
phatidylcholine, PC) but with different acyl chain lengths,
specifically dimyristoylphosphatidylcholine (DMPC) and
distearoylphosphatidylcholine (DSPC).
The model we use for the binary lipid mixture in a

pseudo-two-dimensional planar phase is a special version of
a 10-state lattice-gas model (Pink et al., 1980) developed to
describe the phase equilibria in mixtures of lipids with
different acyl chain lengths (Risbo et al., 1995; J0rgensen
and Mouritsen, 1995). The 10 internal states and the asso-
ciated degeneracies of each lipid species reflect the internal
conformational statistics of long hydrocarbon chains. The
model faithfully describes the phase equilibria of highly
nonideal mixtures such as DMPC-DSPC. In particular it
describes the broad gel-fluid phase coexistence region (J0r-
gensen and Mouritsen, 1995) in which the gel phase pre-
dominantly consists of the long-chain lipid DSPC, which
has the higher transition temperature, and in which the fluid
phase is mainly made up by the short-chain lipid DMPC.
The interaction with integral membrane proteins is taken
into account by parameterizing the lipid-protein interaction
in terms of the mismatch, IdL- dpl (Mouritsen et al., 1996).
The Hamiltonian of the model can formally be written as

- YJ SP2y + KIPOP - jE(O - 29)
(ij) p,q i

+ Jpp 1 2PigPj,
(i,j)

(23)

where sF = 0, 1 is the site occupation variable for the two
lipid species, p, q = 1, 2, and 9P = 0, 1 is the site
occupation variable for the protein. No is a single-site
energy including the acyl chain intramolecular conforma-
tional energy and an interfacial pressure-area term (Pink et
al., 1980). Jpq, Jpp, and K-P = K1dL-dpi are interaction
constants. Jpq depends on the conformational state of the
two involved acyl chains, and £TP has an implicit depen-
dence on the acyl chain conformational state. Details re-
garding the values of the various interaction constants can
be found in Mouritsen et al. (1996). The interactions are
restricted to nearest neighbors on a triangular lattice. The
lipid composition, xp = (2C)F1 Ii _TeP and xq = (2C)-1
Ei _T9, with C = 1½2(X Ejg- j + n- Ej gPj, is controlled
by the chemical potential ,u, where X is the number of sites
on the lattice, each of which is either occupied by a lipid
acyl chain (i.e., one-half of a lipid molecule) or a fraction,
np 1, of a protein. Each protein is taken to occupy np lattice
sites arranged in a compact hexagonal shape. The protein
concentration, xp = 1 - xp -xq = (npC)-1 Ej ?Pj, is fixed.
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Computer simulation techniques

The stochastic dynamics of the model (Mouritsen, 1990)
used to bring the mixture in equilibrium with a thermal bath,
characterized by a temperature T, and with a lipid particle
reservoir, characterized by a chemical potential ,u, is
Glauber dynamics for internal transitions within each lipid
species, Glauber dynamics for exchange of lipid particles
with the reservoir, and extended Kawasaki lipid-protein
exchange corresponding to diffusional motion of the protein
in steps of one lattice constant. The lipids that have to be
displaced in front of a moving protein are translocated to the
vacant sites behind the protein. The acceptance criterion
is given by the standard Monte Carlo Metropolis rate,
min{ 1, exp(-AW/kBT)}. For simplicity, all pair exchanges
are taken to occur on the same time scale (given in units of
Monte Carlo steps per lattice site, MCS); i.e., the two
species and the proteins are taken to have the same diffusion
constant.
The Monte Carlo simulations are performed on finite

triangular lattices with X = L X L sites subject to periodic
boundary conditions. Different lattice sizes have been con-
sidered and most of the results reported below refer to
L = 100.

Results of the model simulations

The advantage of model simulations of the type described
above is that they, in addition to standard thermodynamic
functions and various correlation functions, can provide
information on the lateral organization of the mixed system
under different conditions. As our main interest here is the
lateral organization of the many-particle system and in
particular the phase behavior and how wetting phenomena
may influence this behavior, we shall restrict ourselves to
present a series of microconfigurations representative of
these different conditions.

In Fig. 4 is shown a gallery of microconfigurations cor-

responding to a fixed temperature, a fixed protein concen-

tration, and fixed model parameters. The only parameter
being varied is the chemical potential, which controls the
phase equilibria via changes of the lipid composition. The
corresponding cut through the lipid binary phase diagram is
indicated in Fig. 5. This diagram corresponds to the absence
of proteins but can be used as a guide to interpret the phase
state of the systems shown in Fig. 4 because of the low
protein concentration. A calculation of the complete phase
diagram for the ternary mixture would be extremely elabo-
rate and has not been carried out. It should be noted that,
due to the phase transition, the lipid composition varies
highly nonlinearly with ,u near the phase boundaries.

Going through Fig. 4, a-f, corresponds to decreasing the
chemical potential, ,u, in Eq. 23 and therefore to an increase
in XDMpC at the expense of XDSPC (P = DMPC and q =

DSPC). The configuration in Fig. 4 a corresponds to a gel
phase predominantly made up of DSPC, and the proteins are

FIGURE 5 Schematic phase diagram for the DMPC-DSPC lipid mixture
given in the (T -,) plane with the dashed arrow indicating the chemical-
potential path taken to obtain the series of microconfigurations in Fig. 4,
a-f. The inset shows the corresponding phase diagram in the (xDsPC- T)
plane with an indication of the same path. The points represent computer
simulation data whereas the solid lines indicate the corresponding mean-

field phase diagram (data from Risbo et al., 1995). It should be noted that
there is a strongly nonlinear relation between chemical potential and
composition, in particular close to the phase boundaries.

randomly distributed as there is no preferential coupling of
the proteins to any of the available lipids.

In going from Fig. 4 a to Fig. 4 b we have just crossed the
phase boundary to the gel-fluid coexistence region (cf. Fig.
5). The proteins are predominantly surrounded by lipids in
the gel phase, mostly DSPC gel lipids but also a small
concentration of DMPC gel lipids. The compositional fluc-
tuations (J0rgensen et al., 1993; Mouritsen and J0rgensen,
1994) in both the gel phase and in the fluid phase are clearly
seen. These compositional fluctuations are stronger the
closer the system is to equimolarity. The interface between
the gel and fluid regions is seen to be wetted (enriched) by
DMPC lipids in their gel state. Due to the hydrophobic
matching, this wetting layer tends to lower the interfacial
free energy. Very close to the phase boundary, the gel phase
can be considered a phase that is induced and stabilized by
capillary condensation around the proteins. The existence of
an interface with a nonvanishing stiffness, closing around
the protein-gel aggregate in Fig. 4 b and not letting it grow
continuously to infinity when increasing ,u, suggests that the
transition from Fig. 4 b to Fig. 4 a is of first order. As the
chemical potential is further decreased (cf. Fig. 4, c-e), the
fluid phase grows at the expense of the gel, and the proteins

3

T [K]
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are forming one large aggregate of a decreasing diameter.
At the same time the compositional fluctuations are sup-
pressed, because the composition is moving away from the
equimolar one. In Fig. 4 d and e, the extent of the gel phase
is now so small, compared with the amount of proteins, that
the proteins pack tightly in a seemingly crystalline patch.
The regularity of this protein array may be an artifact of the
underlying lattice, and the protein aggregate should there-
fore only be considered a densely packed solid phase with
no specification of its possible crystal symmetries. How-
ever, the close-packed crystalline protein crystal in Fig. 4 e
can also be seen as a result of the excluded volume inter-
actions acting between the proteins in the confined volume
of the cluster. Such interactions would also lead to forma-
tion of crystalline solids even in the absence of an under-
lying lattice (Alder and Wainwright, 1962).

In the case of Fig. 4 e there are just enough gel-state
DSPC lipids to cover the surface of the proteins, and the
maximal amount of proteins are sharing annular lipids.
Upon a further decrease of the fraction of DSPC lipids (Fig.
4f) there are not enough DSPC lipids around to keep the
protein aggregate together, and the entropy of mixing shifts
the balance toward a dispersion of small protein clusters in
the fluid phase. At this stage we have left the gel-fluid
coexistence region. The transition from the state of a single
large protein aggregate to a dispersion of very small protein
clusters, most of them containing only a single protein, is
very sharp. As is observed from Fig. 4 f and e, the small
protein clusters are covered with a layer of gel-state DMPC
lipids that provide a better hydrophobic matching than the
fluid-state lipids. The few clusters of proteins left are glued
together with the few remaining gel-state DSPC lipids.
The effect of wetting and capillary condensation on the

organization of proteins in membranes is most clearly seen
by inspecting Fig. 4, e and f. In going from Fig. 4f to Fig.
4 e we are extremely close to the phase boundary between
the fluid phase and the gel-fluid coexistence region (cf. Fig.
5). The proteins are wetted by the gel phase lipids, and the
wetting layers are starting to overlap, inducing a capillary
condensate that is just about to form a connected gel patch
that, upon further increase of ,u, will develop into a ther-
modynamic gel phase. Slight variations in ,u or other system
parameters in this region will have a dramatic and highly
nonlinear effect on protein organization.
From a thermodynamic point of view, the variations in

the system aggregational state is most naturally studied and
mapped out in the grand canonical ensemble for the lipids,
which corresponds to variations of the chemical potential as
in Fig. 4. Obviously, under experimental conditions, ,u is
not the natural parameter to vary. Instead, one may want to
vary temperature and lipid and protein composition as well
as the type of lipids or proteins studied. However, the same
type of scenarios shown in Fig. 4 can be obtained by varying
one or more of these other variables. This is illustrated in
Fig. 6, which in different cases shows the effects of 1)
changing the strength of the hydrophobic mismatch inter-

the protein concentration, 3) changing the cross-sectional
area of the proteins, and 4) changing the temperature.

Choosing a protein with a stronger hydrophobic mis-
match interaction between the lipid bilayer and the protein,
Fig. 6, a to Fig. 6, b, enhances the affinity of the proteins to
the gel-state lipids. This increases the extent of the gel-state
lipids in the system, allowing for the existence of the single
protein aggregate at lower values of ,t in comparison with
Fig. 4 e.

Increasing the concentration of the proteins, Fig. 6, a to
Fig. 6, c, reduces the loss in the entropy of mixing of the
proteins due to the aggregation in a single cluster, allowing
for the existence of the single protein aggregate at lower
values of ,u in comparison with Fig. 4 e.

Choosing a protein with a larger cross-sectional area, i.e.,
a larger circumference, Fig. 6, a to Fig. 6, b, increases the
gain in the favorable gel-protein interface and reduces cor-
respondingly the unfavorable fluid-gel (fluid-protein) inter-
face per aggregating protein (Gil and Ipsen, 1997). Thus, it
enhances aggregation in comparison with Fig. 4f.
The effect of increasing the temperature, for constant

chemical potential, is illustrated in Fig. 6, e-g. Going from
Fig. 6, e to Fig. 6, f, the effect of temperature is to enhance
protein aggregation/crystallization within the protein-wetted
phase due to a progressive lipid chain melting of the long-
chain species. A further increase in temperature, Fig. 6, e to
f, has two complementary effects that lead to the transition
from a single protein aggregate to a dispersion of small
protein clusters. First, as it is observed in the phase diagram
of Fig. 5, it moves the system deeper into the fluid region,
as decreasing ,u would do but at a different rate, reducing
the extent of the gel-state lipids in the system. Second, it
increases the loss of the entropy of mixing of the proteins
due to the aggregation in a single aggregate, favoring a state
with a dispersion of small protein clusters.

In the thermodynamic limit, the lipid fluid-gel transition
in the background of Fig. 4 b to Fig. 4 a can be approached
continuously by increasing the number of proteins very

close to the boundary of the gel-fluid coexistence region.
This wetting-like transition can be characterized by moni-
toring the growth in the extent of the DSPC-rich gel phase
as a function of the number N of the proteins. This is
illustrated in Fig. 7 for three different values of ,u in terms
of the mean value of the radius of the protein aggregate, RN,
shown as a function of N. As is increased toward its value
at the lipid fluid-gel transition, the power law RN N112
changes into a linear growth law, RN N. These power

laws and the crossover, which are consistent with the pre-

dictions of the phenomenological theory (cf. Eq. 21), are

discussed in the following section.

DISCUSSION OF THE THEORETICAL RESULTS

The two different theoretical approaches to wetting and
capillary condensation presented above each have their ad-

action between the lipid bilayer and the protein, 2) changing
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FIGURE 6 Microconfigurations of a binary (DMPC-DSPC) lipid mixture with a dispersion of integral membrane proteins. The different cases illustrate
the effect of (a) -* (b): changing the strength of the hydrophobic mismatch interaction between the lipid bilayer and the protein from K = 0.5 X 10- 14erg
to K = 0.7 X 10- 4erg; (a) -> (c): increasing the protein concentration from xp = 1/500 to xp = 1/100; (a) -* (d): increasing the protein cross-sectional
area from np = 7 to np = 18; and (e) -* (f) -> (g): increasing the temperature from T = 307 K to T = 325 K to T = 360 K. The symbols and the color
coding are as in Fig. 4.

theory involves approximations about the free energy and in
particular about the various entropy contributions and yields
no details about the microscopic states of the system, it
provides the advantage of leading to an analytical expres-
sion for the capillary forces and the resulting cluster size
distribution. The microscopic model and the associated sim-
ulations have their advantages in dealing with a microscop-
ically based interaction potential, accounting accurately for
the different entropy contributions and leading to details
like microconfigurations, but they suffer from being a nu-
merical approach, which is much less transparent in its
general applicability and as to how the results depend on the
various system parameters and thermodynamic potentials.

Together, the two approaches are, however, expected to
constitute a fairly comprehensive approach to the problem
of how wetting and capillary condensation may serve as
means of protein organization in membranes.
With (nm), b, and p(m) at hand (cf. Eqs. 10, 14, and 16,

respectively), the phenomenological theory puts us in a
position to draw the qualitative picture that emerges from
applying the ideal gas paradigm to estimate the cluster size
distribution of aggregates of many wet disks. The asymp-
totic disk (protein) concentration determined by Eq. 15 can
serve as a basis for comparison with the results obtained
form the microscopic model simulations in the regions
where phase separation occurs (cf. Figs. 4 and 6).
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a p that is m independent. As Ap -*- 0, the behavior of RN
crosses over to a linear relation, RN N, indicating a p that
is inversely proportional to m (cf. Eqs. 21 and 22). For
intermediate values of Ap,, where the disks lie close to each
other but are not close-packed, excluded volume effects and

l5 /the competition between configuration and free volume
entropies (cf. Appendix) complicate the analytical represen-

I=-049 ltation of the compressibility factor in Eq. 19 beyond the
scope of this paper.
The phenomenological model is primarily relevant to the

limit of dilute systems where the configurational entropy for
the mixture of ideal gases can be applied. Moreover, we
have ignored the momentum impact on the free energy,
which is relevant in the cases where aggregates can transfer
momentum to each other by collisions, but one could in-
corporate this aspect relatively easy within the framework

IL/'p=-0.7 of the present study. Approximating all the clusters to be
circular and of radius Rm (Eq. 8) has on the one hand
favored small aggregates by relating to them smaller areas
and perimeters than the actual ones. On the other hand,
ignoring the outer wetting layers has lowered the potential
of aggregates of size m by a term proportional to m1/6 (Eq.

0 20 40 60 80 100 9), favoring the large aggregates. A cancellation of these
N two types of errors is plausible but is not addressed in the

present study.
7 Mean radius, RN, of the protein-gel (DSPC) aggregate sep- It should also be noted that the disks (proteins) consid-
im the DMPC lipid background. RN is calculated from the mean
of the DSPC gel obtained by computer simulations in the region ered in the simulations are rather small and the curvature of
otein-induced phase separation for p(10-'3erg) = -0.7 (0), their surface lines prevents the development of a wetting
>, and -0.49 (A). The system comprises 100 x 100 acyl chain layer. The disks are therefore not wet when immersed in the
the lines connecting the data points are guides to the eye. The a-phase considered in the phenomenological theory. A fur-

iuous) jumps in the value ofRN atN = 25 and 65 for pj(10- '13erg) ther refinement would, therefore, at large values of At
and -0.5, respectively, corresponds to a transition in which most

i

)id molecules become DSPC gel. The points of this transition involve two different values of the interfacial stiffness, a,
approached continuously upon increasing N due to the small one for the interface surrounding the cluster and one for the

ze. interfaces of the disks inside the cluster. This will, however,
not change the qualitative observations of Figs. 4, 6, and 7.

By decreasing the chemical potential ,u (cf. Fig. 4, e and
f) or the density of the disks in the system NIA (cf. Fig. 6,
c and a) or by increasing the temperature T (cf. Fig. 6, f and
g), we move the system through a transition from a state
where the disks are aggregated in one large cluster to a state
where the disks are distributed among smaller clusters. This
corresponds to going through the conditions approximated
by Eq. 15. Decreasing ,u (Fig. 4) increases Ali and the
density p of the disks inside the clusters (cf. Eq. 22) and
decreases thereby the value of a = 2o-\/'r7. This in turn
increases the value of b in Eq. 14 and the limit value of the
disk concentration in Eq. 15. The assumption that p is
independent of the number m of disks that constitute a
cluster is not too crude if clustering occurs when all the
clusters are close-packed (cf. Fig. 4, e and f). Moreover,
from Eq. 22 we learn that, for low values of AA, p is
proportional to Ali and is m independent. When A/u van-
ishes, p is inversely proportional to m, and the cluster size
distribution (nfm) of Eq. 10 needs readjustment. These two
regimes are observed in Fig. 7 where for a range of values
of AA, corresponding to Fig. 4, b-e, RN - N/N, indicating

CONCLUSIONS

We have in the present paper studied wetting and capillary
condensation phenomena as means of organizing proteins in
lipid membranes. It was pointed out that the cooperativity of
lipid bilayers contains the necessary physics to allow such
phenomena to occur and that the specific conditions re-
quired can be fulfilled by appropriate choices of thermody-
namic parameters. We have discussed the phenomena in the
simplest possible setting with the advantage of being able to
unravel the general structure of the problem and the obvious
drawbacks of not being able to make quantitative compar-
isons with specific experimental systems. The simplicity
and generality of our approach should, however, provide a
guide for experimentalists to optimize the conditions for
protein aggregation and protein crystallization in protein-
lipid recombinants. Whereas the phenomenological model
presented in this paper is fairly general and insensitive to
details of the actual molecular potential acting in specific
systems, the most severe shortcoming of our microscopic
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model is its neglect of electrostatic forces, which are crucial
for many lipid-protein systems, e.g., for the aggregation of
bacteriorhodopsin in bilayers containing charged lipids
(Watts et al., 1993). Nevertheless, the phenomenology of
protein organization as controlled by the underlying lipid
phase equilibria (cf. Figs. 4 and 6) is expected still to apply.
In particular, the theoretical modeling presented accounts
for various contributions to the system entropy, both the
translational entropy, the entropy of mixing, and the internal
entropy of the lipid chains. Hence this type of modeling may
prove useful to investigate subtle but important mechanisms
of entropy-driven protein crystallization effects proposed by
Uitdehaag and Watts (unpublished).
From the point of view of membrane functions, the state

of protein organization pictured in Figs. 4fand 6 a might be
of particular interest as it demonstrates under which condi-
tions, controlled by the lipids, small aggregates of proteins
may arise due to a sharing of special lipids that are available
only in small amounts. The sensitivity of this state aggre-
gation to the lipid composition, as expressed in our phe-
nomenological analysis, may provide a basis for a trigger
mechanism for membrane function (Sackmann, 1995).
As pointed out in this paper, the distinction between

densely packed protein arrays and two-dimensional protein
crystals is a question that is very difficult to investigate
theoretically, and the regular arrays of proteins seen in the
computer simulation snapshots in Figs. 4 and 6 may be
artifacts of the underlying lattice. Moreover, to investigate
the relative stability of the different types of two-dimen-
sional crystalline symmetries that have been observed, e.g.,
for bacteriorhodopsin (Watts et al., 1993), it is required that
directional protein-protein potentials are invoked. The sys-
tem sizes that are feasible to study in the computer simula-
tions are not big enough to encompass enough proteins to
allow observation of the nonequilibrium process of grain-
boundary formation and subsequent annealing of the protein
array upon approach to the equilibrium state. But in princi-
ple, the microscopic model should permit such a study,
which would be of interest in relation to comparing with
experimental data.

them (Bladon and Frenkel, 1995). An intriguing question is what transi-
tions exhibits a system that consists of hard disks that are aggregated due
to capillary, nonadditive, forces or, in other words, in which way would it
be possible, by changing the parameters of such systems, to relate the
behavior to a specific class of pair interaction potentials. An attempt to
answer this question can be made by calculating the potential of mean
force, mainly following the work by Lekkerkerker et al. (1992).

Let us consider an aggregate consisting of N hard-disk colloids im-
mersed in a (3-phase and bounded by an a-,3 interface (Fig. 4, b-e). We
assume that the internal energy of such an aggregate can be written as a
sum of two Hamiltonians, NC and NW,' one describing the colloid-colloid
interactions for the hard disks within the aggregate and the other one
describing the colloid-wetting phase interactions between the wetting
phase and the disks, respectively. In the cases where the colloid-wetting
phase interactions can be described by an effective interface model, XW
depends on location of the N disks, inside the aggregate, RN, and the
location of the a-,B interface defining the aggregate, L. The configurational
partition function for the single aggregate system can thus be written as

= RN2Le- [Xc(RN)+Xw(RN+L)l/kBT (24)

where GRN and B2L are the functional measures for the integration over all
the possible realizations of RN and L, respectively.

As before (see the section on the phenomenological capillary potential
above), we assume that the disks inside the aggregate lie close enough to
each other (see Fig. 4, d and e) so that the fluctuations of the fluid-fluid
interface are well described by considering an effective circular substrate
of radius

RN= A, (25)

where p is the number density inside this effective substrate. This relaxes
the dependence of L on RN and enables us to rewrite Eq. 24 as

= J' g -X.(RN)kBT -J'LLe-)'kBT _e=]kBT

(26)

where Qc and fQw are the grand potentials (the ensemble is grand canonical
with respect to the wetting phase) describing the hard disk system inside
the effective substrate and the fluctuation of the fluid-fluid interface,
respectively. The free energy is given in the usual way by

fl= -kBTln = flc +f. (27)

APPENDIX

Two-dimensional fluid-solid-like transition within
a large protein aggregate

In this Appendix we restrict ourselves to outline the key lines of a study of
the formation of regular protein arrays (crystalline solids) within a large
protein aggregate (see our discussion of the large aggregate regime in our

phenomenological model above). The questions of whether two-dimen-
sional systems exhibit a true fluid-solid phase transition and whether this
transition is continuous or discontinuous, involving a hexatic intermediate
phase or not, are, to different extents, still under debate (Bladon and
Frenkel, 1995, and references within). It is nevertheless clear that a

structure factor that is associated with a crystalline order can be measured
in large but finite two-dimensional systems of colloids. In systems of
two-dimensional colloids, the existence of gas-liquid and solid-dense solid
transitions on top of the fluid-solid transition have been shown to depend
on the range and strength of the pair interaction potentials one attaches to

Hence we have separated our problem into two independent problems
that are coupled only by depending on the same parameters. More specif-
ically, Ql now consists of two additive parts, one, Qlc, which considers only
a system of hard disks in a given area, AA -7rR2, and at given density p,
and the other one, flw, which describes the wetting of a circular substrate
of radius RN. The latter, [lw, is given by Eq. 3. The former, flc, can be
calculated from the hard disk compressibility factor, Z P/(pkBj), of Eq.
19 by

kBT Z

rn 2 (28)

where q =nrr2p is the volume fraction of the disks inside the effective
substrate. Z can be given by the virial expansion in Eq. 19. However,
finding a proper analytic approximation of Z to be used in Eq. 28 close to
the two-dimensional melting point is not a trivial matter and requires
further study.

Given two different forms of Qlc to describe a fluid and a crystalline
order of the disks inside the effective substrate, one can identify the
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location of the fluid-solid transition for the hard disk colloids by demand-
ing

Psolid = /fluid, and Psolid = Pfluid (29)

according to the definitions of jt = afl/aN and P = -caf/IAA.
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