
Biophysical Journal Volume 73 December 1997 3004-3015

Electrotonic Measurements by Electric Field-induced Polarization in
Neurons: Theory and Experimental Estimation
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ABSTRACT We present a theory for estimation of the dendritic electrotonic length constant and the membrane time
constant from the transmembrane potential (TMP) induced by an applied electric field. The theory is adapted to morpho-
logically defined neurons with homogeneous passive electric properties. Frequency characteristics and transients at the
onset and offset of the DC field are considered. Two relations are useful for estimating the electrotonic parameters: 1)
steady-state polarization versus the dendritic electrotonic length constant; 2) membrane time constant versus length
constant. These relations are monotonic and may provide a unique estimate of the electrotonic parameters for 3D-
reconstructed neurons. Equivalent tip-to-tip electrotonic length of the dendritic tree was estimated by measuring the
equalization time of the field-induced TMP. For 11 turtle spinal motoneurons, the electrotonic length from tip to tip of the
dendrites was in the range of 1-2.5 A, whereas classical estimation using injection of current pulses gave an average dendrite
length of 0.9-1.1 A. For seven ventral horn interneurons, the estimates were 0.7-2.6 A and 0.6-0.9 A, respectively. The
measurements of the field-induced polarization promise to be a useful addition to the conventional methods using micro-
electrode stimulation.

GLOSSARY

a area of the cross section of the dendrite
A amplitude of the harmonic response at the soma
D representative apparent diameter of the dendrites

of the cell
Di apparent diameter of the ith dendritic segment
E electric field strength
gs admittance of soma membrane
H characteristic duration of the transient
L equivalent tip-to-tip length of the dendritic tree
Ld average electrotonic length of the dendrites from

soma
Lt average electrotonic tip-to-tip length of the

dendrites
R specific membrane resistance

Rin cell input resistance
s total cell surface
si fraction of the total cell surface, which is distal

with respect to the center of the ith dendritic
segment

Ss soma surface
S resistance of the impalement shunt
t time
T duration of the DC field pulse
u extracellular potential
U amplitude of the harmonic extracellular potential
v intracellular potential
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V complex amplitude of the harmonic intracellular
potential

w transmembrane potential
WS soma transmembrane potential
wst steady soma transmembrane potential

w0o steady soma transmembrane potential induced by
a DC field of unit strength

W complex amplitude of the harmonic
transmembrane potential

Ws complex amplitude of the harmonic
transmembrane potential at the soma

x axial coordinate of dendrite
X length of the homogeneous dendritic segment

Zin complex input resistance
ZLi complex load resistance at the distal end of the

ith dendritic segment

Greek symbols

ai angle between the ith dendritic segment and the
field direction

(3 direction of the DC field, which does not polarize
the soma

0 cyclic frequency
A electrotonic length constant of a dendrite with an

apparent diameter of 1 t,m
A complex electrotonic length constant of a dendrite

with an apparent diameter of 1 t,m
,ua time delay of the soma transmembrane potential

with respect to a slowly changing field
HI perimeter of a dendrite with an apparent diameter

of 1 ,um
p specific dendroplasmic resistance
T membrane time constant
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Tj first charge equalization time constant
sp phase shift of the harmonic transmembrane

potential at the soma
w characteristic resistance of a dendrite with an

apparent diameter of 1 Am
fl complex characteristic resistance of a dendrite with

an apparent diameter of 1 ,um

INTRODUCTION

The computing capacity of neurons depends on the electro-
tonic properties of dendrites. Only good knowledge of elec-
trotonic structure allows one to understand the functional
role of the interactions between synaptic and voltage-sensi-
tive currents. Defining the ohmic features of dendrites is an
urgent problem. Unfortunately, it is still difficult to solve
this problem satisfactorily. For example, estimates of the
electrotonic length of Purkinje cells differs 10 times (Chan
et al., 1988; Rapp et al., 1994). In electrotonically long cells,
even the membrane time constant T, is not measured reli-
ably, because the amplitude of the slowest exponential
component of the potential transient, i.e., exp(-t/T), is small
(Major et al., 1993). Additional difficulties arise from the
complicated compensation of the access impedance (Jack-
son, 1992; Major, 1993; Spruston et al., 1994) and the
possible impalement shunt (Durand, 1984; Kawato, 1984;
Gola and Niel, 1993; Spielmann et al., 1993; Spruston et al.,
1994). One needs to increase the number of unknown pa-
rameters when imitating the response of the cell to an
electric stimulus. Measurements of membrane resistance in
isolated cells by the whole-cell patch-clamp method are
more reliable (Brown et al., 1993). These cells are electro-
tonically short; thus their large input resistance, Rin, is not
influenced by the dendroplasma resistance and access pa-
rameters. Rin depends only on the membrane resistance.
However, it is not certain whether an isolated neuron shares
parameters with a normally functioning nerve cell.
At present, there is a single widely accepted procedure for

determining the electrotonic structure of neurons, based on
imitating the response to a short current pulse in a morpho-
logically defined cell (Major et al., 1994). In this case four
independent parameters of the supposedly homogeneous
cell are chosen: the membrane capacitance (C), the impale-
ment shunt (S), the specific membrane resistance (R), and
the specific dendroplasmic resistance, p. Preference is given
to whole-cell patch-clamp recordings, because in this case
there is no impalement shunt (Major et al., 1994; but see
also Thurbon et al., 1994). Nevertheless, three parameters
are still too many for a unique imitation of the rather simple
shape of the response to a current pulse. In addition, one
must bear in mind that the very beginning of the response is
contaminated by the capacitive current of the pipette (Major
et al., 1994). The response to the current pulse is relatively
insensitive to the distal membrane, because the effect of the
sealed distal end is equivalent to a mirror current source that
is twice as distant as the distal end is (Jack et al., 1975). The

ple, the calculated values for R differ by as much as 10 times
in the same population of neurons (Thurbon et al., 1994).

Whole-cell patch-clamp data are complicated by possible
wash-out from the cytoplasm of small organic molecules
that may regulate membrane properties. Therefore, it is
uncertain whether the electric properties of neurons are
distorted by the experimental procedures (Edwards and
Stem, 1991; Major et al., 1994). On the other hand, impale-
ment by the sharp electrodes is not always accompanied by
a shunt (Svirskis et al., 1997).Therefore, as the existing
knowledge on passive electric parameters in neurons is
unreliable, it is necessary to develop new approaches for
measuring the electric parameters.

For the electrotonic measurements one may use the po-
larization of neurons induced by an applied electric field
(Hounsgaard and Kiehn, 1993; Baginskas et al., 1993; Gut-
man and Svirskis, 1995). The stimulation by the electric
field is particularly convenient because it provides a direct
check of the assumption that the soma-dendritic membrane
has homogeneous passive membrane properties (Svirskis et
al., 1997). The field effect on the transmembrane potential
(TMP) is equivalent to current sources at the distal ends of
the dendrites. Thus the soma TMP is more sensitive to distal
membrane than is the current-induced polarization. In tissue
slices one may achieve homogeneity of the field (Andreasen
and Nedergaard, 1996; Richardson and O'Reilly, 1995);
thus the field-based methods seem practical. The electric
field-based method is popular in electrotonic measurements
of unbranched fibers (Trifonof and Chailakhian, 1975; Alt-
man and Plonsey, 1989). It was also applied to the estima-
tion of the electrotonic length of turtle Purkinje cells (Chan
et al., 1988). (The cell was modeled as a homogeneous
cylindrical cable without an injury shunt. By using intra-
dendritic recording in many points, the authors estimated
the Purkinje cell as 1.5-2 A, length constant, long.)
Our aim is to demonstrate that measurements based on an

applied electric field are promising for estimating the elec-
trotonic structure of neurons. We assumed that an impale-
ment shunt is absent, the membrane and cytoplasm are

electrically homogeneous, and the shape of the cross section
of dendrites is, on average, uniform on the scale <<A
(Alaburda and Gutman, 1996). In this case, the field-in-
duced transmembrane potential depends only on the elect-
rotonic length constant, A, defined for some diameter and
membrane time constant, . Of course, the method needs 3D
reconstruction of the neuron. As independent electrodes are

used for stimulation and recording, the compensation for the
access impedance is not necessary.
The arguments above enable us to propose the field-based

method as a promising complement to the already accepted
methods for electrotonic measurements. Here we analyze a

simplified case when the impalement shunt is absent. Thus
the equations derived are primarily applicable to whole-cell
recordings and to sharp-electrode recordings without an

injury shunt (Svirskis et al., 1997).
We 1) present a general theory for field-induced soma

parameter values determined may be equivocal. For exam-
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theory, and 3) estimate the average tip-to-tip electrotonic
length of dendrites of motoneurons and ventral horn inter-
neurons in turtle spinal cord by measuring the membrane
time constant and equalization time of the field-induced
TMP.

METHODS

Method substantiation

We must identify how the effects of an applied electric field depend on the
electrotonic parameters. We assume that an impalement shunt is absent,
and that the membrane and cytoplasm are electrically homogeneous. We
will use a set of electrotonic parameters: membrane time constant, T = RC;
electrotonic length constant, A = (RalpH)l2; and characteristic resistance,
= (RpIaH)"2. The latter two parameters are defined for a homogeneous

dendritic segment with an apparent diameter, D = 1 ,um. Here a is the area
of cross section of the cable and HI is the perimeter. The apparent diameter,
D, is a morphologically measured quantity, HI D and a D2, with
proportionality coefficients that are constant along the entire dendritic tree
on the macroscopic scale <<A (Alaburda and Gutman, 1996). Because
each parameter from the electrotonic set has its own separate meaning for
the physical phenomena, this set provides several advantages against the
physical set R, p, C. For example, if only the electrotonic length constant
A for D = 1 ,tm is found, then by recalculating A for each dendritic
segment, the electrotonic structure of the dendritic tree can be defined,
even in the absence of the estimation for R and p. The definition of the
parameters from the physical set is restricted by the assumption that
dendrites are cylindrical cables. If soma can be represented as a part of
dendrites, there is no need to explicitly calculate values of R and C. Then
for the electrotonic set, it is only important that the shape of the cross
section along the entire dendritic tree is, on average, uniform on the
macroscopic scale <<A (Alaburda and Gutman, 1996).

Let us begin with the general cable equation for a homogeneous
segment of an ohmic dendrite in an electric field:

a2v dw
D2 T=X+ W (la)

Here the term on the left is the derivative of the axial current, and v is the
intracellular potential; the terms to the right define the transmembrane
current. Transmembrane potential, w = v - u; u is the extracellular
potential; x is the axial coordinate. To analyze the transients, we will use
Fourier decomposition of the field and the transmembrane potential of the
cell. If the field is harmonic, u = Uexp(jOt), where 0 is the cyclic
frequency, and j is an imaginary unit, then the equation is simplified and
acquires the form analogous to the equation for the stationary case, al-
though the parameters become complex (Gutman, 1980; Tranchina and
Nicholson, 1986):

a2v
DA2 -= W8x2 (lb)

where the length constant for harmonic potentials A = A/(1 + jOt)"'2. Vand
W are complex amplitudes of the corresponding potentials. The boundary
conditions at the points of break of the homogeneity (change of apparent
diameter, branching, bending, and the end of dendritic branch) are the
usual:

dvi
dx'i 1 (2)

The sum includes all segments that are connected to the given point.
The solution of Eqs. 1 and 2 depends on angles between the axis and the

field, lengths, and the diameters of each segment, as well as on unknown
parameters A and T. If the field is homogeneous, one may insert w instead

of v in Eqs. la and lb. The dependence on the field strength and orientation
will remain only in the boundary conditions, Eq. 2 (Appendix A, Eq. A2b).
Here we present the explicit expression of the complex amplitude for the
soma transmembrane potential, W,'(O), induced by a harmonic field (Ap-
pendix A):

cos ai(l - 1/(cosh(Xi/A FD)
Tyr

{ nXAv ', + fl/D'2ZL4k sinh(XJ/A D)))
W5i) = -Et IQ i J7Lk(cosh(Xik/A Dik)

+ fQ/Dk2ZLk sinh(Xik/A D\))
(3)

Here X is the length of a homogeneous dendritic segment; E is the field
strength; a is the angle between the segment and the field; Q is the
characteristic impedance, Ql = co/(I + jOt)"2, for the segment with D = I
pum; Zin is complex input resistance at the soma; ZL is the complex load
resistance at the distal end of the segment. The sum includes all dendritic
segments of the cell; the product is carried out through the segments of the
dendritic path, connecting the soma with the proximal end of the ith
segment. It is evident that all ZL and Zin are proportional to Q if there is no
impalement-injury shunt. Thus WJ(O) and w%(t) depend only on two non-
geometrical parameters, A and T.

Equation 3 has an asymptotic limit (Gutman and Svirskis, 1995),
derived in Appendix B:

E
W,(O) = - -. ~X1s1cos ai

when the following inequality holds:

A2D/ 1 + r>>»L2

(4a)

(4b)

where s is the total surface of the neuron; si is its distal fraction with respect
to the center of the ith segment; L is an equivalent tip-to-tip length of the
dendritic tree. Here D is its representative apparent diameter.

It is evident that the asymptotic value is reached only when A >> L,
because the increase in 0 only weakens the inequality. As the asymptote of
Ws(O) does not depend on 0, Eq. 4a also defines the asymptote for the
stationary response, w,,jA), to the field step. In the case of large A, we can
evaluate the characteristic time of the transient, H. The order of H is
defined by the range of characteristic frequencies, 0 1IH, for which the
response amplitude, Ws(6), neither is vanishing nor has the asymptotic
value of Eq. 4a. In this range of frequencies, approximate equality,

A2D- L2, holds. Finally, we get

(4c)

Equation 4 is useful for analysis and control of the solutions presented
below. Note that the characteristic time of the transient is decreasing when
A is increasing.

Calculation methods

Although Eq. 3 provides a complete analytical solution for the field-
induced soma potential, but it is inconvenient for calculations. Our calcu-
lation algorithm is based on the superposition of the effects of the currents
from the adjacent segments and the field.

The transmembrane potential at the proximal end of a homogeneous
segment is defined by the input current and the field (Tranchina and
Nicholson, 1986):

dV
W(x,O0) = - 0A(x,A) +E-B(x,A)dxo (5)

The second term includes the field effect on this segment and the boundary
condition at the distal end that reflects the field-induced polarization of
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more distal dendrites. If the potential is induced only by the field, then
(Appendix C)

(6)

Here the admittance of the soma membrane, gs = s,/(A * 51- Hl); shunt is
not considered; ss is the soma surface; the sum includes the proximal
segments of all dendrites. The definition of an algorithm for calculating the
coefficients A(A) and B(A) is described in Appendix C.

It is obvious that all of the results in this section may be used for the
stationary field. In this case one must change the complex parameters A, Q,
and various complex resistances for real A, c, and corresponding resistances.

General description of the calculations
We have calculated ws(t) at the onset and the offset of a DC field, during
the harmonic field stimulus, and during a field ramp for two reconstructed
nerve cells. These two neurons were chosen because of their different
branching patterns: the hippocampal intemeuron is very asymmetrical and
has one long apical dendrite and several short basal dendrites (Fig. I A,
inset), whereas the motoneuron has almost symmetrical dendritic branch-
ing (Fig. 1 B, inset).

The interneuron is from the stratum pyramidale of the CAl field in the
rat hippocampus (Thurbon et al., 1994). We have used the parameter values

suggested for the neuron considered (Thurbon et al., 1994): R = 14.4 kQl
cm2, p = 410 Q * cm, and C = I jlF/cm . Hence for a dendrite 1 ,um in
diameter, the length constant A = 296 ,um and the characteristic resistance
c = 1.547 GQ. The axon of this cell branches almost symmetrically with
respect to the stratum pyramidale. The neuron has just four basal dendrites
with limited branching. The field was oriented in the direction of the apical
dendrites in the temporal plane. The contribution to the soma polarization
of the symmetrical axon may be neglected (Gutman and Svirskis, 1995;
Tranchina and Nicholson, 1986).

The motoneuron is from turtle spinal cord (Figure 2 C in Ruigrok et al.,
1984). The diameters, D, of the dendritic branches were kept constant
between branch points and were derived from the regression curve, D =

0.55 + 0.53,i ,um, where n is the number of the terminal branches emerging
from a particular branch (Ruigrok et al., 1984). The smallest diameter was
1 ,cm. The electrotonic parameters chosen were T = 20 ms, A = 410 ,um,
w = 1560 MQ, where A and w are calculated for a cable with a diameter
of I ,um. With these parameters, the input resistance for the model neuron
and the characteristic time for the potential decay after a field step fell in
the range of values observed experimentally (Svirskis et al., 1997; see
Discussion also). The field was oriented in the lateral direction and was
uniform. The axon was approximately perpendicular to the chosen field
direction and therefore was not considered in the calculations.

The dendrites were divided into linear cylindrical segments. For each
segment, its angle with respect to the field was determined. Calculations
were accomplished by means of the Fourier transformation. For the DC
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FIGURE 1 Dependence of steady soma polarization on A (solid line).
Dashed lower curve, All diameters increased by 0.1 ,um; dotted line,
asymptote when A x Here and below, except for specially noted cases,
the DC field is 10 mV/mm strong. (A) The dependencies for the hippocam-
pal interneuron. Inset: Computer-generated scheme of the neuron. Geom-
etry, including orientation, of dendritic segments is defined according to
3D reconstruction (Thurbon et al., 1994). Arrow denotes the direction of
the field. (B) The dependencies for the motoneuron of the turtle spinal cord.
Inset: Computer-generated scheme of the cell. Geometry, including orien-
tation, of dendritic segments is defined according to figure 2 of Ruigrok et
al. (1984).
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FIGURE 2 Frequency characteristics of the harmonic field-induced
soma polarization in hippocampal interneuron. Field amplitude, 10 mV/
mm. Abscissa, cyclical frequency 0. A (mm) is written at the curves. r =
14.4 ms and A = 0.296 mm, following the estimation of Thurbon et al.
(1994) for the cell considered. (A) Amplitude. (B) Phase characteristics.
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field pulse, the calculation formula derived in Appendix D is

2 Xssn(Ot)
JRe(Ws(O)) o dO, O't 'T

W5 (t) = 2snt)-sin(O(t - 1))
- Re(Ws(O)) in(Ot) - dO,
7r 0

electrotonic length, 4, of the dendrites, using the classical equation (Rall,
1967; Rall et al., 1992)

Lt= 1flTIT/TI - 1 (8)

RESULTS

Theoretical results

t 2 T (7) Let us begin with the stationary polarization at the soma wSt.
The stationary response to the field depends only on the

Here T is pulse duration. We test the results by means of compartmental electrotonic parameter A. It approaches an asymptotic value

calculations (Tranchina and Nicholson, 1986; Baginskas et al., 1993; defined by Eq. 4a as A -> 00 (Fig. 1). According to the
Svirskis et al., 1997). criterion Eq. 4b, the soma polarization almost reaches the

The same calculation methods were used with rising and declining field asymptotic value when AD112 2L, as the cell becomes
ramp (Appendix D). electrotonically compact. For the intemeuron considered,

L 0.3 mm, D 2 Am. Indeed, the asymptote is almost
reached at A 0.5 mm (Fig. 1 A). Similar dependences

Methods for the experimental procedures wst(A) were calculated for the turtle motoneuron (Fig. 1 B).
Next let us consider the frequency characteristics of the

Transverse sections of the lumbar spinal cord were obtained as described soma response to a harmonic field, eH. The harmonic
before (see Hounsgaard et al., 1988; and Svirskis et al., 1997) from turtles . .b
(Pseudemys scripta elegans). The bath medium contained (mM) 120 NaCl, po(te+nta .

may be expressed inthefrm ( WTubnet -
5 KCl, 15 NaHCO3, 20 glucose, 2 MgCl2, 3 CaCl2. 6-Cyano-7-nitroqui- A For the hippocampal interneuron (Thurbon et al.,
noxaline-2,3-dione (CNQX) (40 ,uM) (Tocris Cookson, Bristol, England) 1994), the dependences of the amplitude, A, and phase shift,
was applied to block excitatory synaptic potentials. sp, on the cyclic frequency, 0, are shown in Fig. 2. Accord-

For experiments a section of the cord, 1-2 mm thick, glued at the end ing to Eq. 3, these variables depend only on two parameters,
to a piece of filter paper, was placed in the recording chamber between two A and T. Hence the amplitude and phase shift of the response
silver chloride electrodes (see figure 2 A in Svirskis et al., 1997). The
extracellular potential gradient in the tissue was 3-4 mV * mm 50-200 ev harmon ic fieldrsti mulu sc
mm below the surface of the tissue. evaluation of electrotonic parameters.

For recording field effects, sharp and patch electrodes were pulled from To facilitate the comparison of results obtained using
the borosilicate glass tubes with an outer diameter of 1.5 mm and an inner different stimulations, we shall introduce the new variable:
diameter of 0.86 mm. Sharp electrodes were filled with 1.5 M KCl and 0.5 the slope of the phase shift, ,u= -dqp/dO, when 0 -> 0.
M potassium acetate. Patch electrodes were filled with 125 mM potassium Because Ws(0) -* A(0)e_J01 when 0 -> 0, the parameter
gluconate and 9 mM HEPES, and pH was adjusted to 7.4 with KOH. To s
reduce noise, 128 sweeps were averaged on a HIOKI digital oscilloscope A(0) is the stationary soma polarization w induced by the
(HIOKI E. E. Corp., Nagano, Japan) and fed to a computer for later DC field, and ,u is the time delay of the soma polarization
analysis. After all measurements were accomplished, the electrode was with respect to a slowly changing field. In this context, one
withdrawn from the cell and the extracellular potential, induced by the may define the field as slowly changing if, for all essential
same field step stimulus, was recorded, averaged, and subtracted from the harmonic components of the response, p -,p0 and A(o)
intracellular potential to get the transmembrane potential. The electrotonic '
estimates were obtained from four motoneurons recorded with sharp elec- A T
trodes, and seven motoneurons and seven intemeurons recorded with patch the field does not affect the intracellular potential in elec-
electrodes. All responses to the field step were monotonic, indicating the trically compact cells, in this case, w = -u (Gutman, 1980).
homogeneity of passive membrane properties (Svirskis et al., 1997). There Slow field ramps may be used to measure ,u. If the field
were no significant differences for the same type of cells between input grows linearly in time, then w,(t) increases linearly as well
resistance, time constant, and spike amplitude obtained with different grow lerarin t.ithena w(e)oincreas linerl asE wel
recording techniques (Svirskis et al., 1997). For these reasons, no distinc- Afterdacra Tras pe Letous cnsiderwtiE (see
tion was made when the data from motoneurons were analyzed. Appendix D). This curve becomes an asymptotic line,

The transients of the response to the field are very different from the which differs from the stationary one, ws = Ewst , in the
response to the current injection through the microelectrode. The charac- parallel shift AE = p. dE/dt (Fig. 3 B). Here wsto is the soma
teristic time of the field-induced transient in homogeneous neurons is much transmembrane potential, induced by a DC field of unit
faster than T (Svirskis et al., 1997). This property of the response to the strength, E = 1. The shift corresponds to the change in the
field stimulation is due to the zero total charge induced on the membrane. '
The onset and offset of the DC field do not induce a net charge in
homogeneous cells, because every line of the field crosses the membrane linearly with the same speed, capacitive hysteresis with the
in both directions (Svirskis et al., 1997). Thus the slowest decay is width, 2,u dE/dt, is observed (Fig. 3 B). The application of
analogous to Rall's first charge equalization time constant, T, (Svirskis et the clamped current or potential ramp for the electrotonic
al., 1997). The equalization of charges takes place between opposite ends measurements was considered previously (Butrimas and
of the dendritic tree of the neuron, where opposite charges are induced by
the field. This makes the difference with current injection, where equal- Gutma 1980 Guit an,18) Tsu method of msiurin
ization takes place between soma and the distal dendrites. The transient of p. seems more suitable than the usual method of sinusoidal
the response to the field step can be used for the estimation of the tip-to-tip wave phase shift.
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FIGURE 3 (A) Dependence of delay ,u on A for slow processes. Solid
line, Motoneuron; dashed line, interneuron. (B) Hysteresis of soma poten-
tial-field dependence at field ramp up and down. The hysteresis is caused
by membrane capacitance. The curves are calculated for two different A
values which (in mm) are indicated at the curves. The speed of the ramp
was 0.1 mV/(mm ms). (C) Dependence of T on A, obtained from delay ,t
(A) for slow processes (solid line, motoneuron; dashed line, interneuron)
and from shape invariance of normalized transients at DC field switching
(diamonds). In accordance with Eq. 4c, the curves for large A approach
asymptote X A2 (straight lines). The ordinate T is presented as T112 to

make the asymptote a straight line.

Because the response of the cell to the harmonic field
depends only on A and T, the delay may be expressed as

follows: , = rf(A). The functionf(A) for the parameters of
Thurbon et al. (1994) may be derived from Fig. 3 A if one
divides the ordinate by T = 14.4 ms. Thus a set of A and T

values corresponds to the measured value of ,u. This set
determines a function r(A) = plftA) (Fig. 3 C). According to

Eq. 4c, the transition time H TL2/DA2 when Eq. 4b holds;
thus r(A) asymptotically becomes parabolic: T A2DHIL2
(Fig. 3 C). The dependence r(A) converges to a parabola
already when A > 0.5 mm for both interneuron and mo-
toneuron. The same dependence between A and T can be
defined for the stimulation with a field step. At the onset and
offset of the DC field, the transient ws(t) is monotonic for
both cells: interneuron (Fig. 4 A) and motoneuron (not
shown). The transient depends on T and A, although T
simply defines the scale of the time axis. Decay of the
transients is much faster than the membrane discharge. The
shape of the modeled transients may be used to estimate the
parameters T and A by comparing them with real-time
curves obtained experimentally. To compare the shapes,
first let the amplitude for both the theoretical and the ex-
perimental transients be normalized to 1. Second, let us
relate the time axes by changing the model time scales until
curves intercept at the level lie (Fig. 4, B and C). We have
performed this time and amplitude transformation for all
modeled curves. In agreement with the relationship between
A and T obtained for slow harmonics (Fig. 3 C), all normal-
ized transients become almost identical for A values when
r(A) reaches the asymptote (Fig. 3 C). When the cell is not
very compact electrotonically, the shapes are similar and
deviations are small compared to the amplitude. Thus the
parameters T and A define only the time and voltage scales
of the transients, as the shape is virtually invariant. There-
fore, an experimental transient can be matched by a set of
modeled transients with different A and T defined by some
function r(A). Diamonds in Fig. 3 C show the values of the
function T(A) for the transients, whose shapes are trans-
formed to be similar to the one calculated with the param-
eters of Thurbon et al. (1994). These values are almost
identical to 7(A) obtained from the time delay ,u (Fig. 3 C).

In principle, additional information can be obtained by
considering how polarization depends on the field direction.
Obviously, the field effect in ohmic cells depends sinusoi-
dally on the field direction at each moment in time (Eqs. 3
and 4). Therefore, there is a certain field orientation that
does not polarize the soma. Of course, the orientation of the
field that yields no steady polarization depends only on A.
Let us consider this field orientation /3 in the temporal plane
for hippocampal interneuron, where ,B is the angle between
the field and the temporal projection of the apical dendrite.
In our calculations ,B changes by only 50 as A increases from
50 to 300 ,tm (not shown). The field orientation changes
insignificantly as A > 300 or < 50 gm. Thus, for the cell
considered, the /3 value is not informative in electrotonic
measurements. Moreover, /3 depends on the electrode posi-
tion inside soma. Nevertheless, measuring /3 may serve as a
means of control of the model and consistency of the
reconstruction. When the steady soma polarization is small,
the transients may no longer be monotonic. This happens
because of the relatively large contribution of the basal den-
drites and proximal oblique apical branches. We have consid-
ered this phenomenon (not shown). The transient reaches only
40 gV when there is no steady polarization. Its decay time
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FIGURE 4 (A) Transients of hippocampal interneuron at the onset and
offset of the DC field. The values of A (in mm) are indicated at the curves.

The field is switched on at the moment t = 0 and off at the moment t =

3T. (B) Normalized transients of the hippocampal intemeuron at the offset
of the field. All amplitudes are normalized to 1, and time scales are linearly
transformed in such a way that all curves cross at the value lle. The
transient for A = 0.296 mm decays to this level at the moment of 2.15 ms.
Note: Curves for A = 0.296, 0.6, and 1.2 mm almost merge. (C) Normal-
ized transients of the spinal motoneuron at the offset of the field. For B and
C, normalized potential is in logarithmic scale; A values (in mm) are

indicated in the legends.

constant =-T/3. The nonmonotonic decay disappears for angles
larger than (3 5°. Therefore, the nonmonotonicity of the
homogeneous cell transients may be neglected in the analysis
of experimental data. Possible impalement shunt and other
membrane inhomogeneities may cause stronger and longer-
lasting nonmonotonicity of the transients apparent in all field
directions (Svirskis et al., 1997).

Thus the comparison between measured and theoretical
field-induced soma polarization produces monotonic depen-
dencies that may be useful for estimating the electrotonic
parameters. They supplement the existing methods for the
electrotonic measurements based on the imitation of the cell
response to a brief current pulse. The combination of de-
pendencies established above with the existing methods can
increase the reliability of the estimation of parameters.

Experimental results

When full reconstruction of the neuron is not available, the
field stimulation can be used for the estimation of the
electrotonic length of the dendrites. We recorded the re-
sponse to a current impulse (Fig. 5, A and B) and field step
(Fig. 5 C) in turtle motoneurons and ventral horn interneu-
rons. The responses to the field step were monotonic, indi-
cating homogeneity of the passive properties of soma-den-
dritic membrane and the absence of a shunt (Svirskis et al.,
1997). In the case of field stimulation, we can get the
estimation of the average electrotonic distance, Lt, from tip
to tip of the dendrites. According to Rall's classical formula
(Eq. 8) and using the data presented in Fig. 5, the average
electrotonic length of the dendrites Ld = 0.9 and Lt = 1.3
for the current and field stimulation, respectively. For the
population of 11 motoneurons recorded, Ld ranged from
0.85 to 1.1 A (1.0 ± 0.1) and Lt ranged from 1 to 2.4 A
(1.4 ± 0.4). For the seven interneurons, the same estimation
gave Ld in the range of 0.6-0.9 A (0.76 ± 0.04) and Lt in the
range of 0.7-2.6 A (1.6 ± 0.2). Spinal cord neurons have
relatively symmetrical dendritic arbors (Ruigrok et al.,
1984; Hounsgaard and Kjaerulff, 1992); thus Lt 2Ld.
Because the transmembrane potential induced by the elec-
tric field is largest in the direction of the field applied, the
estimation of the electrotonic length is dependent on this
direction. However, the estimation probably was not biased
toward the shorter values, because turtle spinal cord mo-
toneurons have their physically longest dendrites in the
lateral direction (Ruigrok et al., 1985), which was used for
the field application.

DISCUSSION

We have considered how the response to an applied field
depends on the electrotonic parameters in 3D morphologi-
cally defined neurons. We used an electrotonic set of pa-
rameters: membrane time constant, T; electrotonic length
constant, A; and characteristic resistance, w; defined for the
dendritic segment with an apparent diameter of 1 ,Am.

There are interrelated primary functions of frequency or
time: the amplitude A(O) and phase Sp(O) frequency charac-
teristics (Fig. 2) and the transients at the onset and offset of
the DC field (Fig. 4). These functions depend on the elec-
trotonic parameters A and T that are being sought. Two
useful relations were derived from the primary functions
above. These relations are the dependence of stationary
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FIGURE 5 Experimental data for turtle motoneuron. (A) Dotted line,
Response to brief current pulse; straight line, single exponential (T = 19
ms) fitted to the late part of the response. Pulse duration, 1 ms. The
potential is in logarithmic scale. (B) Early part of the response to the
current pulse (circles). Solid line, Fitted double exponential (r = 19 ms,

T, = 1.5 ms). (C) Transient of transmembrane potential at the offset of the
field step (circles). Solid line, Fitted double exponential (TI = 2.7 ms, T2 =
0.3 ms).

response to the field on A, wst(A) (Fig. 1), and the relation
i-(A) obtained from'the phase shift of the slow harmonics of
the response, or from the response to the field ramp (Fig. 3
B), or from the shape of the transients at the onset and offset
of the DC field (Fig. 4). The third electrotonic parameter,
characteristic resistance w, could be found easily from the
measurements of Rin if A is already defined.

These relations could serve for robust estimation of the
electrotonic parameters in neurons with very different elec-
trotonic length. In electrotonically long cells (Lt > 2) like
neocortical pyramidal cells (Larkman et al., 1992), the mea-
surement of T could be unreliable when stimulating with the
current pulse injection. In this case the stationary response
to the field, wst(A), is very sensitive to the electrotonic
length constant, A (Fig. 1). After definition of A from wst(A),
the membrane time constant, T, can be found from the
relation r(A). The ramp field stimulation may be used as a
check. If the hysteresis (Fig. 3 B) is too narrow to be
measured, this would mean that A is very large and/or T very
small. In cells that are not very long electrotonically (Lt <
2), like Purkinje cells (Rapp et al., 1994; Chan et al., 1988),
hippocampal neurons (Major et al., 1994; Thurbon et al.,
1994), and turtle motoneurons, T can be measured directly
(Fig. 5 A). Because wst(A) may be less sensitive to A, the
electrotonic length constant could be defined also from the
relation -(A). Because in both cases the dependencies involve
no more than two parameters, the field-based methods make
the estimation of the electrotonic structure more reliable than
when only the current-injection-based methods are used.
The noise-related error should not be reduced by increas-

ing the strength of the field, because too large w influences
voltage-sensitive ion channels and may evoke nonlinear
electrical phenomena. This error is better compensated for
by averaging. Discrepancies from an ohmic response induced
by strong fields are especially dangerous in relation to distal
dendrites, where the polarization is greater than in the soma.
For a cell like the hippocampal interneuron considered, one
should limit ws to ±2 mV. For the intemeuron we consider,
this corresponds to polarization of the distal apical branches by
-+±5 mV. When averaging is used, the noise level could be
reduced to 20 ,uV (Svirskis et al., 1997), which is equivalent to
2% of the response. An error of 2% causes a 7% error in A, as
evaluated from the stationary response of hippocampal inter-
neuron to the field, when A value is -0.3 mm (Fig. 1 A).
The accuracy of the measured dendritic diameters is

limited by the resolving power of the microscope. This error
must be considered as well. The effect of an error in the
measurement of the diameter is demonstrated in Fig. 1. If all
segment diameters differ by 0.1 ,um, then the error of A is
important and equals 30 ,um for A = 300 ,um (Fig. 1 A). In
fact, this error of A is not very essential for the estimation of
the electrotonic structure of the neuron. If the diameters are
underestimated, then the calculated A will be overestimated.
These two errors partly compensate for each other when the
electrotonic length of the dendrites is calculated. We calcu-
lated the overall electrotonic length of the cell with den-
drites thinner by 0.1 utm. Despite a rise in A by 10%, the
electrotonic length decreased by only 2%.
The error caused by the influence of the axon on the

field-induced soma polarization is of principal importance
(Gutman and Svirskis, 1995; Svirskis et. al., 1997;
Tranchina and Nicholson, 1986). In the case of the hip-
pocampal interneuron considered, this influence on wst is

.- I
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small because of the symmetrical branching of the axon
with respect to the recording site. The center of the whole
axon "cloud" is positioned -20 ,um down the soma. For the
field used in the calculations, the corresponding extracellu-
lar potential difference equals 0.2 mV. This difference
would cause 0.1-mV polarization at the ends of a short,
symmetrical cable. Its magnitude is much larger than the
real influence of the axon for two reasons. First, the soma-
dendritic impedance is very small in comparison to the
axonal impedance (usually the latter is neglected when the
cell impedance is calculated); thus the influence of the axon
is almost short-circuited (Gutman, 1980; Tranchina and
Nicholson, 1986). Second, the axon predominantly projects
in a plane perpendicular to the field. Therefore, the long,
nonpolarized branches shunt the polarization in the field-
oriented short branches. Thus the influence of the axon is
much less than 0.1 mV, and it could not change the estima-
tion of A too much for the hippocampal interneuron consid-
ered. However, because of long axon branches in the sag-
gittal plane (Thurbon et al., 1994), the influence of the axon
may distort the value of the angle , for the direction of the
DC field, which does not polarize the soma. In the case of
the turtle motoneuron the effect of the axon is small (Svir-
skis et al., 1997). The influence of an axon on polarization
of the turtle Purkinje cell is small in radial fields, as the axon
is nearly perpendicular to the dendrites (Chan et al., 1988).
Certainly, it is more favorable to measure electrotonic pa-
rameters by means of a field-induced polarization in neu-
rons with cut axons, like those in the cerebellar slices in the
experiments of Rapp et al. (1994).
An inherent error in the present method is related to the

inaccuracy in measurement of the extracellular potential.
We measured it after withdrawing the patch electrode <20
,um from the cell. We cannot exclude the displacement of a
few microns of the electrode along the field during the
withdrawal or tissue deformation during the experiment.
Thus an error of few tens of microvolts is inevitable.
An additional source of error in comparing calculations

and measurements is the shunt, which may be induced by
the recording electrodes. In the case of a considerable shunt,
the cell response at the onset and offset of the DC field has
a distinct over- and undershoot pattern (Svirskis et al.,
1997). The steady soma potential wst = wod(1 + Ri./S)
(Svirskis et al., 1997), where w0 is the steady soma potential
in the absence of a shunt, and Ri. is the "true" input
resistance of the cell without shunt S. For the hippocampal
intemeuron analyzed, Ri. is evaluated from the response to
the short current pulse and is equal to 125 MQl (Thurbon et
al., 1994). Subsequently, a gigaseal of 10 Gfl, which is
common in good whole-cell recordings, may result in a
relative mistake of -1%. Obviously, the shunt may be
considerably larger. If so, over- and undershoots are seen.

If it is difficult to avoid potential-dependent currents in a
cell, the response to a brief field pulse can be used. The
corresponding responses, ws(t) (not shown), are similar to
the derivative of the transient at the onset of a DC field. The

function r(A), as described above (Fig. 3 C). The compari-
son procedure is identical to that proposed for the transients
at the onset and offset of the DC field. The response to a

brief pulse of the field does not carry any new information
in comparison with the steady polarization value and the
shape of the transient of the response to the field step.

However, it may be more useful in practice because of
the smaller influence of voltage- and time-dependent ionic
currents.
The homogeneity of the field is an important condition

for the proper evaluation of electrotonic parameters. In the
experiments presented, the field strength varied by <15%
along the whole dendritic tree. This error is particularly bad
for the measurement of the stationary effect in almost sym-

metrical cells. However, such nonuniformity has little in-
fluence on the time course of the transient used for the
estimation of the electrotonic length.

In the case of current pulse injection, estimation of the
electrotonic length by using equalization time was shown to
be unreliable (Rall et al., 1992). We tried to evaluate the
method using equalization time of the field-induced TMP.
In a model motoneuron (Fig. 1 B, inset) we applied the same
procedures of estimation of electrotonic length as in exper-

iments. The calculated transients were fitted with double
exponentials: Cexp(-t/T) + Clexp(-t/Tl) for a current
pulse stimulus, and Clexp(-t/Tl) + C2exp(-t/T2) for a field
step stimulus. Electrotonic lengths were estimated using Eq.
8. The calculations were done for three A values: 300, 410,
and 820 Atm. The estimated electrotonic lengths, Ld, in the
case of current pulse were 1.3, 1.0, and 0.7, respectively. In
the case of the field step the estimated lengths, 4, were the
same when using Tr or T2 and equaled 1.9, 1.7, and 1.2.
According to the experimental evaluation where Ld = 1.0
0.1 and 4 = 1.4 + 0.4, a A value of 410 ,um could serve as a

representative result. In the model motoneuron for A = 410
,um, most of the dendrites terminated at the electrotonic dis-
tance of 0.6-1.1 A, with the longest branch reaching 1.5 A.
This means that the representative electrotonic tip-to-tip dis-
tance was 1.2-2.2 A, which could explain the estimated length
of 1.7 A. However, in the case of smaller A, the evaluation
using field step underestimated tip-to-tip electrotonic length.

In conclusion, in addition to the existing methods for
determining the electrotonic structure of morphologically
defined homogeneous neurons, we propose the application
of electric field-induced soma polarization. It is more sen-

sitive to the distal membrane and depends only on T and A.

The theory of the method provides two monotonic relations
that can be used for a unique estimation of the electrotonic
parameters. The tip-to-tip electrotonic length of the den-

dritic tree of turtle motoneurons was estimated from the

experimental transients after the field step.

APPENDIX A

We shall express the field potential in a form that enables one to easily

comparison of the shapes of the responses can give the
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0, x'O
U=1 -Ex cosa, O'x'X

-EX cos a, x2X

The boundary conditions for a cylindrical segment may be det,
follows:

dV D2A V(O)
dx o Ql ZLO

dV D2A V(X) + EXcos a

dx x fl ZL

Here x = 0 corresponds to the proximal and x = X to
is the load at the proximal and ZL the load at the dista
solution of Eq. lb is

V(x) = -Ex cos a + V(O)(cosh(Af3) + A

Let us insert it into the boundary conditions of Eq. A2. A
we have

(Al)
quence, we obtain the following:

A
Ws(O) = E -Zin>1 D 2cos ai

ailed as (1 + X2i/12A2Di)X,2/2A2Di
+ (1 + Xi2/6A2Di)fl/D&'2ZL, x Xi/A aD

1 + Xi/2A2D2 + fk/D3'2ZLi x Xi/A rD
(A2a) X I + >(Xi2k/2A2Dik + fl/D/2Z x Xik/A ,Dk)

(B2)

In this case, one may express the input impedance of the cell as membrane
(A2b) impedance divided by the cell surface, Zin = fQAHIs, where HI is the

perimeter of the dendrite of apparent unit diameter, and s is the total cell
surface. Correspondingly, a load impedance, ZL. = AWI/sLi, where SL, is
a proportion of the total cell surface that is distal with respect to the distal

the distal end; ZLO end of the ith dendritic segment. Only the second-order small terms exist
end. The general in the above approximation, because factors at all sinh in Eq. 3 are

proportional to X/AD112. The sum in the denominator is taken over seg-
ments in the path, which connects the soma with the proximal end of the
ith segment. Inserting these expressions into Eq. B2, after rearrangements

x we obtain

(A3a) Wx= xcorrespond(Xtotheproximalandi+ + xi rIDi
A A3Da) Ws(H) = E/Is X EXj( 2 + 5L + 6DA( + SL))'

fter rearrangement

cos i/ + 2Mi + A2HD )(I + AXj)k
+ _2

V(O) = Zn cos a(1- I(cosh(jp)

D3/2Zsinh( ,r)))

(A3b)

where Zin is the input impedance at the proximal end. The solution Eq. A3b
means that the effect on the cell of the field distal to the point x = 0 is
equivalent to the injection of current at this point. The expression at the
right of Eq. A3b, except Zi, describes the magnitude of this current.
According to coupling symmetry (Carnevale and Johnston, 1982; Gutman,
1984), this current induces a potential in the soma that is equal to the
potential at the point x = 0 induced by the same current through the soma
membrane. To describe the effect of the whole field, one should 1)
calculate the potential decay from the soma to the point x = 0 and 2) sum
up the effects of all compartments. This results in Eq. 3, where 1) yields the
product in the denominator.

APPENDIX B

The A modulus is

JAI = IA!V1 +jiIOT

I_

A

fl + 027,2IVI+ 1+O26+ j/-I+ 41+o2i1

(B1)

If JAl is large enough, the values of cosh and sinh in Eq. 3 approach their

polynomial values, 1 + X2/2A2D + X4/24A4D2 and X/AD'/2 + X31
6A3D3/2 , respectively. Retaining only the first small term in every se-

(B3)
Neglecting the small terms, and noting that XjHIDj/2 + SLi = si, where si is
part of the total cell surface, which is distal with respect to the center of the
ith dendritic segment, we simplify Eq. B3 to the asymptotic Eq. 4a. If the
whole dendrite is represented as a homogeneous cable, then X and D are the
representative length and diameter of the apical dendrite. Now the criterion
of the asymptotic approximation is reduced to Eq. 4b.

APPENDIX C

Solving the boundary problem of fixed axial current at the ends of the
segment in a homogeneous field, one gets the relationships between the
potentials and their derivatives at both ends:

XdW/dxx - dW/dxocosh(X/A D)W(0) = A D3 sinh(X/A ~D) (Cla)

dW/dxIxcosh(X/A VD) - dW/dxjoW(X) = A f sinh(X/A fl)- (Clb)

Taking Eqs. 2 and A2 into account and the general solutiorn in the form of
Eq. 5, we express the derivative:

dWJ|-=-W(X) D2 L EAmD2Bm]

- -W(X)G + EF (C2)
For terminal segments, G = 0, F = cos a. The sum is carried out for
segments adjacent to the distal end of the considered segment, Dm are the
diameters of adjacent segments, and D are the diameters of the considered
more proximal segment. Equation C2 is also applied for the cases of the
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diameter change inside a branch, when there is no summation. Inserting Eq.
C2 in Eq. Cl, a relationship between W(O) and dW/dx(O) is obtained.
Replacing in this relationship dW/dx with dV/dx + E cos a and comparing
it with Eq. 5, one obtains the coefficients A and B, which are introduced in
Eq. 5:

A cosh(X/A +D) + AG D sinh(X/A CD)
sinh(X/A CD) + AG CD cosh(X/A CD)

B = A D F-A cos a
sinh(XIA +fD) + AG CD cosh(X/A pD)

(C3b)
Starting the calculation from terminal segments, we finally find A and B for
the proximal segment of every dendrite emerging from the soma. Using Eq.
5, one calculates the transmembrane potential at the soma:

A D2 A~4Bn(A) dV-
Ws() Q EA (A) = i AEDnA(A)n-Dn | (C4a)

n n

The sum includes the proximal segments of all dendrites, and dV/dxIl is the
axial gradient of the intracellular potential at the beginning of the nth
dendrite. Let us add soma transmembrane current, gsWs(6), to both sides of
Eq. C4a, where gs is the soma membrane admittance. Then

I(0) + E A/fl n D2 Bn(A)/An(A)
WS(o) = Cb

gs + A/fl n Dn-/An(A) (C4b)

Here I4(O) is the component of the current injected through the microelec-
trode, and the expression D2(A/f) stands for the axial resistance of the
proximal dendritic segment. Equation 6 follows from this if the potential is
induced only by the field, Ic = 0.

APPENDIX D

We express the pulse of a DC field, - T/2 ' t ' T/2, as a series of cosines:

1 + sin(OT/2)
E(t) =- (exp(jOt) + exp(-jOt)) dO

ITJ 0

(DI)
1 + sin(OT/2)

J exp(jOt) 0 dO
IT

As cosines are a sum of two harmonic exponentials, we apply the proce-
dure of cable reaction to a harmonic field (Eq. 6). The result is complex
amplitude WJ(O), and the polarization sought acquires the following form:

1 ('+o
wS(t)= - (Re(Ws(O))exp(jOt)

IJTJ

+jIm(Ws0))ex sin(OT/2)d+ j1m(Ws(O))exp(jOt))
snO 2)dO

(D2)

1 + sin(OT/2)
=- | Re(Ws(O))cos(Ot) dO

_000

1 (+x sin(OT/2)
-|- Im(WJ(0))sin(0t) dO
ITJ 0

Equation D2 is derived according to the evenness of real and unevenness
of imaginary components of Ws(6). The principle of causality states that in
physical systems w,(t) = 0 for t < -T/2. This means that integrals of Eq.
D2 are mutually equal at t < - T/2. This equality may serve as a test of the
correctness of the calculations. Because of this equality and the obvious
symmetry of these integrals with respect to t and 0, and after shifting the
initial point of time with respect to the beginning of the pulse, one obtains

4 +0 sin(OT/2)
wS(t) =- Re(Ws(O))cos(O(t - T/2)) dU,

J (D3)

t' T

Equation D3 can be used for the time moments during the field pulse. For
this purpose, in accordance with the causality principle, one should put T =
t in Eq. D3, where t is the time from the beginning of the pulse. The
sought-for Eq. 7 is achieved by elementary rearrangements.

Using analogous reasoning, we express ws(t) during field ramp:

4 f+ sin2(0t/2)
Ws(t) =-1 k J Re(WS(O)) 02 dO, t ' O0, E = kt

'IT

(D4a)

Inserting X = Ot/2, we obtain

2 (' sin2(qr)
ws(E) =- E J Re(Ws(271/t)) 2 dqrj, t ' 0 (D4b)

IT J7

If the values of t are large enough and, thus, small 6 dominates, one may
insert into Eq. D4a only linear segments of amplitude and phase frequency
characteristics, as 0 -* 0 (Fig. 1):

Re(WS(6)) -> wo cos puO, 0-> 0 (D5a)

In this case, Eq. D4a simplifies to

ws(E(t= a)) ->wo - E(t= a -,), t ->o (D5b)

In other words, ramp-induced transmembrane potential asymptotically
approaches the steady polarization value, but this value is delayed by
time ,u.
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