Abstract
1. Magnocellular neuroendocrine cells (MNCs) in the supraoptic nucleus (SON) of mammals synthesize vasopressin or oxytocin and release these hormones systemically from their neurohypophysial axon terminals. In the rat, release is facilitated by bursts of action potentials generated by the MNC. However MNC units in the intact cat discharge more slowly and do not display the repetitive bursts (phasic firing) that promote vasopressin secretion. The reasons why these cat endocrine neurones differ so dramatically in their firing behaviour from the rat model were examined using intracellular recording. 2. Cat and rat MNCs displayed similar mean resting potentials approximating -60 mV, and were usually linear in their voltage-current relationship in the hyperpolarizing direction. However cat MNCs displayed a higher mean cell input resistance (301 M omega; n = 56) than those of rat (150 M omega; n = 105). 3. Calcium influx to cat MNCs during firing appeared comparable to rat based on (a) the similar range of action potential broadening observed during a spike train, (b) the shoulder on the action potential's falling phase which was blocked in low-Ca2+ saline, and (c) the ability to evoke tetrodotoxin (TTX)-insensitive spiking and non-synaptic depolarizing potentials, both calcium-mediated events observed in the rat. 4. In cat MNCs, a depolarizing current pulse (100-500 ms; 0.1-0.3 nA) elicited a train of action potentials followed by a prominent after-hyperpolarization (AHP) several times the duration of its counterpart in the rat. The AHP reversed near the equilibrium potential for K+, was not voltage dependent and represented an increased membrane conductance. It was suppressed in low-Ca2+ saline and completely eliminated by the calcium-activated potassium current (IK(Ca)) blockers apamin (100 nM) or d-tubocurarine (50-200 microM). Both blockers decreased spike frequency adaptation but did not induce bursting. Therefore the cat AHP probably represents a Ca(2+)-activated K+ conductance with a similar blocker sensitivity to its briefer counterpart in the rat MNC. 5. The spike hyperpolarizing after-potentials (HAPs) in cat were more than twice the mean amplitude and several times the duration of HAPs in rat. Cat HAPs were qualitatively similar to their rat counterparts, remaining unaffected by apamin or tubocurarine. The intrinsic currents responsible for the AHP and HAP appear to generate the stronger activity-dependent inhibition displayed by cat MNCs. 6. Twenty-one of fifty-two cat MNCs displayed an inward rectification at membrane potentials more negative than -70 mV ([K+]o = 6.24 mM), causing a depolarizing 'sag' in the voltage trajectory lasting 100-200 ms which was TTX resistant.(ABSTRACT TRUNCATED AT 400 WORDS)
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrew R. D., Dudek F. E. Burst discharge in mammalian neuroendocrine cells involves an intrinsic regenerative mechanism. Science. 1983 Sep 9;221(4615):1050–1052. doi: 10.1126/science.6879204. [DOI] [PubMed] [Google Scholar]
- Andrew R. D., Dudek F. E. Intrinsic inhibition in magnocellular neuroendocrine cells of rat hypothalamus. J Physiol. 1984 Aug;353:171–185. doi: 10.1113/jphysiol.1984.sp015330. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andrew R. D., Dudek F. E. Spike broadening in magnocellular neuroendocrine cells of rat hypothalamic slices. Brain Res. 1985 May 13;334(1):176–179. doi: 10.1016/0006-8993(85)90583-9. [DOI] [PubMed] [Google Scholar]
- Andrew R. D. Endogenous bursting by rat supraoptic neuroendocrine cells is calcium dependent. J Physiol. 1987 Mar;384:451–465. doi: 10.1113/jphysiol.1987.sp016463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barker J. L., Crayton J. W., Nicoll R. A. Antidromic and orthodromic responses of paraventricular and supraoptic neurosecretory cells. Brain Res. 1971 Oct 29;33(2):353–366. doi: 10.1016/0006-8993(71)90108-9. [DOI] [PubMed] [Google Scholar]
- Bourque C. W., Brown D. A. Apamin and d-tubocurarine block the afterhyperpolarization of rat supraoptic neurosecretory neurons. Neurosci Lett. 1987 Nov 23;82(2):185–190. doi: 10.1016/0304-3940(87)90127-3. [DOI] [PubMed] [Google Scholar]
- Bourque C. W. Calcium-dependent spike after-current induces burst firing in magnocellular neurosecretory cells. Neurosci Lett. 1986 Oct 8;70(2):204–209. doi: 10.1016/0304-3940(86)90464-7. [DOI] [PubMed] [Google Scholar]
- Bourque C. W., Randle J. C., Renaud L. P. Calcium-dependent potassium conductance in rat supraoptic nucleus neurosecretory neurons. J Neurophysiol. 1985 Dec;54(6):1375–1382. doi: 10.1152/jn.1985.54.6.1375. [DOI] [PubMed] [Google Scholar]
- Bourque C. W., Randle J. C., Renaud L. P. Non-synaptic depolarizing potentials in rat supraoptic neurones recorded in vitro. J Physiol. 1986 Jul;376:493–505. doi: 10.1113/jphysiol.1986.sp016166. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bourque C. W., Renaud L. P. Activity dependence of action potential duration in rat supraoptic neurosecretory neurones recorded in vitro. J Physiol. 1985 Jun;363:429–439. doi: 10.1113/jphysiol.1985.sp015720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bourque C. W. Transient calcium-dependent potassium current in magnocellular neurosecretory cells of the rat supraoptic nucleus. J Physiol. 1988 Mar;397:331–347. doi: 10.1113/jphysiol.1988.sp017004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caverson M. M., Ciriello J., Calaresu F. R., Krukoff T. L. Distribution and morphology of vasopressin-, neurophysin II-, and oxytocin-immunoreactive cell bodies in the forebrain of the cat. J Comp Neurol. 1987 May 8;259(2):211–236. doi: 10.1002/cne.902590204. [DOI] [PubMed] [Google Scholar]
- Dutton A., Dyball R. E. Phasic firing enhances vasopressin release from the rat neurohypophysis. J Physiol. 1979 May;290(2):433–440. doi: 10.1113/jphysiol.1979.sp012781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kannan H. Unit activity of identified neuroendocrine cells in cat hypothalamus following stimulation of the septal area and of the reticular formation, with and without osmotic stimuli. Kobe J Med Sci. 1974 Mar;20(1):1–14. [PubMed] [Google Scholar]
- Koizumi K., Yamashita H. Studies of antidromically identified neurosecretory cells of the hypothalamus by intracellular and extracellular recordings. J Physiol. 1972 Mar;221(3):683–705. doi: 10.1113/jphysiol.1972.sp009776. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poulain D. A., Wakerley J. B. Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin. Neuroscience. 1982 Apr;7(4):773–808. doi: 10.1016/0306-4522(82)90044-6. [DOI] [PubMed] [Google Scholar]
- Reinhart P. H., Chung S., Levitan I. B. A family of calcium-dependent potassium channels from rat brain. Neuron. 1989 Jan;2(1):1031–1041. doi: 10.1016/0896-6273(89)90227-4. [DOI] [PubMed] [Google Scholar]
- Rudy B. Diversity and ubiquity of K channels. Neuroscience. 1988 Jun;25(3):729–749. doi: 10.1016/0306-4522(88)90033-4. [DOI] [PubMed] [Google Scholar]
