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Positional Cloning by Linkage Disequilibrium
Nikolas Maniatis, Andrew Collins, Jane Gibson, Weihua Zhang, William Tapper,
and Newton E. Morton
Human Genetics Division, University of Southampton, Southampton General Hospital, Southampton, United Kingdom

Recently, metric linkage disequilibrium (LD) maps that assign an LD unit (LDU) location for each marker have
been developed (Maniatis et al. 2002). Here we present a multiple pairwise method for positional cloning by LD
within a composite likelihood framework and investigate the operating characteristics of maps in physical units
(kb) and LDU for two bodies of data (Daly et al. 2001; Jeffreys et al. 2001) on which current ideas of blocks are
based. False-negative indications of a disease locus (type II error) were examined by selecting one single-nucleotide
polymorphism (SNP) at a time as causal and taking its allelic count (0, 1, or 2, for the three genotypes) as a
pseudophenotype, Y. By use of regression and correlation, association between every pseudophenotype and the
allelic count of each SNP locus (X) was based on an adaptation of the Malecot model, which includes a parameter
for location of the putative gene. By expressing locations in kb or LDU, greater power for localization was observed
when the LDU map was fitted. The efficiency of the kb map, relative to the LDU map, to describe LD varied from
a maximum of 0.87 to a minimum of 0.36, with a mean of 0.62. False-positive indications of a disease locus (type
I error) were examined by simulating an unlinked causal SNP and the allele count was used as a pseudophenotype.
The type I error was in good agreement with Wald’s likelihood theorem for both metrics and all models that were
tested. Unlike tests that select only the most significant marker, haplotype, or haploset, these methods are robust
to large numbers of markers in a candidate region. Contrary to predictions from tagging SNPs that retain haplotype
diversity, the sample with smaller size but greater SNP density gave less error. The locations of causal SNPs were
estimated with the same precision in blocks and steps, suggesting that block definition may be less useful than
anticipated for mapping a causal SNP. These results provide a guide to efficient positional cloning by SNPs and a
benchmark against which the power of positional cloning by haplotype-based alternatives may be measured.

Introduction

Positional cloning aims to localize determinants of dis-
ease susceptibility in the DNA sequence prior to deter-
mining their function. Linkage mapping is routinely used
to locate major genes, which are relatively rare but have
a large phenotypic effect. However, this method has had
limited success when applied to mapping oligogenes,
which are more common but have a smaller effect. Even
with major alleles, the error in localization may be ap-
preciable. Efforts to map oligogenes are concerned with
exploiting allelic association (also called “linkage dis-
equilibrium” [LD]) between markers and putative dis-
ease-predisposing loci. The first applications were to ma-
jor loci that could be assigned to haplotypes by family
study (Kerem et al. 1989; Devlin and Risch 1995; Ter-
williger 1995). These and other studies have provided
the foundation for the application of LD mapping for
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postional cloning of common diseases in complex in-
heritance. This enthusiasm has been escalated by the
discovery of millions of SNPs (Kruglyak and Nickerson
2001), most of which cannot be subject to measurable
selection (Kimura 1986). The utility of SNPs for asso-
ciation studies is now well established, and recent tech-
nological advances have made it feasible to identify and
sequence a large number of SNPs. Current estimates sug-
gest that the human genome may have as many as 15
million such markers (Botstein and Risch 2003). Among
this vast number of polymorphisms is a much smaller
number that have a significant role in common diseases.
LD analysis offers the prospect of high-resolution map-
ping because it can provide sufficient information to nar-
row the region and refine the location of the disease
genes, particularly when SNPs are densely typed in a
candidate region.

LD is present when recombination between alleles at
small distance is infrequent. There is much variation in
the extent of LD in different chromosome regions, re-
flecting the nonuniform distribution of recombination
events. There are many evolutionary and other con-
founding factors that influence the extent of LD, such
as genetic drift, mutation, and selection, but recombi-
nation appears to dominate the pattern of LD. Several
studies have demonstrated that the pattern of LD is
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Figure 1 Graphs of the LD maps for the data sets from Daly et
al. (2001) (A) and Jeffreys et al. (2001) (B). For comparison between
the LDU maps and the block-step structure of A and B, see Zhang et
al. (2002).

highly structured into blocks of low haplotype diversity
with strong LD (Daly et al. 2001) and regions of low
LD, which correspond to recombination hotspots (Jef-
freys et al. 2001). There has been much emphasis on
determining the haplotype-block structure of the human
genome (Daly et al. 2001). However, the utility of hap-
lotype-block identification for disease-gene localization
remains uncertain. Maniatis et al. (2002) provided an
alternative approach, which develops a metric map in
LD units (LDUs) to describe the underlying pattern of
LD. On the basis of the Malecot equation, which was
adopted to describe the decline of LD with distance
(Collins and Morton 1998; Collins et al. 1999), LDU
maps discriminate blocks of conserved LD with additive
distances and locations monotonic with physical (kb)
maps. LDU maps are analogous to the genetic linkage
map but with much higher resolution. Their properties
have been studied, and there is clear evidence that a
map in LDU has a smaller empirical error variance than
a map in kb (Zhang et al. 2002). The first metric LD
map of human chromosome 22 has also recently been
constructed, and this shows good correspondence with
the deCODE linkage map (Kong et al. 2002), despite
the evolutionary error variance in LDU maps and low
resolution of the linkage map (Tapper et al. 2003). Un-
like haplotype blocks, LDU maps provide a scale on
which to distribute SNPs optimally and to localize dis-
ease genes within candidate regions. This is analogous
to creating a high-resolution linkage map for positional
cloning of major genes by LD (Collins and Morton
1998; Lonjou et al. 1998a, 1998b; Morton and Collins
1998). Nevertheless, we have no information about the
operating characteristics and the optimal use of an LD
map for positional cloning. Here we present a multiple
pairwise method in which we use composite likelihood
to investigate positional cloning by LD. One of the key
objectives is to assess the power and precision for lo-
calization of causal polymorphisms achieved by using
an LDU map, compared with a map in kb, for two
extensive bodies of data on which current ideas of
blocks and steps are based.

Material and Methods

LD Maps

The first data set, from 50 unrelated North European
males, was presented by Jeffreys et al. (2001) and con-
sists of 296 SNPs typed in a 216-kb segment of the class
II region of the major histocompatibility complex in
6p21.3. Their high-resolution LD analysis showed ex-
tended domains of strong association, separated by
peaks of LD breakdown, which correspond precisely to
meiotic crossover hotspots on the basis of sperm typing.
The second data set, presented by Daly et al. (2001),
consists of 103 SNPs typed in a 617-kb segment on

chromosome 5q31. By latent variable analysis, Daly et
al. delimited 11 blocks in 129 parent-child trios from a
European-derived population. We sampled only parents
for diplotypes (phase-unknown genotypes) from these
data. Also, we followed the example of Daly et al. and
rejected SNPs with minor allele frequencies !0.05, re-
ducing the sample of Jeffreys et al. to 248 SNPs. Al-
though the two samples are comparable in these respects,
they differ in sample size, marker density, and steepness
of steps (fig. 1).

Every marker in the data was assigned two locations,
one in kb and the other in LDU. The LD maps developed
by Maniatis et al. (2002) assign locations to markers in
LDU, which describe the underlying structure of LD in
the form of a metric map and thus avoid arbitrary block
definitions. The theoretical framework for constructing
LD maps is based on the Malecot equation, which de-
scribes association probability (r) between any pair of
SNPs as , where r is the predicted��dr p (1 � L)Me � L
association with observed estimate .r̂ p FDF /Q(1 � R)
The absolute value of D is the covariance in a 2 # 2
haplotype table, with minor allele frequencies ,Q � R

. This can always be satisfied by interchanging the1 � Q
columns and rows of the 2 # 2 matrix; thus, Q (fre-
quency of the putatively younger allele) is !0.5, but R
can exceed 0.5. The metric is unique in providing evo-r̂

lutionary theory to which other metrics fit less well
(Morton et al. 2001; Shete 2003). With association de-
clining exponentially with distance, the intercept M de-
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termines maximum association at zero distance and is
a parameter with evolutionary interpretation, since it
reflects the association at the last major bottleneck. Val-
ues of suggest polyphyletic origin of haplotypes.M K 1
The horizontal asymptote is the association atL 1 0
large distance, and hence the model corrects for the in-
flated associations resulting from small sample size. The
parameter � is the exponential decline of disequilibrium
r with distance d. The LDU map method estimates � in
each map interval and uses this to construct an LD scale.
A map distance in LDUs is for the ith interval with� di i

a region having LDUs (Maniatis et al. 2002). The� � di i

mean � for the region is , and its inverse is� � d /� di i i

termed the “swept radius 1/�,” which gives the extent
of useful LD, with on the kb scale and0 ! � ! 1 � p

for a standard LD map. One of the elegant properties1
of the model is that recombination affects only but�
not M, whereas mutation and drift systematically affect
only M. The asymptote L can be estimated or predicted
(Lp) from the information about , which is proportionalr̂

to sample size (Morton et al. 2001; Maniatis et al. 2002).
In small sequences (for example, the sample of Jeffreys
et al. spans only 216 kb), the predicted value gives a
more reliable LD map than the direct estimate, which is
distorted by deviations of the block structure from the
Malecot model (Zhang et al. 2002). Regions with ex-
tensive disequilibrium have few LDU and low recom-
bination. LDU reveal a pattern of steps and plateaus.
Plateaus (i.e., ) correspond to blocks of low hap-� p 0i

lotype diversity, whereas steps (i.e., ) correspond� 1 0i

to recombination events, the magnitude of which reflects
recombination intensity. Blocks and steps can also be
graphically presented by plotting LDU maps against kb
locations for both data sets, as is shown in figure 1. A
value of 1 2 or 3 indicates a “hole” within which� di i

further SNP typing is required for efficient positional
cloning (Tapper et al. 2003). Zhang et al. (2002) con-
structed LDU maps for the aforementioned data sets.
They found a remarkable agreement between LDU steps
and sites of meiotic recombination in data presented by
Jeffreys et al. (2001), which is informative for crossing
over and is in good agreement with the method presented
by Daly et al. (2001) that defines blocks without as-
signing an LD location to each marker. The LDU map
methodology has been implemented in the program
LDMAP.

Positional Cloning

The main objective of LD mapping is to facilitate po-
sitional cloning. The association metric has beenr̂

shown to be optimal for describing patterns of LD (Mor-
ton et al. 2001). However, cannot be obtained forr̂

association between a trait and a marker SNP, solely
because the frequency Q of the putative disease allele is

unknown. The metric requires the frequency of ther̂

causal SNP (Q) to be less than or equal to the frequency
of the positively associated marker allele (R). This con-
straint can be met for major genes in which case and
control haplotypes can be distinguished through family
study. Therefore, is useful for marker-by-marker as-r̂

sociation, as exploited in constructing LD maps and for
major genes but not for localizing oligogenes in complex
inheritance. Having used to create an LD map, wer̂

must use other metrics for positional cloning of
oligogenes.

Association can instead be represented by regression
(b) or correlation (r) coefficients between the phenotype
(Y) and the genotype (X) of each SNP locus. There is a
plethora of LD metrics, from which Devlin and Risch
(1995) considered a subset applicable to case-control
studies, and of these regression and correlation have a
strong statistical basis. The coefficient b, with marker
allele count X as the independent variable, can be
adapted to random samples, case-control studies, and
families (Abecasis et al. 2000). The distribution of the
independent variable is not specified, but deviations
from the regression line are assumed to be normal and
homoscedastic, as they might be if the dependent vari-
able Y were quantitative. The r coefficient has a known
normal distribution when both variables are normal and
linearly related, but under the null hypothesis ( )r p 0
the distribution is not normal.

We have developed an assay that is based on n � 1
diallelic markers, one of which is designated as causal
by taking its allelic count as a pseudophenotype Y p

or 2 for genotypes PP, PP′, and P′P′, respectively.0, 1,
The ith predictive SNP is assigned its allelic count

or 2 for genotypes GiGi, GiGi
′, and Gi

′Gi
′,X p 0, 1,i

respectively ( …, n). The type II error for the twoi p 1,
metrics and maps is determined by selecting one among

linked markers as causal (pseudophenotype) andn � 1
repeating this for all markers. The number of tests per-
formed is equal to the number of SNPs. Therefore, false-
negative indications of a disease locus were investigated
under the hypothesis that the pseudophenotype is not in
the region in question. All analyses considered here are
based on the additive model, with the three genotypes
of each SNP as the independent variables. This schema,
however, may be modified to include dominance or re-
cessive effects. The metrics can easily accommodate a
continuous phenotype and case-control samples (Collins
and Morton 1998). Haplotypes can also be used, but
the optimal method is yet to be developed.

Association of the pseudophenotype with each SNP
in the map was modeled by a multiple pairwise method.
An adaptation of the Malecot model to include a pa-
rameter for location of the putative gene was employed
in a composite likelihood framework. We constructed
the composite likelihood by the sum of marginal log
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likelihood, , where is an2ˆ ˆlnlk p �[� K (w � w) ]/2 ww i i ii i

observed association metric ( or ) at the ith markerˆ ˆb ri i

SNP with information K. The expected value of (w bi i

or ) is obtained from the Malecot equation,r w pi i

, where is the marker location in��D(S �S)i(1 � L)Me � L Si

either kb or LDU of the ith predictive SNP with allelic
count . S, on the other hand, is the unknown param-Xi

eter in the model and provides the estimated causal lo-
cation. The Kronecker D is used solely for map direction
and takes the value 1 if and �1 otherwise (CollinsS 1 Si

and Morton 1998). When using the metrics and ,ˆ ˆb ri i

the parameter M in the Malecot model no longer has
an evolutionary interpretation, since it is not based on
the allele-frequency–dependent metric . Instead, it rep-r̂

resents the degree of association between the phenotype
and the marker SNPs. For metric , the parameter M isr̂i

constrained to the 0–1 range, but it may exceed 1 for
when the phenotype is a quantitative trait and not anb̂i

allele count, as in the present analysis. The residual var-
iance is , where n is the number ofV p �2lnlk/(n � k)w

markers and k is the number of parameters estimated
in the Malecot model (Collins and Morton 1998). The
relevant formulae for regression of Y on X in a random
sample of n diplotypes are as follows:

� XY � (� X)(� Y)
S p ,xy n

2 2� X � (� X)
S p ,xx n

2 2� Y � (� Y)
S p ,yy n

residual sum of squares

2S � (S )yy xy 2ˆRSS p p S (1 � r ) ,yySxx

Sxyb̂ p ,
Sxx

(n � 2)SxxK p ,b RSS

Sxyr̂ p , and�S # Sxx yy

(n � 2)
K p ,r 2ˆ(1 � r )

where is the information about or andˆ 2ˆK b r x pwi i i 1

asymptotically. Taking the absolute value of ˆ2w K bw i

or is equivalent to reversing the allelic count of ther̂i

three genotypes (i.e., or 2 for genotypes Gi
′Gi

′,X p 0, 1,i

GiGi
′, and GiGi, respectively). Because of the singularity

of , with the few cases where r approaches 1, weKw

impose max and max2K p (n � 2)/(1 � .99 ) K pr b

. A marker with is2[(n � 2)(S )]/[(S )(1 � .99 )] S p 0xx yy xx

omitted as uninformative.
The use of composite likelihood raises legitimate ques-

tions about the reliability of significance tests (Devlin et
al. 1996). To address these concerns, we examined the
type I error by simulating under panmixia an unlinked
SNP (nonsyntenic) from a trinomial distribution in
Hardy-Weinberg proportions for a gene frequency of
0.5. Therefore, false-positive indications of a disease lo-
cus were investigated under the hypothesis that the sim-
ulated SNP is not in the region in question. With real
data, the disease phenotype would be shuffled instead
of simulated for the type I error test. We also established
that the choice of gene frequency (0.05–0.5) was not
critical (results not shown).

Positional cloning by LD focuses on refining the res-
olution of a candidate region. Testing for the potential
existence of a causal SNP within a region in question
requires hierarchical modeling of LD. This is accom-
plished by comparing models A–D. The baseline is
model A, in which none of the parameters is estimated,
so and . Thus, model A is taken as theM p 0 w p Li p

null hypothesis H0 where there is no association between
the pseudophenotype and marker SNPs. Model B is sim-
ilar to model A, except that L is estimated, so any sig-
nificant increase in L above the predicted asymptote pro-
vides evidence for a disease determinant within a region
of interest without precise localization ( ). Modelsw p Li

A and B test for a candidate region but do not estimate
a causal location. Models C and D are like models A
and B regarding L, respectively, but parameters M and
S are estimated. Therefore, the contrasts A-C and A-D
test for a disease determinant at location S. The D model
is the most complex alternative hypothesis, since it es-
timates all three parameters: L, M, and S. For all models,
the � parameter was fixed to 1 for the LDU map and
to the mean value of � for the kb map, obtained from
the pairwise marker-by-marker association analysis for
the whole region. Any attempt to estimate all four pa-
rameters gives incredibly high estimates of �, corre-
sponding to selection of the SNP with the highest value
of w, without regard to neighboring markers—an inef-
ficient approach that violates the LD map and imposes
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a heavy Bonferroni correction (Risch and Merikangas
1996). Since model A is the baseline, the three contrasts
A-B, A-C, and A-D, with 1, 2, and 3 df, respectively,
allow hypothesis testing.

Since a candidate region is specified on the kb map,
we must convert LDU to kb. Let denote the locationŜk

on the kb scale estimated by the model with the true
causal marker locations in kb as Sk, and let be aŜL

location inferred on the LD map with true marker lo-
cations in LDU ( ). Let be the converted locationˆS SL Lk

from LDU to kb. To interpolate a location on the LD
map into the kb map, three cases must be considered,
since markers within a block have invariant LDU but
unique locations in kb: (1) If lies within a block, thenŜL

is the midlocation of that block in kb (for example,ŜLk

two SNPs in a block with the same value of , beginningSL

at a kb and ending at g kb, have locations).ˆa � g/2 SLk

(2) If there is only one marker in the LD map with
location , then corresponds to that marker. (3) Oth-ˆ ˆS SL Lk

erwise, if does not lie in a block and is flanked byŜL

markers with locations a,c in LDU and a,g in kb, the
estimated location ( ) is .ˆ ˆS a � [(S � a)/(c � a)] (g � a)Lk L

Type I Error

For the type I error test, we simulated an unlinked
SNP, as described above, and generated 1,000 repli-
cates. There were 103 and 248 predictive SNPs for the
samples in 5q31 and 6p21.3, respectively, with an ad-
ditional SNP being simulated to give the pseudophen-
otype. For the A-B, A-C, and A-D contrasts, the 2xdf

was examined as the difference in log likelihoods,
divided by the error variance,�2lnlk � (�2lnlk )A B,C,D

VB, C, D, with 1, 2, and 3 df, respectively. If this were
distributed as central the mean would equal df and2xdf

the variance would equal 2 df. The goodness of fit can
be improved by transforming for each replicate to2xdf

, where “Var” is the observed2 2 �T(x ) p x / Var /2 dfdf df

variance of , thereby assuring that the variance of2xdf

the transformed value is exactly 2 df. To aid compar-
ison between the three contrasts, the values were2T(x )df

converted to (Abramowitz and Stegun 1965, equa-2x1

tion 26.2.23) and the distribution of the corresponding
was examined (Collins and Morton2Z p x /2 ln 101

1998, “Numerical Analysis” appendix).

Type II Error

The type II error test was accomplished by assigning
each marker, in turn, as a pseudophenotype, as described
above. There are 102 and 247 predictive SNPs for the
samples in 5q31 and 6p21.3, respectively, with one SNP
from each sample being selected to give the pseudo-
phenotype. Then the significance, based on the distri-
butions of the 103 and 248 values, was examined.2xdf

The for the three contrasts were calculated the same2xdf

way as for the type I error. Estimates of were trans-2xdf

formed to by the corresponding value of2T(x )df

from the type I error test. Values of and2�Var /2 df xdf

in these simulated data mostly lie far beyond the2T(x )df

range within which conversion to is reliable (Collins2x1

and Morton 1998). We therefore defined a reduced value
of each with a noncentrality parameter only 1/l2T(x )df

as great, or . In real data,2 2R(x ) p df � [T(x ) � df]/ldf df

if does not considerably exceed df we would take2T(x )df

, and, therefore, . For the2 2 2l p 1 R(x ) p T(x ) p xdf df df

present data, we took and applied it to thel p 100
individual values of .2T(x )df

Localization within Candidate Regions

Whereas the significance of a candidate region may
be tested by contrasting different models, tests that em-
ploy models C and D are concerned with location in a
significant candidate region. Deviation of an estimated
location from its true value S, both expressed in kbŜ
( or ), is measured by . The mean of theseˆ ˆ ˆS S FS � SFk Lk

values over causal SNPs is highly skewed, and so per-
centiles are useful for comparing analyses. In the future,
the distribution of these errors will be examinedˆFS � SF
from analyses that include haplotype-based methods.

Results

Type I Error

The distribution of the 1,000 simulations and the2xdf

mean error variance (V) from the type I error test are
presented in table 1. Estimates of V are much less than
1, reflecting autocorrelation among the predictive SNPs
when there is no evolutionary covariance with a simu-
lated causal SNP. In both samples, V is slightly greater
for b than for r. If values were distributed as central,2xdf

then the expected mean and variance would equal df
and 2 df, respectively. Agreement with theory is good
for 5q31, but it is anticonservative for 6p21.3, which
has greater SNP density and more pronounced blocks
and steps (fig. 1). Goodness of fit is greatly improved by
transforming for each replicate to , where the2 2x T(x )df df

variance of the transformed value is exactly 2 df. The
is converted to , and the corresponding esti-2 2T(x ) xdf 1

mates of are presented in table 2. The2Z p x /2 ln 101

distribution of Z is similar for the three contrasts, with
an excess of large values over the expectation for two-
tailed , but the theorem of Wald (1947) and Haldane2x

and Smith (1947) is conservative (table 2). The A-B con-
trast yields some simulations with , reflecting a2x p 01

value of L that is less than its predicted value Lp but
is most frequent for the A-C contrast where the2x p 01

C model may give an estimate of , especially forM p 0
5q31 and for the kb map of 6p21.3. Otherwise, the three
contrasts fit their nominal df well. If desired, the good-



Maniatis et al.: Positional Cloning by LD 851

Table 1

The Type I Error for the 5q31 and 6p21.3 Data Sets

CONTRAST

(DF), UNIT,
AND METRIC

MEAN ESTIMATE FOR

5q31 6p21.3

Error
Variance

(V)

2xdf

2T(x )df
2x1

Error
Variance

(V)

2xdf

2T(x )df
2x1Mean Var Mean Var

A-B (1):
LDU and kb:

b: .39 .94 1.77 1.00 1.00 .41 1.16 2.44 1.05 1.05
r: .36 .99 2.02 .99 .99 .37 1.26 2.73 1.08 1.08

A-C (2):
LDU:

b: .39 1.02 2.39 1.32 .67 .41 3.64 9.77 2.33 1.19
r: .37 1.04 2.45 1.33 .68 .37 3.66 10.02 2.31 1.17

kb:
b: .39 1.03 2.35 1.34 .69 .41 2.24 6.04 1.83 .92
r: .37 1.06 2.47 1.35 .69 .37 2.48 7.03 1.87 .94

A-D (3):
LDU:

b: .39 2.86 5.24 3.06 1.02 .41 4.90 11.50 3.54 1.22
r: .36 3.03 5.81 3.08 1.04 .37 4.81 11.68 3.45 1.18

kb:
b: .39 3.22 6.15 3.18 1.07 .41 3.63 7.87 3.17 1.07
r: .36 3.31 6.20 3.25 1.11 .37 3.75 8.61 3.13 1.05

NOTE.—Mean estimates based on 1,000 replicates with .Q p 0.5

ness of fit to could be improved by introducing a2x1

correction for multiple tests in one of several ways
(Lander and Kruglyak 1995; Morton 1998). There is
little to choose between metrics within contrast. The A-
B contrast is well suited to identification of candidate
regions. For localization within a candidate region, the
A-C contrast is more conservative than the A-D contrast.

Type II Error

The results of analyses in the 5q31 and 6p21.42x

samples (table 3) show increased power when the data
are fitted to the LDU map. Compared with the type I
error test, there is an increase of residual variance by an
order of magnitude (table 3), although the increase is
somewhat smaller for the LDU map. The A-B contrast
does not estimate a point location and so depends neither
on whether the map is in LDU or kb nor on whether
the kb map is reliable. The A-D contrast gives a con-
sistently lower value of than the A-C contrast in2R(x )1

one data set, but this is reversed in the second data set.
The LDU map is always superior to the kb map, and
the regression coefficient b is substantially more pow-
erful than the correlation coefficient r. Having identified
a candidate region through linkage, LD, or function, the
A-C contrast is favored to localize a causal gene, if the
predicted asymptote fits well. The A-D contrast losesLp

some information by making an unnecessary estimate of
L, unless fits poorly. Its performance should improveLp

in a larger candidate region relative to the A-C contrast,

but the greater parsimony of the latter would still be an
advantage (Agresti 1990). The high power of this sample
is an artifact of the phenotype definition, but the com-
parison of metrics and contrasts is valid.

Localization within Candidate Regions

Table 4 shows the percentiles of the location errors,
. Expressed in kb, the location error is smallerˆFS � SF

at low percentiles for the LD map than for the physical
map, especially for the 6p21.3 data set, which is char-
acterized by short physical length, strong block and step
structure, high density of markers on the physical map,
and small sample size (table 4). The advantage of the
LD map diminishes at high percentiles but continues to
have a smaller error than the physical map. The small
sample size for the 6p21.3 data set should tend to in-
crease location error, compared with the 5q31 data set,
but the opposite is observed. The 5q31 sample not only
has fewer steps but also has very few markers within
steps (for example, the length of the map is only 2.510
LDUs, compared with 9.838 LDU of 6p21.3) and has
lower density over the whole region (fig. 1), which pe-
nalizes the LDU map when converting from LDU to kb
within a block. Strong block and step structure must
favor the LDU map over the kb map, as observed. We
therefore suggest that the high density of markers on the
physical map reduces location error. A final observation
is that the correlation coefficient r is at least as efficient
as the regression coefficient b and that it behaves simi-
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Table 2

LOD Z p /2ln10 under the Type I Error2x1

CONTRAST,
UNIT, AND

METRIC

MEAN ESTIMATE FOR

5q31 6p21.3

Z p 0 0 ! Z ! 1 1 � Z ! 3a Z � 3b Z p 0 0 ! Z ! 1 1 � Z ! 3a Z 1 3b

A-B:
LDU and kb:

b: 84 884 32 0 65 898 37 0
r: 76 891 33 0 66 906 28 0

A-C:
LDU:

b: 326 654 19 0 26 948 25 1
r: 343 634 23 0 26 947 26 1

kb:
b: 344 635 20 1 137 835 28 0
r: 331 643 26 0 117 858 25 0

A-D:
LDU:

b: 10 957 33 0 0 957 42 1
r: 11 951 38 0 0 963 35 2

kb:
b: 9 956 34 1 1 962 36 1
r: 8 953 39 0 10 958 32 0

a Expected count under (two-tailed) is 31.7; expected count under 10�Z is 99 (Wald 1947).2x1
b Expected count under (two-tailed) is 0.2; expected under 10�Z is 1 (Wald 1947).2x1

larly for models C and D. These differences are small
and do not agree with significance tests for candidate
regions (table 3).

By use of regression analysis, the location errors from
table 4 were further investigated to explain the variation
of errors. The two samples were pooled to give 351 re-
cords. The dependent variable, expressed in kb, was taken
to be , where is the unweighted mean of overˆ ˆ ˆˆ ˆFS�SF S S
the eight combinations of map, metric, and model. Several
independent variables were fitted, including the variation
due to sample, which is represented by a fixed variable
(1 for 5q31 and 2 for 6p21.3), a block-step variable de-
pending on whether the true location (S) is in a block (1)
or in a step (0), and the position of S in the map,

, where kb is the total length of the region.F2S � kbF/kb
Prior knowledge of the allele frequency, Q, of each causal
SNP (pseudophenotype) allowed us to define additional
independent variables. Besides Q, two highly correlated
independent variables were considered for the minor al-
lele frequency of a causal SNP: , as a measureQ(1 � Q)
of variance assuming constant additive effect, and

proposed by Kimura�[Q ln Q � (1 � Q) ln (1 � Q)]
and Ohta (1973) at the suggestion of Alan Robertson,
as proportional to mean age of the polymorphism. James
Crow has drawn our attention to support for this model
(Watterson and Guess 1977). We also fitted the product
of the sample and as a test of interaction, butQ(1 � Q)
it was not found significant and hence was omitted from
the model. The two functions of Q are highly correlated
( ). Both are negatively correlated with ˆr p 0.999 FS �

, contrary to the expectation for the measure of meanSF
age but as expected for the predominant effect of

on phenotypic variance. The Malecot param-Q(1 � Q)
eters � and M for narrow intervals of Q provide much
more sensitive measures of age (Lonjou et al. 2003). In
the model that fitted the independent variables—

and sample (1, 2)—the former was highly sig-Q(1 � Q)
nificant ( ). Retaining these two variables in2x p 11.891

the model, neither the position of S in the map nor
whether S is in block or step (1, 0) approached signifi-
cance. In summary, rare causal SNPs are difficult to map
unless their effects are large relative to those of more
common SNPs. Precise delineation of blocks and steps
has not shown promise for positional cloning, but it has
been informative for recombination hotspots with very
dense markers. The advantage of a map in LDU is not
primarily to define blocks and steps (although it works
well for that), but it is to provide a scale that reflects
LD better than the kb map and is a logical foundation
for haplotype mapping.

Discussion

In this pilot study, we have established type I and type
II error tests for multiple SNPs in two benchmark data
sets, using simulation of an unlinked causal SNP only
for the type I error. The results for establishing a can-
didate region are encouraging. Table 2 shows that type
I errors are acceptable by the Wald theorem under all
maps, metrics, and contrasts, but the most complex com-
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Table 3

The Type II Error for the 5q31 and 6p21.3 Data Sets

CONTRAST (DF),
UNIT, AND

METRIC

MEAN ESTIMATE FOR

5q31 6p21.3

Error
Variance (V)

2xdf
2T(x )df

2R(x )1

Error
Variance (V)

2xdf
2T(x )df

2R(x )1

A-B (1):
LDU and kb:

b: 39.4 511 544 6.43 8.29 249 225 3.24
r: 40.6 365 363 4.62 7.85 226 193 2.92

A-C (2):
LDU:

b: 17.0 1,992 2,578 24.61 2.88 2,922 1,870 18.06
r: 16.7 1,101 1,405 13.18 2.28 1,907 1,205 11.51

kb:
b: 19.4 1,681 2,194 20.95 4.56 884 720 6.98
r: 19.4 987 1,256 11.81 4.05 684 516 5.02

A-D (3):
LDU:

b: 16.9 2,021 2,164 19.22 2.82 3,130 2,261 20.58
r: 16.6 1,120 1,139 9.61 2.19 1,961 1,405 12.35

kb:
b: 19.2 1,712 1,691 14.93 4.45 916 800 6.95
r: 19.2 1,003 986 8.33 3.95 711 593 5.01

NOTE.—Mean estimates based on 103 and 248 tests for the 5q31 and 6p21.3 data sets, respectively.

parison is slightly anticonservative by the test. Under2x

the type II error analysis, by selecting each SNP, in turn,
as causal, tests of significance yield the greatest power
to select a candidate region when the kb map is replaced
by a map in LDU (table 3). The efficiency, as measured
by ratios of the estimate, of the kb map relative to2x1

the LDU map varied from a maximum of 0.87 to a
minimum of 0.36, with a mean of both data sets and
contrasts (A-C and A-D) of 0.62. The superiority of the
LDU map is also reflected in the error variances, which
are much higher for a map in kb than for the map in
LDU and somewhat higher for regression than corre-
lation (table 3). Although tests of significance are not
distorted by the use of composite likelihood and other
approximations, localization within a candidate region
is less reliable (table 4). This problem was recognized
by Devlin et al. (1996), who noted, “Highly dense mark-
ers yield a great deal of redundant information that in-
flates the apparent confidence without actually increas-
ing the likelihood of locating the gene.” They
investigated this further by simulation but did not ex-
amine the error variance, which tends to exceed the value
of 1 that is expected for full likelihood under a correct
model. They concluded that composite likelihood “must
be somewhat inefficient compared to a full likelihood
model. We believe that the full likelihood would be dif-
ficult to specify without unrealistically stringent as-
sumptions about population history, however.” The
problem is to model the correlation matrix for estimates
of association w without knowing the frequencies of the

causal SNP in the different haplotypes or even the overall
allele frequency. These indeterminacies dissipate the hy-
pothetical relationship between haplotype diversity and
power for positional cloning, even if errors in the fin-
ished map, primer sequences, and SNP designation were
negligible.

The methodology represents the foundation for the
optimal development of positional cloning by use of
haplotypes and also provides a benchmark for power
comparisons. There is no reason to suppose that this
principle will be contradicted by haplosets assigned to
medial locations on the LD map. More distant SNPs
contain the least information for positional cloning, and
this information is accurately measured in LDU but not
on the kb scale. The content and precision of the LD
map may play a vital role in positional cloning. The
proposed goal of HapMap (Couzin 2002) to examine,
at most, 600,000 SNPs omits 194% of SNPs in the
human genome (Botstein and Risch 2003), and there-
fore the probability of missing a particular causal SNP
is at least that much. Omission is increased by any con-
straint on the selection of SNPs—for example, by ex-
cluding those with minor allele frequencies less than
some arbitrary number or by requiring that SNPs exceed
some frequency in two or more reference populations.
The latter is especially pernicious, because it tends to
rule out the most interesting SNPs that affect responses
to malaria, schistosomiasis, and other regional diseases
and to extremes of temperature, altitude, sunlight, diet,
and other regional environments. HapMap has yet to
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Table 4

Percentiles of Location Error (kb)

DATA SET,
MAP, METRIC,
AND MODEL

LOCATION ERROR (kb) BY

PERCENTILE

25th 50th 70th 90th 99th

5q31:
LDU:

b:
C: 9.7 18.4 34.8 78.8 200.3
D: 8.8 16.2 36.8 78.8 213.8

r:
C: 9.7 16.1 33.9 71.8 199.9
D: 10.1 16.2 36.8 71.8 200.2

kb:
b:

C: 6.4 22.0 37.6 71.4 152.6
D: 7.9 17.2 37.3 68.9 152.5

r:
C: 6.8 17.4 40.0 73.8 152.2
D: 5.5 16.2 36.6 69.8 152.1

6p21.3:
LDU:

b:
C: .8 2.7 5.2 32.8 102.0
D: .8 2.6 5.3 31.5 102.0

r:
C: .7 2.5 4.7 31.5 101.0
D: .7 2.6 4.7 28.6 101.0

kb:
b:

C: 1.4 6.5 14.4 37.2 130.6
D: 1.3 5.4 13.9 32.1 114.9

r:
C: 1.4 5.4 13.7 31.6 105.7
D: 1.2 5.4 13.2 29.2 117.5

NOTE.—Location error .ˆFS � SF

demonstrate the utility of arbitrarily defined blocks for
positional cloning (or indeed for detecting selective
sweeps or estimating allele ages).

The main objective in positional cloning is to estimate
the kb location of a causal SNP as accurately as possible,
with its support interval an important but secondary
objective. Conclusive identification of a causal SNP is
more difficult, especially if it is common and of small
effect. Not only are the optimal algorithms to achieve
these goals uncertain, but the best way to exploit blocks,
steps, LD, haplotypes, and maps has also not been es-
tablished. It is not self-evident that tagging common
haplotypes, however defined, leads to accurate locali-
zation of a causal SNP that is likely to be polymorphic
in more than one haplotype and to have a different
frequency than any of the haplotypes in which it is
found. The problem is exacerbated if causal SNPs have
not been tested, and it becomes worse as marker SNPs
are depleted by tagging. The point location to which a
haplotype should be assigned, the information weight
it should receive, the number of SNPs it contains, the
choice of these SNPs, the role of different populations

(Lonjou et al. 2003), the overlap of different haplosets,
and a host of other statistical questions not only have
not been answered but are not even clearly posed. What-
ever the answer, it will be superseded by functional tests
in which presumptive causal SNPs are discriminated
with allowance for autocorrelation. Unless homologous
chromosomes are separated, the functional predictors
will not be haplotypes but rather single SNPs scored 0,
1, or 2 in diplotypes. If homologues are separated, the
predictors will be single SNPs scored 0 or 1. This reality
should not be forgotten in pursuit of haplotype tagging
as an interlude between the detection of candidate
regions and the recognition of causal SNPs. At the SNP
level, functional cloning implies identifying a SNP by
prior knowledge of its effect on the gene product. Much
more commonly, the reverse inference is made by dis-
tinguishing between association and causation among
known SNPs. Whether in vivo or in vitro, these ex-
pression tests are part of positional cloning by LD,
which has a short history but a long future.
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