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Admixture mapping (also known as “mapping by admixture linkage disequilibrium,” or MALD) has been proposed
as an efficient approach to localizing disease-causing variants that differ in frequency (because of either drift or
selection) between two historically separated populations. Near a disease gene, patient populations descended from
the recent mixing of two or more ethnic groups should have an increased probability of inheriting the alleles derived
from the ethnic group that carries more disease-susceptibility alleles. The central attraction of admixture mapping
is that, since gene flow has occurred recently in modern populations (e.g., in African and Hispanic Americans in
the past 20 generations), it is expected that admixture-generated linkage disequilibrium should extend for many
centimorgans. High-resolution marker sets are now becoming available to test this approach, but progress will
require (a) computational methods to infer ancestral origin at each point in the genome and (b) empirical char-
acterization of the general properties of linkage disequilibrium due to admixture. Here we describe statistical methods
to estimate the ancestral origin of a locus on the basis of the composite genotypes of linked markers, and we show
that this approach accurately estimates states of ancestral origin along the genome. We apply this approach to
show that strong admixture linkage disequilibrium extends, on average, for 17 cM in African Americans. Finally,
we present power calculations under varying models of disease risk, sample size, and proportions of ancestry.
Studying ∼2,500 markers in ∼2,500 patients should provide power to detect many regions contributing to common
disease. A particularly important result is that the power of an admixture mapping study to detect a locus will be
nearly the same for a wide range of mixture scenarios: the mixture proportion should be 10%–90% from both
ancestral populations.

Introduction

In the search for disease-causing variants in humans, it is
desirable to use whole-genome scans, because they do not
require a priori knowledge of the genes involved in dis-
ease. The most successful such method to date—linkage
analysis in pedigrees—has been very effective at mapping
rare disorders for which single mutations are sufficient to
cause disease. Linkage analysis has been less successful in
localizing risk variants for common, complex disorders,
presumably because there are many mutations that con-
tribute to disease, each to a modest degree (Risch and
Merikangas 1996; Risch 2000). Attention has therefore
turned to association-based approaches, which can pro-
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vide greater power for identifying common variants con-
ferring modest risk (Risch 2000). The most commonly
discussed association approaches are direct association,
which requires testing all markers, and haplotype map-
ping (Collins et al. 1997; Daly et al. 2001; Botstein and
Risch 2003). Using either in a whole-genome scan, how-
ever, is currently impractical, because both methods re-
quire the typing of hundreds of thousands or millions of
markers.

Admixture mapping (also known as “mapping by ad-
mixture linkage disequilibrium,” or MALD) offers a
promising but as yet untested association-based ap-
proach for performing a whole-genome scan (Chakra-
borty and Weiss 1988; Risch 1992; Briscoe et al. 1994;
Stephens et al. 1994; McKeigue 1997, 1998; Zheng and
Elston 1999; Lautenberger et al. 2000; McKeigue et al.
2000; Wilson and Goldstein 2000; Pfaff et al. 2001;
Collins-Schramm et al. 2003; Halder and Shriver 2003;
Hoggart et al. 2003; Shriver et al. 2003). The attraction
of admixture mapping is that it requires a small fraction
of the markers that would be needed for a direct or
haplotype scan (∼1% as many) and yet can scan the
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Figure 1 Schematic of how a disease locus will appear in an admixture scan. Around the locus, there should be an unusually high
proportion of ancestry from one of the parental populations, because of patients inheriting high-risk alleles from that group. The peak can be
identified not only in a case-control comparison but also in a comparison of the estimate of ancestry in cases at that point in their genome
with the rest of their genomes. The width of the peak of association is determined by the number of generations since admixture.

genome for a subset of risk alleles (those that show
substantial differences in frequency between two pop-
ulations that have recently mixed).

The idea of admixture mapping is simple. Although
most genetic variation is shared between groups, some
disease-causing variants are known to differ substan-
tially in frequency across populations. This is especially
relevant for diseases with different incidences across eth-
nic groups—for example, autoimmune diseases (usually
more common in Europeans) and hypertension and
prostate cancer (usually more common in West Afri-
cans) (Davey Smith et al. 1998). Admixture mapping is
designed to study populations descended, at least in
part, from the recent mixing of ethnic groups from mul-
tiple parts of the world (such as African Americans and
Hispanic Americans). In chromosomal regions contain-
ing variants contributing to disease risk, there will be
an overrepresentation of ancestry from whichever pop-
ulation has a higher proportion of risk alleles at the
locus (fig. 1). For example, multiple sclerosis (MS) is
more prevalent in Europeans than in Africans (Kurtzke
et al. 1979; Wallin et al. 2003). To identify gene variants
that might contribute to the disease, one could screen
the genome in African American patients with MS,
searching for regions where the proportion of European
ancestry is higher (or occasionally lower) than average
(fig. 1).

The key advantage of admixture mapping is that, like
a haplotype or direct association approach, it is based
on directly associating sections of the genome with dis-

ease. Thus, for variants that differ strikingly in fre-
quency across populations, it should have more power
than linkage to detect the presence of variants of modest
effect. At the same time, far fewer genetic markers
can be used (a few thousand, rather than 300,000–
1,000,000 for a haplotype or direct-association study)
(Gabriel et al. 2002; Carlson et al. 2003). Fewer markers
are required because admixture has been recent, with
!20 generations over which recombination could have
broken down segments of shared ancestry. Given the
small number of recombination events since admixture,
the regions of excess ancestry around disease-causing
variants are expected to extend tens of millions of base
pairs.

It has only recently become possible to perform high-
powered admixture mapping. A powerful study requires
a map of thousands of markers known to have sub-
stantial differences in frequency across populations. To
select these, it is necessary to cull a much larger database
of markers with known frequencies. (This is because
only a small subset shows high frequency differentiation
across groups.) In an accompanying article (Smith et al.
2004 [in this issue]), we present the first high-density,
whole-genome map of markers that are useful for ad-
mixture mapping in African Americans. This resource
is culled from a database of ∼450,000 markers with
known frequencies and includes 2,154 well-spaced
markers that have been validated as highly differenti-
ated in at least 99 West African and at least 78 European
American samples. The markers have an average allele



Patterson et al.: High-Density Admixture Mapping 981

Figure 2 Data from three African American samples (Smith et al. 2004), used to reconstruct ancestry along chromosome 22, based on
genotypes at 52 SNPs (the positions of the SNPs are indicated by black lines). Each individual has segments of the genome of both European
and African ancestry, randomly distributed over the chromosomes. At any locus, an individual can have only 0, 1, or 2 European ancestry
alleles. Individual 3, for example, is confidently estimated to have 1 European-ancestry allele between 0 and 25 cM, 2 between 35 and 40 cM,
and 1 between 45 and 70 cM. A higher density of markers is clearly needed to resolve ancestry in some places, highlighting the importance of
including more SNPs in the map. To test for disease association on the basis of such data, one would search for genomic segments where the
estimated number of European ancestry alleles, summed over samples, is greater than the genomewide average.

frequency difference of 57% between West Africans and
European Americans.

The availability of admixture mapping panels (Smith
et al. 2001, 2004) overcomes a major obstacle to per-
forming whole-genome scans by use of admixture-gen-
erated linkage disequilibrium. Here, we focus on several
additional requirements that must be satisfied to per-
form a high-powered study. These include (a) devel-
oping methods to extract information about ancestry
from marker data, (b) characterizing the general prop-
erties of admixture-generated LD in an admixed pop-
ulation across the human genome, and (c) understand-

ing how admixture mapping performs under a range of
models of genetic effects and allele frequency differen-
tiation among populations.

The article is organized as follows:

1. We report a novel method to combine information
from multiple, closely linked markers to make local
estimates of ancestry. This approach to scanning
for disease genes increases power compared with
previous proposals, in a manner analogous to mul-
tilocus linkage as compared with single-point ap-
proaches (Lander and Green 1987).



982 Am. J. Hum. Genet. 74:979–1000, 2004

2. We evaluate the performance of the approach on
the basis of empirical data collected from African
Americans. In the process, we provide the most
powerful survey to date of the extent of admixture
linkage disequilibrium in African Americans.

3. We test the behavior and power of the method
through use of extensive computer simulations.

4. We explore the power of admixture mapping to
detect disease loci under a range of scenarios of
genetic effects and allele frequency differentiation,
with real and simulated data. These analyses con-
firm that, for disease-causing alleles with large dif-
ferences in allele frequencies between the parental
populations, admixture mapping can detect genes
of modest effect with power comparable to whole-
genome haplotype mapping.

We note that Falush et al. (2003) and Hoggart et al.
(2003) have developed methods that similarly combine
data from multiple, closely linked markers to make in-
ferences about ancestry. When the underlying model is
considered, the Falush et al. (2003) method is partic-
ularly close to ours, although it aims to infer population
structure rather than to scan for disease genes, which
has consequences for its implementation. Our method
makes advances compared with the others, particularly
in the areas of (a) allowing admixture mapping to be
applied to the X chromosome, (b) introducing a Bayes-
ian likelihood ratio test to scan for disease association
anywhere in the genome, and (c) using adaptive-rejec-
tion sampling to allow the software to run more quickly.
An additional novel contribution is to present extensive
simulation studies showing that the method is robust
and not prone to false positives. The simulations show
that admixture mapping should, in theory, be able to
identify a subset of the genes for complex disease, in
some cases with more statistical power than whole-ge-
nome haplotype or linkage studies.

The ultimate value of admixture mapping, of course,
will depend on whether disease variants that differ strik-
ingly in frequency in populations are common—that is,
on the (as yet unknown) frequency distribution across
populations of alleles contributing to common disease.
This will be determined empirically in the coming years
by performing several real admixture mapping studies.

Methods

Here, we present a novel approach for screening along
the genome in an individual of recently mixed ancestry,
to identify which segments have been inherited from
either of the ancestral populations. The estimates can be
averaged across individuals to search for an unusual
amount of ancestry from one ethnic group, indicating a
nearby disease gene.

A Hidden Markov Model (HMM) for Estimating
Ancestry along the Genome

We assume that the population under study has re-
cently been derived by the mixing of two populations,
A and B, and define the following quantities for each
individual:

Mi p The average proportion of alleles inherited
from population A (versus B); for example, for
an African American, the proportion of an-
cestors who lived in Europe before the initia-
tion of admixture—say, 140 generations in the
past.

li p The number of chromosomal exchanges per
morgan between ancestral segments of the ge-
nome since the mixing event. This includes ex-
changes between segments of the same ancestry,
which are impossible to detect experimentally.
This quantity can be roughly identified with the
number of generations since the ancestors of
individual i began mixing, although this must
not be interpreted too literally, since the number
of generations since admixture varies across an
individual’s different ancestral lineages.

To model how ancestry changes along the genome in
an individual, we define the “ancestry state”—that is,
whether an individual has 0, 1, or 2 alleles from pop-
ulation A at locus j—as Xj . We denote the sequence of
ancestry states at markers along a chromosome0,1, … ,T
as . To understand the sequence ofX p {X ,X , … X }0 1 T

ancestry in an individual with a proportion Mi of pop-
ulation A ancestry, we note that, at the p-terminal end
of each chromosome, the probability that there are 0,
1, or 2 population A alleles is

2P(X p 0) p (1 � M )0 i

P(X p 1) p 2M (1 � M )0 i i

2P(X p 2) p M . (1)0 i

Once Xj is specified, the probability distribution of
can be calculated as follows. Let d be the geneticXj�1

distance (in morgans) between markers j and . It isj � 1
assumed that d is small enough that the probability of
two recombination events between markers j and j �
, in any generation, is negligible, which is reasonable1

for a dense marker map. With probability , no re-�2l die
combination occurred between the sites on either chro-
mosome since admixture, and . With proba-X p Xj�1 j

bility , both chromosomes recombined, in�l d 2i(1 � e )
which case can be obtained by drawing from equa-Xj�1

tion (1). With probability , one chro-�l d �l di i2e (1 � e )
mosome recombined, and can be obtained as a sam-Xj�1

ple average of the two scenarios. The probability of no
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recombination—and, thus, the same ancestry state—is
highest for markers that are close together, correspond-
ing to the fact that markers are much more informative
for nearby disease loci (e.g., within 0.5 cM) than for
faraway ones (e.g., 15 cM).

The sequence of ancestry states X along the chromo-
some can be simply represented as a Markov chain on
three states in which the transition probabilities vary ac-
cording to the genetic distance (probability of historical
recombination) between markers. The standard way of
inferring ancestry states in this situation is by an HMM,
in which the ancestry states are “hidden” and must be
inferred from the genotypes , con-O p {O ,O , … ,O }0 1 T

ditional on a model such as the one given above for how
the data are generated (Lander and Green 1987; Rabiner
1989; Durbin et al. 1998). The HMM moves from marker
to marker along the chromosome (passing through the
data twice: once from the p-terminal end and once from
the q-terminal end). At each marker, the HMM uses the
observed genotypes O and the correlations between
nearby markers imposed by the model to produce a prob-
ability map for ancestry quantified by , , anda (x) b (x)j j

, where x can be 0, 1, or 2 (see appendix A [onlineg (x)j

only] for details).
The first two quantities (a and b) are the probabilities

of , 1, or 2 population alleles inherited from pop-x p 0
ulation A at a given marker (j) based on all the data in
the p-terminal and q-terminal directions, respectively. To
calculate the probability of x population A–ancestry al-
leles at that point (combining data from both directions),
one can then simply multiply a and b together and nor-
malize: . The estimates of ancestry (seeg (x) � a (x)b (x)j j j

fig. 2 for examples) can be used directly in tests for
association.

It is important to realize that the HMM assumes that
Mi and li, as well as the frequencies of alleles in the
parental populations, and , are known. These val-A Bp pj j

ues are not exactly known in practice, however, and
errors in the estimates can lead to false-positive signals
of association to disease. In particular, at markers where
incorrect parental population allele frequencies are as-
sumed, individuals will appear to be more closely related
to one of the parental populations than is, in fact, the
case.

To fully take into account uncertainty in the unknown
variables, one would ideally run the HMM over all pos-
sible combinations of Mi, li, , and , each time re-A Bp pj j

cording the disease association statistic and averaging
over all the runs, weighting by their likelihood. However,
a typical powerful admixture mapping study might in-
volve 2,500 samples, each with unknown Mi and li, as
well as 2,500 markers, each with unknown frequencies

and . It would therefore be necessary to numericallyA Bp pj j

integrate over a grid of 10,000 unknown parameters,
which is impossible even with powerful computers. A

more sophisticated approach was therefore required to
take into account uncertainty in the model parameters.

Markov Chain Monte Carlo (MCMC) Approach

An MCMC approach was applied to account for the
uncertainty in allele frequencies and Mi and li. The
MCMC makes it feasible to explore the most important
parts of a very high-dimensional space of unknown pa-
rameters without taking up too much computer time. In-
stead of methodically integrating over a grid of ∼10,000
dimensions, the MCMC is able to randomly sample from
the posterior likelihood distribution of the unknown pa-
rameters Mi, li, , and . Since each iteration of theA Bp pj j

MCMC is a new sampling from the posterior distribution,
by running the HMM and averaging a disease association
statistic over the iterations—and performing enough it-
erations to fully explore the distribution—one can ap-
propriately test for association while taking into account
uncertainty in these parameters.

The first step of the MCMC is to pick starting values
of the unknown variables.

1. The allele frequencies and are initially set toA Bp pj j

be the values estimated from the parental popula-
tions. For example, in a study of African Ameri-
cans, a reasonable approach is to estimate the
frequencies in European Americans and West
Africans.

2. The proportion of ancestry Mi is initially set for
each individual through use of maximum-likeli-
hood estimates based on treating all SNPs as
unlinked.

3. The number of generations since admixture, li, is
initially set to be 6 (generations) for all samples,
on the basis of the empirical estimate for an African
American population (see below).

The robustness of the MCMC is not dependent on
the initial guesses, since the MCMC will converge to
the appropriate posterior distribution regardless of the
guess, given a sufficient number of “burn-in” iterations.
It is useful to make initial guesses that are reasonably
close to the true values, however, because this allows the
program to converge more quickly to the correct pos-
terior distribution and reduces computational time.

The main steps of the MCMC, repeated many times,
are as follows:

Step A: Use the HMM to randomly generate a se-
quence of ancestry states across the genome
conditional on the current set of parameters

, , Mi, and li.
A Bp pj j

Step B: Loop over all the ∼10,000 unknown param-
eters, updating each in turn. For each param-
eter (e.g., or for a marker or Mi or li

A Bp pj j

for a sample), its new value is obtained as
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follows: (i) Hold the values of all other un-
knowns fixed; (ii) calculate a likelihood dis-
tribution for the unknown, conditional on the
fixed values of the others (and also on the
sequence of ancestry states from step A), and
(iii) use this likelihood distribution as a prob-
ability distribution for the parameter, ran-
domly sampling from it to obtain an updated
value for use in subsequent iterations.

The steps above are typical of modern MCMC anal-
ysis in following a “hierarchical Bayesian” framework
(Gelman et al. 1995). Such an analysis proceeds in a
series of “layers.” In each layer, the conditional distri-
bution of the parameters is generated by the MCMC
with the neighboring layers fixed. Most computations
then reduce to sampling a single variable with a known
likelihood. This is so simple that the main use of com-
puter time is in step A, the sampling of ancestry states
by the HMM.

After a sufficient number of “burn-in” iterations
(which refers to looping through the full set of ∼10,000
unknown parameters), the MCMC will, to a good ap-
proximation, be sampling the correct conditional prob-
ability distribution (Gilks and Wild 1992; Gilks et al.
1995, 1996). After burning in, the values of , , Mi,

A Bp pj j

and li generated by the MCMC can be considered ran-
dom samples from the true posterior distribution. By
performing enough follow-on cycles, one can explore
the posterior likelihood surface for these parameters,
given the data. In particular, by running the HMM on
the particular combination , , Mi, and li that isA Bp pj j

generated at the end of each cycle and averaging the
disease association statistic over cycles, one can obtain
a statistic that appropriately takes into account uncer-
tainty in the unknown parameters. Similarly, one can
record the values of each of the unknown parameters

, , Mi, and li at the end of each cycle, building upA Bp pj j

histograms that approximate these variables’ true like-
lihood distributions.

We suggest 100 burn-in and 200 follow-on iterations
for analysis, since the statistical score for disease asso-
ciation obtained with this procedure is 198% correlated
to the score with 1,000 burn-ins and 2,000 follow-ons
(see appendix B [online only] for details). It was a sur-
prise to the authors initially that this small number of
iterations was sufficient. A likely explanation for the
small number of burn-in and follow-on iterations is that,
although there are many unknown parameters in the
model (∼10,000), the dependence between most pairs of
parameters is weak. For example, changing allele fre-
quency guesses for one marker will have little effect on
inferences for most others. The required number of burn-
in iterations was also minimized by using an expectation-

maximization algorithm to pick initial values of the pa-
rameters that were relatively close to the true values.

We note four additional and important issues regard-
ing the MCMC approach. First, the software we have
written for admixture mapping is, at present, limited to
two-way admixture and to diallelic markers (e.g., SNPs).

Second, although controls are not required for a screen
for disease genes (the main test for association compares
the estimate of ancestry at each locus with the rest of
the genome), including control samples can be useful.
This is because control samples can provide more-ac-
curate estimates of allele frequencies and and,A Bp pj j

hence, more-reliable ancestry inferences at each point in
the genome. The “Results” section explicitly explores
(using simulations) how useful it is to include controls
in a study.

The third feature of the MCMC that was not previ-
ously discussed is that the X chromosome has to be
analyzed differently from the autosomes. The X chro-
mosome has a different inheritance pattern than the au-
tosomes, and, thus, and (the proportion of an-X XM li i

cestry and the number of generations since admixture
specific to the X chromosome) have to be inferred sep-
arately. From empirical data from African American in-
dividuals, we observed that Mi and are highly cor-XMi

related in practice, a fact that was used in the MCMC
to improve X chromosome inference in this population
(appendix B [online only]).

Finally, the MCMC described above does more than
account for uncertainty in the estimates of the marker
allele frequencies and due to sampling only a lim-A Bp pj j

ited number of individuals from populations A and B.
In addition, it takes into account the possibility that
there may be error in these estimates because the modern
samples of A and B that are studied in the laboratory
might not be drawn from exactly the same group as the
ancestors of the admixed population. The dispersion be-
tween the ancestral gene pool of a mixed population and
the modern representatives is quantified by two hyper-
parameters, tA and tB, which are estimated during the
iterations of the MCMC in the same way as Mi, li, ,Apj

and (appendix B [online only]) (see Lockwood et al.Bpj

[2001] and Nicholson et al. [2002] for related measures
of population dispersion).

Scoring to Detect the Presence of Disease Genes

Two separate approaches were introduced to formally
test the output of the MCMC analysis for the presence
of disease genes. The first is a “locus-genome statistic,”
which compares the percentage of ancestry derived from
one of the parental populations at any locus with the
average in the genome (fig. 1). This does not require
control samples. The second approach is a “case-control
statistic,” which directly compares cases with controls
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at every point in the genome, looking for differences in
ancestry estimates. Both statistics use the outputs of the
HMM (g values). In the context of the MCMC, both
statistics are evaluated by averaging the results over the
iterations. This appropriately accounts for uncertainty
in the unknown parameters , , Mi, and li, as de-A Bp pj j

scribed in detail below.

Locus-Genome Statistic

The locus-genome statistic compares, for each point
in the genome, the likelihood of being a disease locus
versus being a locus unrelated to disease. We define w1

and w2 as the increase in disease risk due to having 1 or
2 population A–ancestry alleles, respectively, relative to
having no population A–ancestry alleles. It is important
to recognize that the risk due to ancestry at a locus is
almost always lower than the risk due to a specific allele
(since it is an average of both risk and nonrisk alleles
at the locus).

The locus-genome statistic is calculated for each in-
dividual i separately (and for each marker j in the ge-
nome). The statistic is based on the estimated proba-
bilities of 0, 1, or 2 population A alleles for that
individual at that point in the genome: , , andg (j) g (j)i,0 i,1

, which are provided by the HMM.g (j)i,2

The specific test for association is a likelihood-ratio
statistic: the likelihood of the data if a disease locus is
present divided by the likelihood if no disease locus is
present. Theory suggests that this is an optimal statistic
(Bickel and Doksum 2001) for detecting evidence of a
disease locus. Appendix C (online only) presents some
algebra showing that the appropriate likelihood statis-
tic compares the probabilities of 0, 1, or 2 population
A–ancestry alleles at a locus based on genotypes there
with the expectations based on an individual’s average
ancestry as calculated from genomewide data. With

, , and ,2 2h p (1 � M ) h p 2M (1 � M ) h p Mi,0 i i,1 i i i,2 i

( ) ( ) ( )g j �g j w � g j wi,0 i,1 1 i,2 2P(dataFdisease)
L p p .ij P(dataFno disease) h � h w � h wi,0 i,1 1 i,2 2

To obtain the overall likelihood that the locus j is
disease-related versus unrelated to disease, one can sim-
ply multiply Lij over all patients (or add log likelihoods
and exponentiate). An alternative test for admixture as-
sociation was introduced by McKeigue et al. (2000).

The locus-genome statistic is flexible enough to test
several disease models simultaneously. If one is studying
a disease for which there is an epidemiological reason
to believe that there is higher genetic risk in population
A, one might want to test several models for increased
risk due to population A ancestry and, simultaneously

(just to be sure), to test one model where population B
ancestry confers more risk: for example, , 1.5,w p 1.31

2, and 0.7, with .2w p w2 1

An additional attraction of the locus-genome statistic
is that it should work well even if the real risk loci do
not conform exactly to one of the models being tested.
For example, a real locus with shouldw p w p 2.21 2

produce data that are far more likely under the w p1

, model than the null ( ) hypothesis2 w p 4 w p w p 12 1 2

and thus show up as positive in a scan.
To declare a genomewide significant association to

disease—corrected for the fact that multiple loci are be-
ing tested—the usual approach is to calculate a statistic
at every point in the genome and to declare significance
if any locus exceeds a specified threshold (Lander and
Kruglyak 1995). The locus-genome statistic, however,
also makes it possible to detect evidence for whether
there is association anywhere in the genome. The idea
is to average the statistic at equally spaced points ge-
nomewide (one every cM), declaring a positive associ-
ation if the log base 10 (LOD) of the average is 12
(appendix C [online only]).

To our knowledge, a Bayesian whole-genome statistic
is a novel idea, which could be applied equally well in
other contexts (for example, linkage analysis).

Integrating the Locus-Genome Statistic into the MCMC

The previous discussion focused on how to use the
results of the HMM to scan for disease genes. To pro-
duce a locus-genome statistic that appropriately takes
into account uncertainty in the unknown variables ,Apj

, Mi, and li, it is appropriate to simply average theBpj

locus-genome statistics produced at each iteration of the
MCMC.

Case-Control Statistic

The “case-control statistic” compares estimates of an-
cestry, in cases versus controls, at every point in the
genome. A deviation from the genomewide average of
one parental population ancestry seen in cases but not
controls provides evidence of a disease locus.

Specifically, the case-control statistic calculates, for
each individual and every locus j in the genome, the
difference between their expected number of population
A–ancestry alleles at a locus and the estimate from data:

. A t statistic (Tj) (Bickelm (j) p 2M � [2g (j) � g (j)]i i i,2 i,1

and Doksum 2001) is then calculated for a difference of
means between cases and controls. Tj should bem (j)i

distributed approximately according to a standard nor-
mal distribution if there is no disease locus. A useful
feature of this statistic is that it internally corrects for
population stratification: should have the same be-m (j)i

havior in both cases and controls, even if they have dif-
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ferent proportions of population A ancestry, because the
average A ancestry is subtracted out for each individual.

The case-control statistic has some advantages com-
pared with the locus-genome statistic. In particular, no
explicit risk model is required, so it provides an easier-
to-interpret screen for an elevation of ancestry in the
parental populations. The case-control statistic also has
the advantage that, for prevalent phenotypes such as
prostate cancer, hypertension, or response to a drug, it
screens for an increase in population A ancestry in cases
and a simultaneous decrease in controls selected not to
have the phenotype. (The locus-genome statistic, how-
ever, can be modified to detect this as well.)

The main drawback of the case-control statistic is that
the controls contribute uncertainty to analysis. Thus, an
elevation in one population’s ancestry seen in cases may
be within the range of statistical fluctuation when taking
into account the controls, even though it is statistically
significant in comparison with the genomewide average.

Software (in a combination of C and PERL) imple-
menting the MCMC and tests for association is currently
being prepared for distribution. This “ANCESTRYMAP”
software has been tested only in a Compaq-a Unix en-
vironment and is not intended for other computational
platforms (a distributable version will be available at the
Harvard Medical School Department of Genetics Web site
by January 2005, and N.P. or D.R. will assist with analysis
of any data sets in the mean time, if requested).

Automatic Checks for Errors in the Data Set

The software includes built-in error checking:

1. A “leave1out” program removes the marker con-
tributing the most to any association and assesses
whether the signal of association persists. If a signal
remains even after leaving out the best marker, it
is less likely to be an artifact due to a single marker.

2. A “mapcheck” program compares ancestry esti-
mates obtained for each marker by itself to that
predicted using adjacent markers (leaving out the
SNP of interest). A discrepancy indicates the mis-
specification of a marker’s genomic position.

3. A “freqcheck” program compares the allele fre-
quencies and observed in the parental pop-A Bp pj j

ulations with those in the mixed population. The
mixed population should show appropriately in-
termediate frequencies at the markers (determined
by the genomewide estimates of the proportion of
A and B ancestry in that population).

Simulations

Simulated data sets were generated to evaluate the
performance of the method:

1. For each individual in the simulations, Mi and li

are sampled from beta and gamma distributions
that are set to match what one might expect in an
African American population ( ,M ∼ 20% � 12%i

; see the “Results” section).l ∼ 6 � 2i

2. Allele frequencies for the 2,154 markers from the
Smith et al. (2004 [in this issue]) map are generated
using the statistical model for allele frequencies in
appendix B (online only). To model the allele fre-
quency dispersion between the modern populations
and the ancestral gene pool of the admixed group,
the simulations use for both populationst p 300
A and B, similar to the t estimates obtained em-
pirically for African Americans with MS (see the
“Results” section).

3. A Markov chain is used to generate a sequence of
ancestral states for each of the chromosomes in a
simulated individual. With no disease locus, the
simulation proceeds exactly as described in the sec-
tion on the HMM above. For a disease locus, the
algorithm generates an excess of chromosomes un-
der the null (no disease) model and then uses re-
jection sampling (Ripley 1987) to choose a subset
of chromosomes consistent with the presence of a
disease locus. Chromosomes with population A an-
cestry at the disease locus are sampled with prob-
ability , where w1 is thew M /[w M � (1 � M )]1 i 1 i i

increased risk for disease due to carrying one pop-
ulation A–ancestry allele.

4. Once the allele frequencies and ancestry states at
each marker are simulated as described in steps
2 and 3, genotypes can be straightforwardly
generated.

In the simulation, the genotypes are separately generated
for the chromosomes from each parent, and then the
haploid genomes are put together to produce a diploid
for analysis.

We also explored how differences in history (Mi and
li) for an individual’s two parents can affect power
to detect genes. In addition to the simple “scenario
1,” in which the two parents of each individual are
simulated to have the same Mi and li, we also con-
sidered:

Scenario 2: An individual’s parents are simulated with
different ancestry proportions. The par-
ents’ Mi values are generated from a beta
distribution with mean and SD that are
set to be the same as those measured em-
pirically in African Americans with MS.
Some are reassigned to have all A or B
ancestry in the right proportion to pre-
serve the mean and variance of Mi in the
next generation.

Scenario 3: An individual’s parents are simulated to
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Figure 3 Quantitative assessment of the ability of the MCMC to detect regions of the genome with high or low levels of European
ancestry. From the 442 patients with MS, we identified subsets of individuals carrying at least one copy of an allele that has a much higher
frequency in Europeans than in Africans, thereby defining five populations that we knew were enriched for European ancestry at that point in
their genomes. For the analyses, we conditioned on genotypes at the following five polymorphisms: DRB1*1501 in human leukocyte antigen
(HLA) ( individuals), rs7349 ( ), rs1002587 ( ), rs1205817 ( ), and rs737802 ( ). We tested for associationn p 57 n p 125 n p 129 n p 177 n p 141
through use of the locus-genome statistic and a disease model of twofold increased risk due to European ancestry ( ; ). Peaks ofw p 2 w p 41 2

highly significant ancestry association were identified in all five examples, with widths of 10–15 cM (where the width is defined as the log
likelihood being within 1 of the maximum). Positions of the highly informative markers used for inference are indicated by triangles at the
bottom of each figure.

have different histories of admixture li.
The li for each parent is generated from
a gamma distribution with a mean and
SD in li as in African Americans. A pro-
portion of individuals are then reassigned
to have all European or West African an-
cestry, to preserve variation in li across
generations.

Empirical Data to Evaluate the Method

The main data set consists of 756 SNPs (covering 39%
of the genome) genotyped in 442 African American pa-
tients with MS and 276 African American controls (Ok-
senberg et al. 2004). The second data set consists of

2,154 SNPs genotyped in 109 African American controls
(Smith et al. 2004).

Comparing the Power of Admixture Mapping with
That of Other Whole-Genome Scanning Methods

To compare the power of admixture mapping with
that of linkage and haplotype mapping, we performed
calculations similar to those of Risch and Merikangas
(1996) and Risch (2000). We defined power as the num-
ber of samples necessary to detect an effect with 80%
probability and assumed testing of 300,000 independent
hypotheses for the haplotype mapping study. All of these
calculations are overoptimistic in terms of the number
of samples necessary to detect a disease locus, because
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Figure 4 A, Estimates of percent European ancestry for 718 African American individuals, based on empirical data collected at our
laboratory. We compare the estimates of ancestry from the MCMC with estimates made through use of a simple maximum-likelihood approach
using a subset of 186 unlinked markers that were chosen to have the highest information content (Smith et al. 2004 [in this issue]) while spaced
at least 10 cM apart. The close correlation provides confidence that the MCMC accurately estimates unknown parameters. B, Comparison of
Mi with li estimates (the SEs are shown in gray). Individuals with high Mi often have low li values, which may be due to these individuals
often having one European parent, resulting in an Mi near 50% but a low li because the chromosome from the European parent never crosses
over. Such individuals should ideally be excluded from an African American admixture mapping study (i.e., samples’ parents should not have
entirely European American or West African ancestry), because chromosomes that do not cross over between ancestries contribute no power
to a study.

they assume a fully informative map for admixture map-
ping and linkage studies and assume genotyping of the
disease risk allele (rather than one in linkage disequilib-
rium with it) for haplotype studies. In practice, we expect
that 1.2- to 2-fold more samples would be required to
achieve the claimed level of power.

Results

In the “Methods” section, we presented an approach for
estimating the ancestry at each point in the genome in
an individual descended from a recent population ad-
mixture, through use of genotyping data from closely
linked markers. The inputs into this analysis are the
genotypes at a large number of genetic variants that are
selected as differing strikingly in frequency between two
ancestral populations.

The HMM analysis is based on the assumption that
the frequencies and of all the markers in the pa-A Bp pj j

rental populations are known and that the proportion
of ancestry (Mi) and the average number of generations
since admixture of populations (li) are also known. In
fact, these parameters are uncertain. We therefore used
an MCMC approach to account for uncertainty in ,Apj

, Mi, and li. The MCMC iterates over a range ofBpj

possible values of the parameters consistent with the
data, averaging results from analyses at the end of each
cycle to produce overall estimates.

Finally, we introduced a “locus-genome statistic,”

which allows the results of these analyses to be used
to test for the likelihood of the data given the presence
of a disease-influencing gene (as compared with the
absence of such an allele). The locus-genome statistic
compares the estimates of ancestry for each individual
at each locus with the average genomewide (Mi),
searching for a deviation that indicates the presence
of a disease gene (fig. 1). The statistic is efficient at
extracting nearly all information about disease asso-
ciation (see below). We also introduced a statistic that
conventionally searches for a difference between cases
and controls at each locus.

The “Results” section is organized in three parts:

1. We assess the performance of the MCMC through
use of empirical data sets. This provides a rigorous
assessment of the extent of admixture-generation
linkage disequilibrium and the proportion of Eu-
ropean ancestry in African Americans.

2. We assess the robustness and performance of the
MCMC through use of simulated data sets, show-
ing that the method can detect associations, is not
prone to false positives, and has the high statistical
power to detect disease genes that is expected
theoretically.

3. We present power calculations comparing admix-
ture mapping with other methods. In the process,
we suggest guidelines for the design of admixture
genome scans.



Figure 5 Difference between the true values of Mi, li, , and and the estimates from the MCMC. These results are obtained byA Bp pj j

simulating data sets in which 1,000 samples are genotyped in 2,147 markers from the map described by Smith et al. (2004 [in this issue]). In
the simulations, we set and , to match the values observed empirically in African Americans, and we assume noM p 20% � 12% l p 6 � 2i i

disease locus. The difference between the true value and estimate (divided by the estimated SE estimated by the MCMC) is, on average, close
to 0, indicating that the estimates are unbiased. Compared with normal theory, the residuals are larger than expected, indicating that the MCMC
slightly underestimates the SEs, although this does not appear to cause false positives (table 2).

Table 1

Accuracy of MCMC Parameter Estimates

Scenario

Mi (Dispersion
Compared with

Normal Theory)a

li (Dispersion
Compared with

Normal Theory)a

Residual of andA Bp pj j

(Dispersion Compared
with Normal Theory)b

Null model (scenario 1) (see also fig. 5) 20.0% (2.1-fold) 6.0 (2.0-fold) �.02 (2.1-fold)
Mi varies between parents (scenario 2) 19.9% (1.9-fold) 5.6 (10.7-fold) �.01 (2.0-fold)
li varies between parents (scenario 3) 19.6% (2.3-fold) 5.8 (2.3-fold) �.02 (2.0-fold)

NOTE.—We assessed how well the MCMC estimates unknown parameters by performing simulations of
1,000 individuals without disease studied at 2,147 markers from the map described by Smith et al. (2004 [in
this issue]). The simulations assume that the samples have percentages of European ancestry with distributions
of and generations. The frequencies of the markers are based on the West AfricanM ∼ 20% � 12% l ∼ 6 � 2i i

and European American frequencies from the Smith et al. (2004 [in this issue]) map. The data for simulations
of admixture conforming fully to our model are presented in the first row (and pictorially in fig. 5). The means
of both Mi and li are within 7% of their true values even in the presence of large deviations from the model,
and the allele frequency estimates are essentially unaffected by deviations from the model. The dispersions
(measuring the spread of the residuals around the mean) are generally more than twice the values expected
from normal theory. This indicates that the MCMC is overconfident about its parameter estimates. However,
this does not appear to increase the values of disease association statistics, and, hence, it would not be expected
to lead to false positives (table 2).

a Values for Mi and li are averaged over 1,000 individuals (if estimates are unbiased, they should be
and generations).M p 20% l p 6i i

b Values for and are the mean residuals (the difference between the true and estimated value, dividedA Bp pj j

by the estimated SE) out of 2,147 # 2 frequency estimates; should be ∼0 if unbiased.
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Table 2

The 95th Percentiles of Association Statistics in the Absence of a Disease Locus (These Translate Directly to Thresholds
for Genomewide Significance)

SCENARIO

95TH PERCENTILE

Locus-Genome Statistic
(Whole-Genome Score)

Locus-Genome Statistic
(Strongest Marker in

Genome)

Case-Control Statistic
(Strongest Marker in

Genome)

Null model (scenario 1) �.1 2.7 3.7
Mi varies between parents (scenario 2) �.3 2.4 3.7
li varies between parents (scenario 3) .1 2.8 3.7
Disease locus (2-fold increased risk due to ancestry)a .3–7.3 2.3–10.4 2.7–5.5

NOTE.—We performed 100 simulations with no disease locus for each of the three scenarios described in the text, for 200 cases and
200 controls with and studied in 2,147 of the markers described by Smith et al. (2004 [in this issue]), andM ∼ 20% � 12% l ∼ 6 � 2i i

analyzed the data with the disease association statistics. The 95th percentiles of simulations in the absence of a disease locus are
approximately the same whether or not Mi and li vary between parents. This indicates that substantial deviations from model assumptions
are not likely to cause false positives in the MCMC analysis. For comparison, we also present simulations based on a real disease locus
(twofold increased risk).

a Values in this row are 5th–95th percentile ranges.

Performance of MCMC on Real Data

The analysis can scan along the genome of an indi-
vidual estimating ancestry.—In figure 2, we show the
output of the analysis based on genotyping data from
three African American individuals. The plots focusing
on chromosome 22 show clear transitions between 0, 1,
or 2 European-ancestry alleles.

The MCMC can detect regions of elevated European
ancestry in African Americans.—To evaluate the perfor-
mance of the method, we examined a large data set
consisting of 442 African Americans with MS and 276
controls, genotyped at 756 SNPs covering 39% of the
genome (to be fully described elsewhere).

We began by identifying five polymorphisms with
large frequency differences between West Africans and
European Americans. From the 442 patients in the study,
we selected a subset carrying the genetic variant that
was relatively more common in Europeans. These in-
dividuals were expected to have an elevated proportion
of European ancestry at that locus. Figure 3 shows that
the MCMC successfully detects these loci (without in-
cluding the genotypes of the marker used to select the
locus). The LOD scores range between 4 and 15, indi-
cating 104:1 to 1015:1 odds of seeing a result so extreme
by chance. Strong admixture linkage disequilibrium
covers a region 10–20 cM around each locus. These
results are comparable to the high admixture-generated
LD in African Americans measured around FY (Parra et
al. 1998; Lautenberger et al. 2000; McKeigue et al.
2000).

Estimates of genomic parameters relevant to admixture
mapping in African Americans.—With the large MS co-
hort sample, we were able to obtain rigorous estimates
of the proportion of European ancestry and the extent
of admixture-generated linkage disequilibrium in Afri-

can Americans. The overall proportion of European an-
cestry in the 718 samples was , slightly higherM p 21%i

than the 15%–20% estimates in previous studies of Af-
rican American populations (Parra et al. 1998). The per-
individual estimates from our MCMC agree closely with
estimates from a maximum-likelihood analysis (fig. 4A)
and the STRUCTURE program (Falush et al. 2003)
(data not shown). We were also able, for the first time,
to precisely estimate the variability of ancestry propor-
tion across African Americans: . ThisM ∼ 21% � 11%i

is important in disease studies, since individuals with
!10% ancestry from one parental population provide
much less power (see below).

The other important parameter in admixture mapping
is the average number of generations since admixture
(fig. 4B). We estimate , on average, but notel p 6.0i

that this is somewhat difficult to interpret, because the
number of generations since admixture is different on
every lineage in a person’s ancestry. The inverse, ,1/l i

however, is the average extent of strong admixture-gen-
erated LD in African Americans ( cM). Falush1/l p 17i

et al. (2003) estimated cM, and Collins-1/l p 10i

Schramm et al. (2003) estimated 10–20 cM in different
genomewide data sets in different population samples.

Third, the MCMC analysis allowed us to assess how
closely the West African and European American pop-
ulations corresponded to the true parental populations
for African Americans. The algorithm estimates a pa-
rameter—tA for Europeans and tB for Africans—indi-
cating how much drift has occurred between the parental
population and actual European American and West Af-
rican samples that had been genotyped. An interpreta-
tion of tE and tA is that the true frequencies in the pa-
rental populations of African Americans are as close to
those in the European American and West African con-
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Figure 6 Simulations to assess the power of the method to detect a disease locus at which a population A–ancestry allele confers 1-,
1.3-, 1.5-, 1.7-, and 2-fold multiplicative increased risk. The ancestry of the samples was assumed to be and , andM ∼ 20% � 12% l ∼ 6 � 2i i

the markers are 2,147 from the map described in the accompanying article by Smith et al. (2004 [in this issue]). For the simulations, we picked
a “typical” locus from the map (chromosome 8, position 131 cM), where the estimated information about ancestry provided by nearby markers
(estimated as described by Smith et al. 2004 [in this issue]) is 67% of the maximum. For each of the five risk models and sample sizes of 250,
500, 750, 1,000, and 2,000 (assuming equal numbers of cases and controls), 20 simulations were performed. The number of simulations that
pass the genomewide threshold of significance (LOD 12) was plotted for the main locus-genome statistic (we used a hypothesis of equally likely
risk models of , 1.3, 1.5, and 2.0, with in the locus-genome tests for association). These simulations demonstrate that even2w p 0.5 w p w1 2 1

relative risks due to ancestry of as little as 1.3 can be detected by admixture mapping with 2,000 cases and controls. The significance threshold
we use (LOD 12) is quite stringent, so, in practice, many simulations that do not formally exceed this significance threshold will produce large
enough scores (LOD 10) that they would be followed up by studying a higher density of markers at the strongest peaks of association. Extraction
of substantially more information by genotyping a higher density of markers should bring real disease loci above the genomewide threshold of
significance.

trols as would be expected if the control sample fre-
quencies were obtained by sampling tA alleles and tB

alleles from the ancestral African American populations
(Nicholson et al. 2002). The West African and European
Americans are fairly close to the parental populations
( and , corresponding tot p 430 � 76 t p 253 � 59A B

Fst values of 0.001 and 0.002, respectively, using the
formula relating t to Wright’s Fst from Lockwood et al.
[2001]: ).F p 1/ [2(t � 1)]st

Evaluating the performance of the computer soft-
ware.—We ran the MCMC analysis on several data sets.
The analysis ran in 40 min on the MS data set (756
SNPs and 718 samples), in 12 min on a subset of the
map data set (2,147 SNPs and 109 samples [Smith et
al. 2004]), and in half a minute on a previously published
data set (33 SNPs and 235 samples [Hoggart et al.
2003]). Simulation studies showed that the speed in-
creases approximately linearly with the number of SNPs
and samples. For example, on a simulated data set of
the size that is likely to be used in powerful admixture

mapping studies (2,147 SNPs in 2,000 samples), the pro-
gram ran in 222 minutes. Thus, the program is suffi-
ciently fast that it is practical to analyze genomewide
data sets in large patient samples. The high speed also
allowed us to perform extensive power calculations and
thorough debugging of software, which is important for
a large MCMC such as ours, since such programs have
few internal checks.

Assessing the Performance of the MCMC by Computer
Simulation

Simulations to assess the robustness of the method in
estimating unknown parameters.—To evaluate how well
our estimates of , , Mi, and li correspond to theirA Bp pj j

true values, we generated simulated data sets in which
the true values of the parameters were known. As shown
in the simulations in figure 5, the estimates produced by
the MCMC are unbiased, with about an equal number
positive and negative. Even with deviations from our
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Figure 7 Effect of map quality on the power to detect a disease
locus. Using the 2,147 markers from the map described by Smith et
al. (2004 [in this issue]), we performed 100 simulations with 200 cases
and 200 controls and a multiplicative risk model of 2 due to a Eu-
ropean-ancestry allele. We performed the simulations for six loci where
the information extractions, according to our theoretical calculation
(described in detail by Smith et al. 2004 [in this issue]), were 0.5, 0.6,
0.7, 0.8, 0.9, and 1. The inverse of information extraction should be
the same as the increase in sample size that is necessary to detect a
disease locus there (as compared with perfect information). For ex-
ample, at the Duffy locus on chromosome 1—the rightmost data point
in this figure—an allele distinguishes essentially perfectly between West
African and European ancestry, and information extraction is 1. Our
simulations show that genomewide scores, in practice, increase faster
than would be expected on the basis of the theoretical power calcu-
lation (dashed line). Thus, although the average locus in the map has
claimed 71% information extraction, the mean association score from
simulations is ∼50% of the Duffy locus. The power loss compared
with theory is due, we believe, to the fact that there is less certainty
about allele frequencies at loci where there is lower information ex-
traction, so the MCMC is less certain about declaring an association.

model assumptions (scenarios 2 and 3 in the “Methods”
section), li is underestimated by no more than 7%, on
average (table 1), which is not enough to cause false
positives.

Simulations to assess the distribution of statistics in the
absence of a disease locus.—We performed a series of
100 simulations to assess how association statistics be-
have in the absence of a disease locus (that is, to generate
a null distribution). The 95th percentile is �0.1 for the
whole-genome score (table 2) for a simulated scenario
of 200 African American samples genotyped at the 2,147
markers from the Smith et al. (2004 [in this issue]) map.
We note that the 95th percentile can change depending
on the disease model. Thus, we recommend not declaring
genomewide significance if the LOD score is !2, unless
simulations are performed that mimic the structure of
the data set. The threshold for genomewide significance
does not change even if Mi and li differ across the parents
of individuals in a study (scenarios 2 and 3 in the “Meth-
ods” section) (table 2). Thus, the test for association

appears robust to substantial deviations from model
assumptions.

Simulations to assess statistical power to detect a dis-
ease locus.—We simulated disease loci where inheriting
alleles from population A confers 1.3-, 1.5-, 1.7-, and
2-fold increased risk compared with population B (fig.
6) (we assumed ranges of Mi and li similar those in to
African Americans). It is important to realize that these
risk factors differ from the genotype relative risk
(GRR)—the risk due to inheriting one copy of an allele—
that are quoted in most power calculations. What is
relevant to admixture mapping is the risk averaged over
all alleles at a locus in population A compared with the
risk averaged over all alleles in population B. Since the
risk is averaged over risk and nonrisk alleles, the risk
due to ancestry is usually less than the GRR.

We found that (a) 250 samples provided high power
(60%) to detect 2-fold risk due to ancestry, (b) 500 sam-
ples provided high power (70%) to detect 1.7-fold risk
due to ancestry, (c) 1,000 samples provided high power
(95%) to detect 1.5-fold risk due to ancestry, and (d)
2,000 samples provided high power (75%) to detect 1.3-
fold risk due to ancestry.

Simulations to assess how map quality affects
power.—The power of admixture mapping is strongly
dependent on the quality and density of markers in the
map, which changes from position to position in the
genome (McKeigue 1998; McKeigue et al. 2000). In an
accompanying article (Smith et al. 2004 [in this issue]),
we describe a map for African Americans based on 2,154
SNPs, 2,147 of which are used in all the simulations
discussed here. The average information content is es-
timated to be 71% in that article; however, that calcu-
lation does not take into account uncertainty in the allele
frequencies. Our simulations show that the true average
is closer to 50% (fig. 7), comparable to current standard
linkage maps (M.J.D., unpublished data). This means
that, to detect a disease locus with a given probability
of success, one would need to study about twice the
samples as would be required in the “ideal” scenario of
studying an infinitely dense and maximally informative
map of markers (fig. 8).

We advocate studying a much higher density of mark-
ers (and more samples) than the 200–300 markers (and
200–300 cases and controls) suggested by Stephens et
al. (1994) in their original admixture mapping power
calculations. Stephens et al. (1994) suggested studying
fewer samples because they were investigating power for
a phenotype for which the penetrance in families is high.
Since family-based (linkage) studies are highly efficient
in this situation, admixture mapping has no comparative
advantage in this case. Admixture mapping will have the
greatest advantage, compared with linkage mapping, for
late-onset complex traits for which heritabilities are low,



Figure 8 Comparison of the power of sib-pair linkage mapping, haplotype association mapping, and admixture mapping. A, Power as a
function of sample size. These charts present the number of case-control or sib-sib pairs that are expected to be required to detect a disease locus.
To set thresholds for genomewide significance, we assume that 300,000 independent markers have been tested for haplotype mapping (including
the real risk allele) and that there is perfect information extraction for linkage and admixture mapping, with all samples having a proportion of
population A ancestry (for example, European ancestry in African Americans) of . These represent idealized scenarios, so that, in practice,M p 20%i

1.2- to 2-fold more samples would be required than are shown here (see the “Methods” section). For simplicity, we assume that the allele that is
being studied is the only one at the locus that increases risk for the disease (with all other alleles conferring equal and lower risk). These results
show that, for low-penetrance risk alleles (1.3-fold, 1.5-fold, and 2-fold increased risk due to the allele rather than ancestry) that differ substantially
in frequency across populations, admixture mapping requires many fewer samples than linkage mapping (although usually more samples than
haplotype-based association mapping). B, Power as a function of number of genotypes. These charts correspond to the same scenarios but report
the number of genotypes required rather than the number of samples. The advantages of admixture mapping are most apparent in this comparison,
since many fewer markers are required for a whole-genome admixture scan than a whole-genome association scan.



Table 3

Number of Samples Required by Admixture Mapping versus Linkage and Direct Association Studies to Detect Known Risk Alleles

LOCUS (ALLELE) PHENOTYPE

INCREASED RISK

FREQUENCY IN

(%) INCREASED RISK FOR

NO. OF SAMPLES REQUIRED

FOR 80% POWER IN

Due to
Heterozygosity
for Risk Allele

(w1)

Due to
Homozygosity
for Risk Allele

(w2) Europeans
West

Africans

1 European-
Ancestry

Allele

2 European-
Ancestry
Alleles

Admixture
Mapping

Haplotype
Mapping

Linkage
Mapping

CTLA4 (Ala allele in Thr17Ala)a,b Type I diabetes 1.26 1.74 38 21 1.04 1.08 36,144 2,557 233,169
INS (class I allele in VNTR)c,d Type I diabetes 2.30 2.86 71 23 1.48 2.19 974 448 8,203
DRD3 (Ser allele in Ser9Gly)b,e Schizophrenia 1 1.12 67 12 1.01 1.05 346,816 265,999 380,983,674
AGT (Thr allele in Thr235Met)f,g,h Hypertension 1.12 1.31 42 91 .93 .87 16,034 11,332 4,941,111
PPAR-g (Pro allele in Pro12Ala)b,i Type II diabetes 1.3 1.7 85 100 .97 .93 62,134 21,297 18,151,737
CTLA4 (Ala allele in Thr17Ala)c,j,k Graves disease 1.32 1.80 38 21 1.05 1.10 28,861 2,041 157,555
PRNP (Met allele in Met129Val)c,l,m CJD susceptibility 1.88 3.57 72 56 1.11 1.23 9,081 422 7,666
APOE (E4 allele)c,n,o Alzheimer disease 4.2 14.9 14 30 .76 .57 1,165 71 316
F5 (Leiden allele)c,p,q Venous thrombosis 7.83 80 4 0 1.27 1.62 1,156 134 457
IBD5 (A allele in IGR2096a_1 A/C)r,s,t Inflammatory bowel disease 1.38 2 35 0 1.13 1.30 4,596 3,918 565,369
KCNJ11 (Lys allele in Glu23Lys)u Type II diabetes 1.12 1.47 34 3 1.02 1.05 43,312 22,466 15,589,550
HLA DR2 (DRB1*1501)v Multiple sclerosis 2.7 6.7 11 0 1.19 1.40 2,498 678 16,047
ABCB1 (C allele in C3435T)w Epilepsy treatment 1.47 2.66 50 10 1.20 1.50 1,985 969 30,623
GNB3(T allele in C825T)x Obesity (BMI 127) 1.98 3.59 30 81 .75 .55 1,055 602 15,704
b-globin (Val allele in Glu6Val)y Sickle-cell disease 1 1,000 0 6 .22 .22 92 5 14

NOTE.—To estimate the increased risk due to 1 or 2 European ancestry alleles, we used the frequencies of the risk alleles in European and West Africans and the increased risk due to one or two
copies estimated in European Americans. For calculating the power of linkage analysis and admixture mapping, we assumed fully informative maps, and assumed 300,000 independent hypotheses
for direct association studies. The first nine lines in the table show associations with complex disease identified by Hirschhorn et al. (2002), Lohmueller et al. (2003), and K. Lohmueller (unpublished
data) that were significant in meta-analysis or reproducible in 75% of follow-up studies (with the caveat that their frequencies were available in Europeans and Africans). The odds ratios are
calculated from follow-on studies, where increased risk due to heterozygosity was estimated using the odds ratio for the risk allele rather than the heterozygous genotype. Lines 10–14 show less
well-established associations with complex disease, and line 15 shows a Mendelian disease.

a Osei-Hyiaman et al. 2001.
b Lohmueller et al. 2003.
c Hirschhorn et al. 2002.
d Permutt and Elbein 1990.
e Crocq et al. 1996.
f Rotimi et al. 1996.
g Nakajima et al. 2002.
h K.E.L., unpublished data.
i Altshuler et al. 2000.
j Ueda et al. 2003.
k Donner et al. 1997.
l Mead et al. 2001.
m Soldevila et al. 2003.
n Farrer et al. 1997.
o Corbo and Scacchi 1999.
p Rosendaal et al. 1995.
q Rees et al. 1995.
r Rioux et al. 2001.
s Giallourakis et al. 2003.
t M.J.D., unpublished data.
u D.A., unpublished data.
v Barcellos et al. 2003.
w Siddiqui et al. 2003.
x Siffert et al. 1999.
y Hill et al. 1991.
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a situation in which the statistical signal is weaker and
therefore more samples are required.

Simulations assessing the value of control samples in
a study.—Admixture mapping differs from other asso-
ciation approaches in that it can, in principle, be per-
formed as a case-only analysis. This is because the pro-
portion of ancestry at each locus can be compared with
the genomewide average (fig. 1). In practice, however,
the inclusion of control samples can improve power by
providing more certainty about allele frequencies in the
ancestral populations. This raises two questions. First,
which is better: controls from the mixed population or
from the parental populations? Second, how many con-
trols should be examined?

To assess how useful controls are in an admixture
mapping study, we performed simulations with 200
cases and different numbers of controls, for a locus con-
ferring twofold increased risk of disease. In these sim-
ulations, controls add only a small amount of infor-
mation compared with that provided by genotyping 78
European American and 99 West African samples for
the Smith et al. (2004 [in this issue]) map. In a series of
100 simulations with a 2-fold increased risk locus, the
average LOD scores for association were 1.88, 1.95, and
2.15 for 0, 200, and 2,000 controls, respectively. In-
creasing the number of cases to 2,000, by contrast, con-
fers far more power than increasing the number of con-
trols by the same amount: the average LOD score for
association is 5.06 even in the presence of a much weaker
(1.5-fold) increased risk locus.

We conclude that, in designing an admixture mapping
study, one should make the collection of cases as large
as possible, with the size of the control population a
secondary objective. A minimum of a few hundred con-
trol samples should probably be included in any disease
study as a sanity check, to ensure that any signals of
admixture association are restricted to cases and not seen
in controls. Admixed control samples will also likely be
more important for studies in populations such as His-
panic Americans than in African Americans, since, in
Hispanic Americans, it may be more difficult to identify
modern representatives of the actual parental popula-
tions, and the only reliable source of allele frequency
information will be admixed control samples.

Theoretical Power Calculations, and Guidelines for
Optimal Study Design

We performed power calculations for admixture map-
ping under a very wide range of disease models, assum-
ing a perfectly informative map. The results should apply
equally to any approach to admixture mapping (Mc-
Keigue 1997, 1998; Zheng and Elston 1999; McKeigue
et al. 2000; Hoggart et al. 2003), and not just to our
own.

Theoretical power of admixture mapping to detect
known disease loci.—To explore the theoretical power
of admixture mapping—what would be expected if our
genetic methods were perfect and we genotyped perfectly
informative sites at every point in the genome—we first
explored the power of admixture mapping to detect ge-
netic variants that have been associated with common,
complex diseases (Hirschhorn et al. 2002; Lohmueller
et al. 2003).

For each of the examples presented in table 3, we used
published data about the relative frequencies of the al-
leles in Europeans and West Africans, as well as the
relative risk due to carrying 1 or 2 copies of the allele,
to estimate the increased risk due to ancestry at the locus.

It is interesting that only a few of these known variants
would have been detectable with high power through
use of admixture mapping. This is because the method
will work only for the subset of risk variants that differ
strikingly in frequency across populations, and it is not
yet clear how important these are in human disease. We
emphasize that, since admixture mapping was not used
to identify the variants in table 3, the table has a bias
toward alleles that will not be amenable to admixture
mapping.

The prospects of admixture mapping are likely to be
best for diseases, such as MS and prostate cancer, with
sharply different incidences across populations. For such
diseases, there is a higher probability that the genetic
risk is due to alleles that have very different frequencies
across populations. The true usefulness of admixture
mapping will only be clear once several real, empirical,
high-powered studies are performed for diseases that dif-
fer strikingly in incidence across populations.

Theoretical exploration of power of admixture map-
ping for a range of disease models.—To more fully
explore how admixture mapping compares in power
with other whole-genome scanning approaches, we per-
formed theoretical calculations comparing the power of
admixture mapping with that of linkage studies and of
whole-genome association mapping. The calculations
we used for the latter two methods are similar to those
described by Risch and colleagues (Risch and Merikan-
gas 1996; Risch 2000). Figure 8A shows that an ad-
mixture mapping study involving a high-density map of
markers in African Americans should, in many cases,
have statistical power similar to that of a whole-genome
haplotype or association study and should require fewer
samples than a linkage scan to achieve the same statis-
tical power. Admixture mapping works well, of course,
only for alleles with a large allele frequency difference
across populations.

The high efficiency of admixture mapping is most ev-
ident when one focuses on the number of genotypes
required for a study (fig. 8B). The reason is that ad-
mixture mapping requires genotyping ∼100 times fewer
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Figure 9 Number of samples required to detect a disease locus where population A ancestry, on average, increases risk, as a function of
the proportion of ancestry in each sample. Individuals with population A ancestry between 10% and 90% provide the most power. The power
for admixture mapping contributed by a typical African American sample (20% European ancestry; 80% African ancestry) corresponds to a
percent population A of 0.2 (European ancestry confers increased risk) or 0.8 (African ancestry confers increased risk). Fewer samples are
required if the less common (European) ancestry confers increased risk (e.g., a disease such as MS rather than prostate cancer), although the
effect is slight (only 1.2- to 1.3-fold more samples are required to achieve the same power; see fig. 10). We note that this graph assumes perfect
information extraction and the same Mi for the two parents of each sample. Deviations from these assumptions—in particular, the imperfect
information extraction in real maps such as that described by Smith et al. (2004 [in this issue])—mean that the number of samples required
for a practical study would be about twice as high as shown.

Figure 10 Number of samples necessary to detect a disease locus
under the ideal assumption of perfect information about ancestry and
the same Mi in both parents. The number of samples necessary to
detect an association in African Americans is estimated by averaging
the power for a given risk model and percentage of ancestry (given
by the curves in fig. 9) over the percentages of ancestry seen in African
Americans: as described in the text.M ∼ 20% � 12%i

markers than haplotype mapping but retains the high
power of an association study. The power calculations
in figure 8 suggest that, with 2,000 samples and a high-
density map, it should be possible, in principle, to use
admixture mapping to detect disease loci where the rel-
ative risk due to an allele (the GRR, not the ancestry
risk) is as low as 1.5.

Power is affected by proportion of ancestry.—In the
extreme case, an individual with ancestry solely from
one population ( or 1) shows no crossovers be-M p 0i

tween segments of different ancestry and thus contrib-
utes no power for a study. However, figure 9 also shows
that power is fairly constant for values of Mi from 10%
to 90%. Since the average proportion of European an-
cestry is 15%–21% for African American populations
(Parra et al. 1998; present study) and is estimated to be
53%–68% for Hispanic American populations (Halder
and Shriver 2003), we conclude that both African and
Hispanic Americans are in the range of mixture pro-
portions where admixture mapping should have high
power.

The identity of the ancestral population with higher
risk at a locus only modestly affects power.—It has been
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previously noted that it should be easier to detect a locus
if the increase in ancestry is from the population con-
tributing less to the admixed population. To assess the
importance of this effect, we integrated the power cal-
culations (fig. 9) over the distribution of percent Euro-
pean ancestry (Mi) in African Americans (fig. 10).

These calculations show that, for loci where African
ancestry confers higher risk (which might be expected
in prostate cancer), the power is only slightly lower than
for loci where European ancestry confers higher risk (ex-
pected for diseases like MS). For example, if African
Americans are assumed to have 20% European admix-
ture on average, and if we consider a 1.5-fold relative-
risk allele that has frequencies of 10% in European
Americans and 60% in West Africans, we expect that
1,925 samples would be needed to detect it with 80%
power. The sample requirement would be reduced by
only 1.24-fold if the population frequencies were re-
versed. We conclude that the power of admixture map-
ping is affected little by which ancestral population has
a higher incidence.

Theory suggests that performance is affected by the
number of generations since admixture.—The number
of generations since admixture also has an impact on
power to detect a disease locus. For patients with a recent
history of admixture (low li, which could occur if all
four grandparents were from unadmixed populations)
the sizes of blocks of shared ancestry should be large,
and fewer markers should be necessary to provide high
confidence about their ancestry state (0, 1, or 2 popu-
lation A alleles). The drawback of a low li, however, is
that, once a peak is detected, there will be less precision
in localization.

Discussion

We have described a new method that allows genotyping
data from closely linked markers to be combined to per-
mit robust, powerful, and practical admixture scans for
disease genes. We have also verified that the method
works well, through use of empirical and simulated data.
Finally, we have performed power calculations that
should be relevant not only to the method we introduced
but also to other admixture scanning methods. We em-
phasize that admixture mapping will be useful only if it
is combined with a robust panel of markers specifically
chosen for admixture mapping. Thus, in an accompa-
nying article (Smith et al. 2004 [in this issue]), we also
present a high-density admixture map containing 2,154
SNPs, which, for the first time, should make it practical
to use the admixture mapping method as a disease gene
scanning method in African Americans.

It is important to recognize that, although admixture
mapping is a promising approach, it can only map var-
iants contributing to common disease that show large

allele frequency differences between parental popula-
tions. Ideally, several methods will be used in conjunc-
tion with one another to find as many risk variants as
possible:

1. Linkage mapping or homozygosity mapping are
always the most powerful and cost-effective ap-
proaches for identifying disease genes for which the
penetrance in families is high.

2. Haplotype mapping or direct association studies
have the virtue that they can identify common al-
leles of low penetrance. However, whole-genome
haplotype scans require the study of so many mark-
ers that they will not be practical until costs de-
crease. At present, the only practical haplotype
studies are of specific candidate regions.

3. Admixture mapping is an alternative approach to
whole-genome scans for low-penetrance risk vari-
ants for common disease. It will work best for find-
ing loci where the genetically influential disease risk
differs across populations. This may be most im-
portant where natural selection has altered the al-
lele frequency in different groups.

Admixture mapping is likely to be most promising
for diseases in which incidence differs strikingly across
populations, since these differences may signal the ex-
istence of alleles that also differ in frequency across
populations. (Of course, environmental influences and
sociocultural factors also explain many health dispari-
ties between populations.) It is important to realize,
however, that admixture mapping is not limited to phe-
notypes that differ in incidence across populations. Even
for populations in which the incidence is the same, the
genetic risk factors may be differently distributed across
loci, so that an admixture study would detect them as
regions of both increased and decreased ancestry.

Admixture mapping can be tested in practice only by
performing several real empirical studies. We conclude
that, even if the method works as well as theoretically
predicted, it is not a replacement for haplotype-based
mapping. At loci where peaks are detected, regions of
interest will span multiple centimorgans, and haplotype-
based approaches will be crucial for fine-mapping the
peaks and cloning the disease gene.
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