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Report

AICA-Ribosiduria: A Novel, Neurologically Devastating Inborn Error
of Purine Biosynthesis Caused by Mutation of ATIC
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In a female infant with dysmorphic features, severe neurological defects, and congenital blindness, a positive urinary
Bratton-Marshall test led to identification of a massive excretion of 5-amino-4-imidazolecarboxamide (AICA)–
riboside, the dephosphorylated counterpart of AICAR (also termed “ZMP”), an intermediate of de novo purine
biosynthesis. ZMP and its di- and triphosphate accumulated in the patient’s erythrocytes. Incubation of her fibro-
blasts with AICA-riboside led to accumulation of AICAR, not observed in control cells, suggesting impairment of
the final steps of purine biosynthesis, catalyzed by the bifunctional enzyme AICAR transformylase/IMP cyclohydrolase
(ATIC). AICAR transformylase was profoundly deficient, whereas the IMP cyclohydrolase level was 40% of normal.
Sequencing of ATIC showed a K426R change in the transformylase region in one allele and a frameshift in the
other. Recombinant protein carrying mutation K426R completely lacks AICAR transformylase activity.

The de novo purine biosynthesis pathway involves 10
steps which lead from 5-phosphoribosylpyrophosphate
(PRPP) to inosine monophosphate (IMP), from which
the adenine and guanine nucleotides are formed (fig. 1).
Hitherto, only a single inborn deficiency of purine syn-
thesis had been identified in humans, namely the defi-
ciency of adenylosuccinate lyase (ADSL [MIM 103050])
(Jaeken and Van den Berghe 1984; Van den Berghe and
Jaeken 2001). This disorder is characterized by the pres-
ence in urine and cerebrospinal fluid (CSF) of succinyl-
5-amino-4-imidazolecarboxamide riboside (SAICA-ri-
boside) and succinyladenosine (S-Ado), the nucleosides
corresponding to SAICA-ribotide (SAICAR) and adeny-
losuccinate (S-AMP), respectively, the two substrates of
ADSL. The presence of SAICA-riboside results in a posi-
tive Bratton-Marshall test (Laikind et al. 1986). Since
false-positive results are recorded in patients who receive
certain medications, a positive Bratton-Marshall test
should be followed by identification by high-perfor-
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mance liquid chromatography (HPLC) coupled with UV
spectral analysis (Jaeken and Van den Berghe 1984; Van
de Berghe and Jaeken 2001) of the succinylpurines
SAICA-riboside and S-Ado.

We have observed a 4-year-old girl who presented with
a devastating neurological picture, involving profound
mental retardation, epilepsy, dysmorphic features (promi-
nent forehead and metopic suture, brachycephaly, wide
mouth with thin upper lip, low-set ears, and prominent
clitoris due to fused labia minora), and congenital blind-
ness. She is the second child of healthy, unrelated French
parents whose first child is a healthy son. She was born
at term after an uneventful pregnancy. Birth weight was
3,030 g, length 49 cm, and head circumference 34 cm.
The baby was hypotonic and displayed hypoglycemia (1.5
mmol/liter) and hyponatremia, which resolved after die-
tary treatment. Fundoscopy showed normal results. A
heart murmur was shown to be due to an ostium se-
cundum–type atrial septal defect. At age 5 mo, psycho-
motor delay was manifest, and partial occipital seizures
appeared. Dysmorphic features were more prominent
and included high bridge of the nose, anteverted nostrils,
and cutaneous dimples on the extensor side of knees,
elbows, and shoulders. At age 6 mo, congenital blindness
was noticed. At age 12 mo, bilateral atrophic pigmented
chorioretinal macular lesions had developed with optic
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Figure 1 Pathway of purine metabolism. 1, ADSL. 2a, AICAR-
TF. 2b, IMP-CH. 3, Adenylosuccinate synthetase. 4, AMP deaminase.
5, 5′-nucleotidase. 6, Purine nucleoside phosphorylase. 7, Adenosine
deaminase. 8, HGPRT. 9, APRT. 10, Adenosine kinase. 11, Xanthine
oxidase.

Figure 2 HPLC of urine. Urine samples were analyzed by HPLC,
with diode-array UV detection, on an Alltima C18 5u (250 # 246

) reversed-phase column (Alltech), as described elsewhere (Mariemm
et al. 2000).

atrophy, abnormal electroretinograms, and visual evoked
potentials. Right-side esotropia was also present. At fol-
low-up at age 4 years, psychomotor delay and visual
handicap remained the major concerns.

The results of routine biochemical analyses, including
serum (0.18 mM) and urinary uric acid (table 1), were
normal. Cholesterol was 4.2 mM (normal 4.4–6.4 mM),
and free fatty acids 0.17 mM (normal 0.2–0.6 mM). Re-
sults of laboratory investigations for organic acidurias,
aminoacidopathies, sterol, lysosomal, peroxysomal, bio-
tin, and protein glycosylation enzymes were negative.
High-resolution karyotype, pantelomeric screening, and
mDNA were normal. Infectious embryopathy and cho-
rioretinitis were also ruled out because of the normality
of brain imaging (CT scan and magnetic resonance im-

aging) and brain auditory-evoked response. A positive
urinary Bratton-Marshall test (Laikind et al. 1986) sug-
gested accumulation of SAICA-riboside. We performed
HPLC analysis of urine and CSF, and both revealed the
presence of SAICA-riboside and S-Ado (fig. 2; table 1),
although at a lower concentration than that found in
ADSL-deficient patients (table 1). The chromatograms
also revealed three additional peaks (fig. 2) that are seen
neither in control individuals’ nor in ADSL-deficient pa-
tients’ urine. The major peak was identified as 5-amino-
4-imidazolecarboxamide riboside (AICA-riboside), on the
basis of a positive Bratton-Marshall test, spectral analy-
sis, and spiking with the authentic compound. The two
other compounds displayed spectral characteristics simi-
lar to those of AICA-riboside. They were not further
characterized, although they were not due to the medica-
tions taken by the patient.

AICA-riboside is the nucleoside corresponding to
AICAR (AICA-ribotide, also termed “ZMP”), an inter-
mediate of the de novo purine biosynthetic pathway.
AICA-riboside is formed by dephosphorylation of AICAR
(ZMP), most likely by IMP-GMP 5′-nucleotidase (Vin-
cent et al. 1996a). Its presence in trace amounts in con-
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Table 1

Analysis of Urine and CSF by HPLC, Compared with Reference Values

SAMPLE AND CONTENT

FINDINGS INa

Control Individuals
( )n p 5 Patient

ADSL-Deficient Patients
( )n p 8

Urine (mmol/mole creatinine):
S-Ado ND 45 132–439
SAICA-riboside ND 80 79–802
AICA-riboside ND 280 ND
Uric acid 185–1,134b 829 400–695

Cerebrospinal fluid (mM):
S-Ado 0–5.4 16 158–443
SAICA-riboside ND 15 132–783
AICA-riboside ND 12 ND
Uric acid 2–40 ND 0–8

NOTE.—Urine and CSF samples were analyzed by use of HPLC with diode-array UV de-
tection on an Alltima C18 5u ( ) reversed-phase column (Alltech), as described250 # 246 mm
elsewhere (Marie et al. 2000).

a ND p not detectable.
b Normal values for 2–5-year-old children.

trol human urine has been demonstrated (Sweetman and
Nyhan 1971). Increased urinary excretion of AICA-ri-
boside is associated with vitamin B12 and folic acid de-
ficiencies, which impair AICAR transformylase (TF) ac-
tivity (Middleton et al. 1964). It has also been detected
in children with acute leukemia (Lulenski et al. 1970) and
in patients with hypoxanthine-guanine phosphoribosyl-
transferase (HGPRT [MIM 308000]) deficiency (New-
combe 1970; Sweetman and Nyhan 1971). In the latter
two disorders, increased excretion of AICA-riboside can
be explained by enhancement of de novo purine syn-
thesis, which renders AICAR-TF rate limiting. However,
in all the conditions listed, the excretion of AICA-ri-
boside is orders of magnitude lower than in the present
patient.

Nucleotide analysis of the patient’s red blood cells
(table 2) revealed a huge accumulation of AICAR (ZMP)
and also of its di- and triphosphate derivatives, ZDP and
ZTP. The concentration of ZTP markedly surpassed that
of ATP. In turn, ATP concentration was depressed by 60%
in the patient’s erythrocytes, as compared with those of
the control individuals and the parents. Accumulation
of ZTP also is associated with HGPRT deficiency and
other disorders of purine overproduction and has been
attributed to the increased rate of de novo purine syn-
thesis in these conditions (Sidi and Mitchell 1985). How-
ever, in those cases, ZTP accumulation is much less promi-
nent than in our patient.

Cultured skin fibroblasts obtained from the patient
were incubated with AICA-riboside, which can be used
by the de novo synthesis pathway, following phosphory-
lation into AICAR through the action of adenosine ki-
nase (fig. 1). Fibroblasts were trypsinized and resus-
pended in Krebs buffer at a density of 106 cells per 0.5
ml. Cells were incubated at 37�C for 60 min in a shaking

incubator with intermittent oxygenation, with or with-
out AICA-riboside 0.5 mM. The cell pellet was extracted
with 0.1 ml HClO4 2.5% and was analyzed, as described
for red blood cells in the note of table 2. This revealed
marked accumulation of AICAR (ZMP) in the patient’s
cells (to 6.21 mmol per g of protein, after 60 min), not
seen in control cells, confirming impairment of AICAR
metabolism.

The presence of massive amounts of AICA-riboside in
the patient’s urine and the accumulation of AICAR and
its derivatives in her erythrocytes and fibroblasts are a
clear indication of a deficiency in the enzyme that utilizes
this intermediate of de novo purine biosynthesis, the bi-
functional enzyme AICAR-TF/IMP cyclohydrolase (ATIC
[MIM 601731], also known as purH) (Greasley et al.
2001) (fig. 1). AICAR-TF catalyzes the transformylation
of AICAR and 10-formyl-tetrahydrofolate to produce
formyl-AICAR (FAICAR) and tetrahydrofolate, whereas
the IMP cyclohydrolase (IMP-CH) moiety cyclizes
FAICAR to IMP. The C-terminal domain of the protein
is responsible for the AICAR-TF activity, whereas the
IMP-CH activity resides in the N-terminal domain. We
assayed the presence of both catalytic activities in the
patient’s cultured skin fibroblasts (table 3). This revealed
a profound deficiency of AICAR-TF activity. By contrast,
IMP-CH activity was 40% of normal (table 3).

Sequencing of the gene (GenBank accession number
NT_005403) showed a frameshift in exon 2 in one allele,
caused by a duplication/deletion event (125–129dup-
GGGAT; 130–132delGCT). This results in instability of
mRNA (GenBank accession number BC008879), as as-
sessed by sequencing of the product from RT-PCR, in
which this allele was absent. This mutation was also
found in the mother’s DNA. In the other allele, a K426R
(c.1277 ArG) change was found in exon 13, which is



Reports 1279

Table 2

Concentrations of Nucleotides in Red Blood Cells

NUCLEOTIDE

CONCENTRATIONS OF NUCLEOTIDES

IN RED BLOOD CELLS OFa

Control Individualsb

( )n p 3 Father Mother Patient

ATP 599�95 750 631 222
ADP 54�6 56 61 67
AMP 4.5�3 6 6 61
IMP ND 12 18 23
GTP 29�12 21 17 43
ZMP ND ND ND 243
ZDP ND ND ND 224
ZTP ND ND ND 716

NOTE.—Concentrations are given in mmol/ml of blood. Red blood
cells were packed by centrifugation for 15 min at 500 g and resus-
pended in 3 volumes of Krebs buffer. Suspensions of packed eryth-
rocytes were analyzed by HPLC, after extraction with 1 volume of
10% HClO4 and neutralization, on a Partisphere SAX (4.6 # 125

) ion-exchange column (Whatman) (Vincent et al. 1991).mm
a ND p not detectable.
b Mean�SD.

Table 3

Assay of AICAR-TF, IMP-CH, and ADSL Activities in Fibroblasts

SUBJECTS

ASSAY OF

AICAR-TF IMP-CH

ADSL with

S-AMP SAICAR

Control Individuals 1.52�.44 2.3�.24 2.75�.37 2.15�.15
Patient NDa .9�.36 2.9, 2.75 2.3, 2.1

NOTE.—Results are given in nmol/min/mg of soluble proteins.
Mean�SD of 3–4 determinations or individual values. Activities were
measured on extracts prepared from cultured skin fibroblasts. AICAR-
TF and IMP-CH were assayed as described by Rayl et al. (1996), except
that 10-formyltetrahydrofolate was prepared from 5,10-methenylte-
trahydrofolate purchased from Shrick. ADSL activity was assayed, as
described elsewhere, by use of both SAICAR and S-AMP as substrates
and measurement of the products of the reaction by HPLC (Marie et
al. 2000).

a ND p not detectable.

part of the AICAR-TF region. This mutation was also
found in the father’s DNA. This second mutation is lo-
cated within a conserved region that has been shown to
be implicated in the binding of a potassium ion in the
avian protein (Greasley et al. 2001). This potassium ion
has been proposed as playing a key role in stabilization
of the tertiary structure of the protein. In expression
studies, recombinant protein carrying mutation K426R
completely lacks AICAR-TF activity but still shows IMP-
CH activity.

The accumulation of AICAR in the patient’s erythro-
cytes probably results from phosphorylation of circu-
lating AICA-riboside by adenosine kinase. Utilization of
ATP in this process, in combination with the phos-
phorylation of ZMP into ZDP by nucleoside monophos-
phate kinase and of ZDP into ZTP by nucleoside diphos-
phate kinase, probably explains the lower ATP concen-
trations in the patient’s erythrocytes.

The observation that deficiency of ATIC does not in-
fluence the patient’s production of uric acid, as apparent
from normal serum and urinary concentrations, is in
accordance with a normally minor contribution of the
de novo pathway to the synthesis of purine nucleotides.
As in ADSL deficiency, a depletion of purine nucleotides
is not found in ATIC deficiency, most probably because
the enzyme defect on the de novo pathway can be cir-
cumvented by supply of purines by the salvage pathway
encompassing the enzymes HGPRT, adenine phosphori-
bosyltransferase (APRT), and adenosine kinase (fig. 1).
Nevertheless, ATIC deficiency could result in depletion
of purine nucleotides in some hitherto-unidentified cell
types or during embryonic development and organo-
genesis, when the contribution of the de novo pathway

to the synthesis of purine nucleotides could be more
important.

As in ADSL deficiency, the succinylpurines S-Ado and
SAICA-riboside accumulate in ATIC deficiency, although
to a lesser extent. This accumulation is probably the result
of inhibition of ADSL by accumulating AICAR (Sabina
et al. 1982) and could exert toxicity by still-unexplained
mechanisms. Moreover, AICA-riboside, the major accu-
mulating compound in ATIC deficiency, might have sev-
eral potentially deleterious effects. Indeed, in recent years,
AICA-riboside has been shown to possess a diversity
of metabolic properties (reviewed by Vincent [1997]),
probably as a consequence of its structural similarity
with adenosine. A cardioprotective action—involving a
broad variety of effects on cardiac tissue, neutrophils,
and platelets, possibly mediated by the release of adeno-
sine (Gruber et al. 1989)—has been extensively inves-
tigated. On the other hand, we have shown that AICA-
riboside has marked inhibitory effects on carbohydrate
and lipid metabolism in the liver. These include inhibi-
tion of gluconeogenesis (Vincent et al. 1991), capable of
inducing hypoglycemia (Vincent et al. 1996b), of gly-
colysis (Vincent et al. 1992), and of fatty-acid and cho-
lesterol synthesis (Henin et al. 1995). These inhibitory
effects can be explained by the rapid phosphorylation
of AICA-riboside by adenosine kinase, resulting in ac-
cumulation of AICAR. AICAR, because of its structural
similarity with AMP (Sabina et al. 1984), influences the
activity of a number of AMP-sensitive enzymes, among
which are fructose-1,6-bisphosphatase, glucokinase, and
AMP-activated protein kinase (Henin et al. 1996).
AICA-riboside has also been shown to stimulate glucose
uptake by muscle (Holmes et al. 1999) and to induce
apoptosis in human neuroblastoma cells (Garcia-Gil et
al. 2003). It remains to be determined whether the pa-
thology of the present patient—including transient neo-
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natal hypoglycemia, low cholesterol and free fatty ac-
ids—is due to the accumulation of AICA-riboside and
its phosphorylated counterpart, AICAR, and the precise
mechanisms of the potentially deleterious effects of these
compounds. Moreover, possible toxic effects of the two
unidentified compounds, which might be derivatives of
upstream components of the de novo pathway, should
also be investigated.

Systematic screening for ADSL deficiency with the Brat-
ton-Marshall test has been regularly advocated in the
numerous patients with unexplained psychomotor retar-
dation, convulsions, autistic features, or neurological
disease without clear etiology. The present observation—
which led to the discovery of the first patient affected
with a second inborn defect of purine biosynthesis,
AICA-ribosiduria caused by the deficiency of ATIC—
strongly reinforces this point.

Acknowledgments

This work was supported by grants from the Fund for Medi-
cal Scientific Research (Belgium), the Concerted Research Ac-
tion Programme of the Communauté Française de Belgique, the
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